首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
KCl and 4-aminopyridine (4-AP) evoke glutamate release from rat brain cortical nerve terminals by voltage clamping or by Na(+) channel-generated repetitive action potentials, respectively. Stimulation by 4-AP but not KCl is largely mediated by protein kinase C (PKC). To determine whether KCl and 4-AP utilise the same mechanism to release glutamate, we correlated glutamate release with release of the hydrophobic synaptic vesicle (SV) marker FM2-10. A strong correlation was observed for increasing concentrations of KCl and after application of phorbol 12-myristate 13-acetate (PMA) or staurosporine. The parallel increase in exocytosis measured by two approaches suggested it occurred by a PKC-independent mechanism involving complete fusion of SVs with the plasma membrane. At low concentrations of 4-AP, alone or with staurosporine, glutamate and FM2-10 release also correlated. However, higher concentrations of 4-AP or of 4-AP plus PMA greatly increased glutamate release but did not further increase FM2-10 release. This divergence suggests that 4-AP recruits an additional mechanism of release during strong stimulation that is PKC dependent and is superimposed upon the first mechanism. This second mechanism is characteristic of kiss-and-run, which is not detectable by styryl dyes. Our data suggest that glutamate release in nerve terminals occurs via two mechanisms: (1) complete SV fusion, which is PKC independent; and (2) a kiss-and-run-like mechanism, which is PKC dependent. Recruitment of a second release mechanism may be a widespread means to facilitate neurotransmitter release in central neurons.  相似文献   

2.
Repeated intermittent treatment with amphetamine (AMPH) induces both neurite outgrowth and enhanced AMPH-stimulated dopamine (DA) release in PC12 cells. We investigated the role of protein kinases in the induction of these AMPH-mediated events by using inhibitors of protein kinase C (PKC), mitogen activated protein kinase (MAP kinase) or protein kinase A (PKA). PKC inhibitors chelerythrine (100 nm and 300 nm), Ro31-8220 (300 nm) and the MAP kinase kinase inhibitor, PD98059 (30 micro m) inhibited the ability of AMPH to elicit both neurite outgrowth and the enhanced AMPH-stimulated DA release. The direct-acting PKC activator, 12-O-tetradecanoyl phorbol 13-acetate (TPA, 250 nm) mimicked the ability of AMPH to elicit neurite outgrowth and enhanced DA release. On the contrary, a selective PKA inhibitor, 100 micro m Rp-8-Br-cAMPS, blocked only the development of AMPH-stimulated DA release but not the neurite outgrowth. Treatment of the cells with acute AMPH elicited an increase in the activity of PKC and MAP kinase but not PKA. These results demonstrated that AMPH-induced increases in MAP kinase and PKC are important for induction of both the enhancement in transporter-mediated DA release and neurite outgrowth but PKA was only required for the enhancement in AMPH-stimulated DA release. Therefore the mechanisms by which AMPH induces neurite outgrowth and the enhancement in AMPH-stimulated DA release can be differentiated.  相似文献   

3.
The effect of alpha-tocopherol, the major vitamin E component, on the release of endogenous glutamate has been investigated using rat cerebrocortical nerve terminals. Results showed that alpha-tocopherol facilitated the Ca2+-dependent but not the Ca2+-independent glutamate release evoked by 4-aminopyridine (4AP). This release facilitation was insensitive to glutamate transporter inhibitor L-trans-PDC or DL-TBOA, and blocked by the exocytotic neurotransmitter release inhibitor tetanus neurotoxin, indicating that alpha-tocopherol affects specifically the physiological exocytotic vesicular release without affecting the non-vesicular release. Facilitation of glutamate exocytosis by alpha-tocopherol was not due to its increasing synaptosomal excitability, because alpha-tocopherol did not alter the 4AP-evoked depolarization of the synaptosomal plasma membrane potential. Rather, examination of the effect of alpha-tocopherol on cytoplasmic free Ca2+ concentration revealed that the facilitation of glutamate release could be attributed to an increase in voltage-dependent Ca2+ influx. Consistent with this, the alpha-tocopherol-mediated facilitation of glutamate release was significantly reduced in synaptosomes pretreated with omega-CgTX MVIIC, a wide spectrum blocker of N- and P/Q-type Ca2+ channels. In addition, alpha-tocopherol modulation of glutamate release appeared to involve a protein kinase C (PKC) signalling cascade, insofar as pretreatment of synaptosomes with the PKC inhibitor GF109203X effectively suppressed the facilitatory effect of alpha-tocopherol on 4AP- or ionomycin-evoked glutamate release. Furthermore, alpha-tocopherol increased the phosphorylation of MARCKS, the major presynapic substrate for PKC, and this effect was also significantly attenuated by PKC inhibition. Together, these results suggest that alpha-tocopherol exerts an increase in PKC activation, which subsequently enhances voltage-dependent Ca2+ influx and vesicular release machinery to cause an increase in evoked glutamate release from rat cerebrocortical glutamatergic terminals. This finding might provide important information regarding to the action of vitamin E in the central nervous system.  相似文献   

4.
The adenylyl cyclase activator forskolin facilitates synaptic transmission presynaptically via cAMP-dependent protein kinase (PKA). In addition, cAMP also increases glutamate release via PKA-independent mechanisms, although the downstream presynaptic targets remain largely unknown. Here, we describe the isolation of a PKA-independent component of glutamate release in cerebrocortical nerve terminals after blocking Na+ channels with tetrodotoxin. We found that 8-pCPT-2′-O-Me-cAMP, a specific activator of the exchange protein directly activated by cAMP (Epac), mimicked and occluded forskolin-induced potentiation of glutamate release. This Epac-mediated increase in glutamate release was dependent on phospholipase C, and it increased the hydrolysis of phosphatidylinositol 4,5-bisphosphate. Moreover, the potentiation of glutamate release by Epac was independent of protein kinase C, although it was attenuated by the diacylglycerol-binding site antagonist calphostin C. Epac activation translocated the active zone protein Munc13-1 from soluble to particulate fractions; it increased the association between Rab3A and RIM1α and redistributed synaptic vesicles closer to the presynaptic membrane. Furthermore, these responses were mimicked by the β-adrenergic receptor (βAR) agonist isoproterenol, consistent with the immunoelectron microscopy and immunocytochemical data demonstrating presynaptic expression of βARs in a subset of glutamatergic synapses in the cerebral cortex. Based on these findings, we conclude that βARs couple to a cAMP/Epac/PLC/Munc13/Rab3/RIM-dependent pathway to enhance glutamate release at cerebrocortical nerve terminals.  相似文献   

5.
Abstract: The rod photoreceptors of teleost retinas elongate in the light. To characterize the role of protein kinases in elongation, pharmacological studies were carried out with rod fragments consisting of the motile inner segment and photosensory outer segment (RIS-ROS). Isolated RIS-ROS were cultured in the presence of membrane-permeant inhibitors that exhibit selective activity toward specific serine/threonine protein kinases. We report that three distinct classes of protein kinase inhibitors stimulated elongation in darkness: (1) cyclic AMP-dependent protein kinase (PKA)-selective inhibitors (H-89 and KT5720), (2) a protein kinase C (PKC)-selective inhibitor (GF 109203X) that affects most PKC isoforms, and (3) a kinase inhibitor (H-85) that does not affect PKC and PKA in vitro. Other kinase inhibitors tested neither stimulated elongation in darkness nor inhibited light-induced elongation; these include the myosin light chain kinase inhibitors ML-7 and ML-9, the calcium-calmodulin kinase II inhibitor KN-62, and inhibitors or activators of diacylglycerol-dependent PKCs (sphingosine, calphostin C, chelerythrine, and phorbol esters). The myosin light chain kinase inhibitors as well as the PKA and PKC inhibitors H-89 and GF 109203X all enhanced light-induced elongation. These observations suggest that light-induced RIS-ROS elongation is inhibited by both PKA and an unidentified kinase or kinases, possibly a diacylglycerol-independent form of PKC.  相似文献   

6.
Neurotransmitter transporters are regulated by phosphorylation but little is known about endogenous substances and receptors that regulate this process. Adenosine is an ubiquitous neuromodulator operating G-protein coupled receptors, which affect the activity of several kinases. We therefore evaluated the influence of adenosine upon the GABA transporter 1 (GAT-1) mediated GABA uptake into hippocampal synaptosomes. Removal of endogenous adenosine (adenosine deaminase, 1 U/mL) decreased GABA uptake, an effect mimicked by blockade of A2A receptors (2-(2-furanyl)-7-(2-phenylethyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine, 50 nM) but not A1 or A2B receptors. A2A receptor activation (4-[2-[[6-amino-9-( N -ethyl-β- d -ribofuranuronamidosyl)-9H-purin-yl]amino]ethyl]benzenepropanoic acid hydrochloride, 3–100 nM) enhanced GABA uptake by increasing the transporter Vmax without change of KM. This was mimicked by adenylate cyclase activation (forskolin, 10 μM) and prevented by protein kinase A (PKA) inhibition ( N -[2-( p -bromocinnamylamino) ethyl]-5-isoquinolinesulfonamide dihydrochloride, 1 μM), which per se did not influence GABA transport. Blockade of protein kinase C (PKC) (2-[1-(3-dimethylaminopropyl)indol-3-yl]-3-(indol-3-yl) maleimide, 1 μM) facilitated GABA transport whereas PKC activation (4-β-phorbol-didecanoate, 250 nM) inhibited it. PKA blockade did not affect the facilitatory action of the PKC inhibitor or the inhibitory action of the PKC activator. However, when adenylate cyclase was activated neither activation nor inhibition of PKC affected GABA uptake. It is concluded that A2A receptors, through activation of the adenylate cyclase/cAMP/PKA transducing pathway facilitate GAT-1 mediated GABA transport into nerve endings by restraining tonic PKC-mediated inhibition.  相似文献   

7.
Glutamate is the major excitatory neurotransmitter in the CNS. Although its role in neurons has been studied extensively, little is known about its function in astrocytes. We studied the effects of glutamate on signaling pathways in primary astrocytes. We found that the tyrosine kinase related adhesion focal tyrosine kinase (RAFTK) is tyrosine phosphorylated in response to glutamate in a time- and dose-dependent manner. This phosphorylation was pertussis toxin (PTX) sensitive and could be attenuated by the depletion of Ca2+ from intracellular stores. RAFTK tyrosine phosphorylation was mediated primarily by class I/II metabotropic glutamate receptors and depends on protein kinase C (PKC) activation. Glutamate treatment of primary astrocytes also results in a significant increase in the activity of the mitogen-activated protein kinases [extracellular signal-related kinases 1/2 (ERK1/2)]. Like RAFTK phosphorylation, ERK1/2 activation is PTX sensitive and can be attenuated by the depletion of intracellular Ca2+ and by PKC inhibition, suggesting that RAFTK might mediate the glutamate-dependent activation of ERK1/2. Furthermore, we demonstrated that glutamate stimulation of primary astrocytes leads to a significant increase in DNA synthesis. Glutamate-stimulated DNA synthesis is PTX sensitive and can be inhibited by the MAP kinase kinase inhibitor PD98059, suggesting that in primary astrocytes, glutamate might signal via RAFTK and MAP kinase to promote DNA synthesis and cell proliferation.  相似文献   

8.
The driving force for neurotransmitter accumulation into synaptic vesicles is provided by the generation of a transmembrane electrochemical gradient (DeltamicroH+) that has two components: a chemical gradient (DeltapH, inside acidic) and an electrical potential across the vesicular membrane (DeltaPsi, inside positive). This gradient is generated in situ by the electrogenic vacuolar H(+)-ATPase, which is responsible for the acidification and positive membrane potential of the vesicle lumen. Here, we investigate the modulation of vesicle acidification by using the acidic-organelle probe LysoTracker and the pH-sensitive probe LysoSensor at goldfish Mb-type bipolar cell terminals. Since phosphorylation can modulate secretory granule acidification in neuroendocrine cells, we investigated if drugs that affect protein kinases modulate LysoTracker staining of bipolar cell terminals. We find that protein kinase C (PKC) activation induces an increase in LysoTracker-fluorescence. By contrast, protein kinase A (PKA) or calcium/calmodulin kinase II (CaMKII) activation or inhibition did not change LysoTracker-fluorescence. Using a pH-dependent fluorescent dye (LysoSensor) we show that the PKC activation with PMA induces an increase in LysoSensor-fluorescence, whereas the inactive analog 4alpha-PMA was unable to cause the same effect. This increase induced by PMA was blocked by PKC inhibitors, calphostin C and staurosporine. These results suggest that phosphorylation by PKC may increase synaptic vesicle acidification in retinal bipolar cells and therefore has the potential to modulate glutamate concentrations inside synaptic vesicles.  相似文献   

9.
Zhu BG  Zhu DH  Chen YZ 《生理学报》1998,50(3):345-348
采用大鼠大脑皮层突触体,人神经母细胞瘤细胞2株SK-N-SH及人多形胶质瘤细胞株BT-325作氚标谷氨酸高亲和摄取实验,探讨蛋白激酶C及蛋白激酶A对于神经元性及胶质细胞性谷氨酸摄取的影响。  相似文献   

10.
Abstract: Mitogen-activated protein kinase (MAP kinase) was activated by stimulation of glutamate receptors in cultured rat hippocampal neurons. Ten micromolar glutamate maximally stimulated MAP kinase activity, which peaked during 10 min and decreased to the basal level within 30 min. Experiments using glutamate receptor agonists and antagonists revealed that glutamate stimulated MAP kinase through NMDA and metabotropic glutamate receptors but not through non-NMDA receptors. Glutamate and its receptor agonists had no apparent effect on MAP kinase activation in cultured cortical astrocytes. Addition of calphostin C, a protein kinase C (PKC) inhibitor, or down-regulation of PKC activity partly abolished the stimulatory effect by glutamate, but the MAP kinase activation by treatment with ionomycin, a Ca2+ ionophore, remained intact. Lavendustin A, a tyrosine kinase inhibitor, was without effect. In experiments with 32P-labeled hippocampal neurons, MAP kinase activation by glutamate was associated with phosphorylation of the tyrosine residue located on MAP kinase. However, phosphorylation of Raf-1, the c- raf protooncogene product, was not stimulated by treatment with glutamate. Our observations suggest that MAP kinase activation through glutamate receptors in hippocampal neurons is mediated by both the PKC-dependent and the Ca2+-dependent pathways and that the activation of Raf-1 is not involved.  相似文献   

11.
Abstract: Both the Ca2+/phospholipid-dependent protein kinases (protein kinases C, PKCs) and mitogen-activated protein kinases (MAPKs) have been implicated as participants in the secretory response of bovine adrenomedullary chromaffin cells. To investigate a possible role for these kinases in exocytosis and the relationship of these kinases to one another, intact chromaffin cells were treated with agents that inhibited each of the kinases and analyzed for catecholamine release and MAPK/extracellular signal-regulated kinase (ERK) kinase (MEK)/MAPK activation after stimulation with secretagogues of differential efficacy. Of the three secretagogues tested, inactivation of PKCs by long-term phorbol 12-myristate 13-acetate (PMA) treatment or incubation with GF109203X had the greatest inhibitory effect on nicotine-induced catecholamine release and MEK/MAPK activation, a moderate effect on KCl-induced events, and little, if any, effect on Ca2+ ionophore-elicited exocytosis and MEK/MAPK activation. These results indicate that PKC plays a significant role in events induced by the optimal secretagogue nicotine and a lesser role in exocytosis elicited by the suboptimal secretagogues KCl and Ca2+ ionophore. Treatment of cells with the MEK-activation inhibitor PD098059 completely inhibited MEK/MAPK activation (IC50 1–5 µM) and partially inhibited catecholamine release induced by all secretagogues. However, PD098059 was more effective at inhibiting exocytosis induced by suboptimal secretagogues (IC50~10 µM) than that induced by nicotine (IC50~30 µM). These results suggest a more prominent role for MEK/MAPK in basic secretory events activated by suboptimal secretagogues than in those activated by the optimal secretagogue nicotine. However, PD098059 also partially blocked secretion potentiated by short-term PMA treatment, suggesting that PKC can function in part by signaling through MEK/MAPK to enhance secretion. Taken together, these results provide evidence for the preferential involvement of MEK/MAPK in basic secretory events activated by the suboptimal secretagogues KCl and Ca2+ ionophore and the participation of both PKC and MEK/MAPK in optimal secretion induced by nicotine.  相似文献   

12.
An enhancement of glutamate release from hippocampal neurons has been implicated in long-term potentiation, which is thought to be a cellular correlate of learning and memory. This phenomenom appears to be involved the activation of protein kinase C and lipid second messengers have been implicated in this process. The purpose of this study was to examine how lipid-derived second messengers, which are known to potentiate glutamate release, influence the accumulation of intraterminal free Ca2+, since exocytosis requires Ca2+ and a potentiation of Ca2+ accumulation may provide a molecular mechanism for enhancing glutamate release. The activation of protein kinase C with phorbol esters potentiates the depolarization-evoked release of glutamate from mossy fiber and other hippocampal nerve terminals. Here we show that the activation of protein kinase C also enhances evoked presynaptic Ca2+ accumulation and this effect is attenuated by the protein kinase C inhibitor staurosporine. In addition, the protein kinase C-dependent increase in evoked Ca2+ accumulation was reduced by inhibitors of phospholipase A2 and voltage-sensitive Ca2+ channels, as well as by a lipoxygenase product of arachidonic acid metabolism. That some of the effects of protein kinase C activation were mediated through phospholipase A2 was also indicated by the ability of staurosporine to reduce the Ca2+ accumulation induced by arachidonic acid or the phospholipase A2 activator melittin. Similarly, the synergistic facilitation of evoked Ca2+ accumulation induced by a combination of arachidonic acid and diacylglycerol analogs was attenuated by staurosporine. We suggest, therefore, that the protein kinase C-dependent potentiation of evoked glutamate release is reflected by increases in presynaptic Ca2+ and that the lipid second messengers play a central role in this enhancement of chemical transmission processes.  相似文献   

13.
Abstract: Arachidonic acid and oleoylacetylglycerol enhance depolarization-evoked glutamate release from hippocampal mossy fiber nerve endings. It was proposed this is a Ca2+-dependent effect and that protein kinase C is involved. Here we report that arachidonic acid and oleoylacetylglycerol synergistically potentiate the glutamate release induced by the Ca2+ ionophore ionomycin. The Ca2+ dependence of this effect was established, as removal of Ca2+ eliminated evoked release and the lipid-dependent potentiation. Also, Ca2+ channel blockers attenuated ionomycin- and KCI-evoked exocytosis, as well as the facilitating effects of the lipid mediators. Although facilitation required Ca2+, it may not involve an enhancement of evoked Ca2+ accumulation, because ionomycin-dependent glutamate release was potentiated under conditions that did not increase ionomycin-induced Ca2+ accumulation. Also, the facilitation may not depend on inhibition of K+ efflux, because enhanced release was observed in the presence of increasing concentrations of 4-aminopyridine and diazoxide did not reduce the lipid-dependent potentiation of exocytosis. In contrast, disruption of cytoskeleton organization with cytochalasin D occluded the lipid-dependent facilitations of both KCI- and ionomycin-evoked glutamate release. In addition, arachidonic acid plus glutamatergic or cholinergic agonists enhanced glutamate release, whereas a role for protein kinase C in the potentiation of exocytosis was substantiated using kinase inhibitors. It appears that the lipid-dependent facilitation of glutamate release from mossy fiber nerve endings requires Ca2+ and involves multiple presynaptic effects, some of which depend on protein kinase C.  相似文献   

14.
To determine whether alpha4 subunits of alpha4beta2 neuronal nicotinic receptors are phosphorylated within the M3/M4 intracellular region by cyclic AMP-dependent protein kinase A (PKA) or protein kinase C (PKC), immunoprecipitated receptors from Xenopus oocytes and a fusion protein corresponding to the M3/M4 cytoplasmic domain of alpha4 (alpha4(336-597)) were incubated with ATP and either PKA or PKC. Both alpha4 and alpha4(336-597) were phosphorylated by PKA and PKC, providing the first direct biochemical evidence that the M3/M4 cytoplasmic domain of neuronal nicotinic receptor alpha4 subunits is phosphorylated by both kinases. When the immunoprecipitated receptors and the alpha4(336-597) fusion protein were phosphorylated and the labeled proteins subjected to phosphoamino acid analysis, results indicated that alpha4 and alpha4(336-597) were phosphorylated on the same amino acid residues by each kinase. Furthermore, PKA phosphorylated serines exclusively, whereas PKC phosphorylated both serines and threonines. To determine whether Ser(368) was a substrate for both kinases, a peptide corresponding to amino acids 356-371 was synthesized (alpha4(356-371)) and incubated with ATP and the kinases. The phosphorylation of alpha4(356-371) by both PKA and PKC was saturable with K(m)s of 15.3 +/- 3.3 microM and 160.8 +/- 26.8 microM, respectively, suggesting that Ser(368) was a better substrate for PKA than PKC.  相似文献   

15.
The p38 mitogen-activated protein kinase (MAPK) cascade transduces multiple extracellular signals from cell surface to nucleus and is employed in cellular responses to cellular stresses and apoptotic regulation. The involvement of the p38 MAPK cascade in opioid- and opioid receptor-like receptor-1 (ORL1) receptor-mediated signal transduction was examined in NG108-15 neuroblastoma x glioma hybrid cells. Stimulation of endogenous delta-opioid receptor (DOR) or ORL1 resulted in activation of p38 MAPK. It also induced the activation of extracellular signal-regulated kinases (ERKs), another member of the MAPK family, with slower kinetics. Activation of p38 MAPK was abolished by selective antagonists of DOR or ORL1, pretreatment with pertussis toxin, or SB203580, a specific inhibitor of p38 MAPK. Inhibition of p38 MAPK had no significant effect on opioid-induced ERK activation, indicating that p38 MAPK activity was not required for ERK activation, though its stimulation preceded ERK activation. Inhibition of protein kinase A (PKA) strongly diminished p38 activation mediated by DOR or ORL1 but had no significant effect on ERK activation, and protein kinase C (PKC) inhibitors potentiated stimulation of p38 while inhibiting activation of ERKs. Taken together, our results provide the first evidence for coupling of DOR and ORL1 to the p38 MAPK cascade and clearly demonstrate that receptor-mediated activation of p38 MAPK both involves PKA and is negatively regulated by PKC.  相似文献   

16.
采用大鼠海马脑片体外缺血模型,观察海马突触体内蛋白激酶C(PKC)活性的变化,以及这种变化对突触体谷氨酸(GLU)摄取的影响。结果显示:海马脑片体外“缺血”10min,其突触体内PKC活性基本不变,而缺血30min,突触体内PKC活性显著上升(P<0.01,n=6);非N-甲基-D-天门冬氨酸(NMDA)受体拮抗剂DNQX有效地抑制PKC活性的同时,可降低胞外GLU的堆积,而NMDA受体阻断剂AP_5无作用。进一步实验证明,PKC激动剂PDB浓度依赖性地抑制突触体对3H-GLU的摄取(IC50=131±10μmol/L),此抑制作用可由PKC抑制剂H-7(100μmol/L)抵消。提示脑缺血诱发GLU堆积的作用机理可能是:脑缺血引发钙内流导致GLU过量释放,GLU又通过突触前非NMDA受体激活PKC,抑制其自身摄取,正反馈性加重胞外GLU的堆积。  相似文献   

17.
佛波酯引起蛋白激酶C下降调节的专一性   总被引:8,自引:0,他引:8  
探讨了佛波酯(PMA)对蛋白激酶的下降调节是否有激酶专一性及亚型专一性.用组蛋白H1作为蛋白激酶C(PKC)和蛋白激酶A(PKA)的受体底物,加入PKC和PKA的特异性激活剂区分PKC和PKA,用聚谷酪(41)为酪氨酸蛋白激酶(TPK)的专一性受体底物,以32P-ATP为32P共同供体底物测定三种蛋白激酶的活力,并用免疫组化法测定PKC亚型.结果发现PMA对人7721肝癌细胞只引起PKC而不引起PKA和TPK的下降调节,PKC的非特异性抑制剂槲皮素和特异性抑制剂D-鞘氨醇能大部分取消PMA对PKC的下降调节,但TPK抑制剂genestein则没有阻断下降调节的作用.用HL-60细胞还证明PMA只对含量丰富的PKCα和PKCβⅡ亚型而不对含量很少的PKCβⅠ亚型发生下降调节.上述结果说明PMA对蛋白激酶的下降调节有激酶和亚型专一性.  相似文献   

18.
Local anaesthetics are drugs that prevent or relieve pain by interrupting nervous conduction and are the most commonly used drugs in dentistry. Their main targets of action are voltage-dependent Na+ channels. The Na+ channel is modulated by phosphorylation of two enzymes: PKA (protein kinase A) and PKC (protein kinase C). We studied the ability of lidocaine to modulate programmed cell death of human gingival fibroblasts and the mechanisms involved in this process. Lidocaine (10-5 to 10-7 M) stimulated apoptosis in primary cultures and the caspase-3 activity in a concentration-dependent manner. The stimulatory effect of lidocaine on apoptosis was attenuated in the presence of HA 1004 (PKA inhibitor) and stimulated by staurosporine and Go 6976 (PKC inhibitors). Lidocaine-induced apoptotic nuclei correlated positively with cAMP accumulation and negatively with PKC activity. These results show that lidocaine promotes apoptosis in human gingival fibroblasts at concentrations used for local anaesthesia. The mechanism involves PKA stimulation and PKC inhibition, which in turn stimulates caspase-3 and leads to programmed cell death.  相似文献   

19.
Abstract: The role of protein kinase C (PKC) in modulating the release of the octapeptide cholecystokinin (CCK-8) was investigated in rat hippocampal nerve terminals (synaptosomes). The PKC-activating phorbol ester 4β-phorbol 12,13-dibutyrate (β-PDBu) dose dependently (5–5,000 n M ) increased CCK-8 release in a strictly Ca2+-dependent way. This effect was observed only when synaptosomes were stimulated with the K+A channel blocker 4-aminopyridine (4-AP; 1 m M ) but not with KCI (10–30 m M ). The PDBu-induced exocytosis of CCK-8 was completely blocked by the two selective PKC inhibitors chelerythrine and calphostin-C and was not mimicked by α-PDBu, an inactive phorbol ester. In addition, an analogue of the endogenous PKC activator diacylglycerol, oleoylacetylglycerol, dose dependently increased CCK-8 exocytosis. β-PDBu (50–100 n M ) also stimulated the 4-AP-evoked Ca2+-dependent release of the classic transmitter GABA, which co-localizes with CCK-8 in hippocampal interneurons. As a possible physiological trigger for PKC activation, the role of the metabotropic glutamate receptor was investigated. However, the broad receptor agonist (1 S ,3 R )-1-aminocyclopentane-1,3-dicarboxylic acid did not stimulate, but instead inhibited, both the CCK-8 and the GABA exocytosis. In conclusion, presynaptic PKC may stimulate exocytosis of distinct types of colocalizing neurotransmitters via modulation of presynaptic K+ channels in rat hippocampus.  相似文献   

20.
The phosphorylation of Kvβ2 was investigated by different protein kinases. Protein kinase A catalytic subunit (PKA-CS) yielded the greatest phosphorylation of recombinant Kvβ2 (rKvβ2), with limited phosphorylation by protein kinase C catalytic subunit (PKC-CS) and no detectable phosphorylation by casein kinase II (CKII). Protein kinase(s) from adult rat brain lysate phosphorylated both rKvβ2 and endogenous Kvβ. The PKA inhibitor, PKI 6-22, fully inhibited PKA-mediated phophorylation of rKvβ2 yet showed minimal inhibition of kinase activity present in rat brain. The inhibitor Gö 6983, that blocks PKCα, PKCβ, PKCγ, PKCδ and PKCζ activities, inhibited rKvβ2 phosphorylation by rat brain kinases, with no inhibition by Gö 6976 which blocks PKCα and PKCβΙ activities. Dose-response analysis of Gö 6983 inhibitory activity indicates that at least two PKC isozymes account for the kinase activity present in rat brain. Τhus, while PKA was the most active protein kinase to phosphorylate rKvβ2 in vitro, Kvβ2 phosphorylation in the rat brain is mainly mediated by PKC isozymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号