首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
M.EcoHK31I is a naturally occurring mC5-methyltransferase with a large alpha polypeptide and a small beta polypeptide. Polypeptide alpha contains conserved motifs I-VIII and X, and polypeptide beta contains motif IX. To understand how polypeptide alpha carries out its function, a molecular model of the large domain of polypeptide alpha was generated using M.HhaI and M.HaeIII as templates. The large domain is a mixed alpha/beta structure. Residues 15-19 in motif I (Phe-Naa-Gly-Naa) are conserved for cofactor binding. The key catalytic residue Cys-79 in motif IV is also conserved in comparison with other C-5 MTases. Comparing polypeptide alpha with M.HhaI and M.HaeIII revealed a unique region upstream of motif X. To understand the role of this region, 14 charged residues between R224 and E271 in the putative small domain were mutated. Activity assays indicated that most of these charges can be eliminated or changed conservatively. Among these charged residues, R224, E240, D245 and D251 may take part in proper interaction with DNA in the presence of polypeptide beta.  相似文献   

2.
The crystal structure of the ternary complex of (alphabeta)(2) heterotetrameric phenylalanyl-tRNA synthetase (PheRS) from Thermus thermophilus with cognate tRNA(Phe) and a nonhydrolyzable phenylalanyl-adenylate analogue (PheOH-AMP) has been determined at 3.1 A resolution. It reveals conformational changes in tRNA(Phe) induced by the PheOH-AMP binding. The single-stranded 3' end exhibits a hairpin conformation in contrast to the partial unwinding observed previously in the binary PheRS.tRNA(Phe) complex. The CCA end orientation is stabilized by extensive base-specific interactions of A76 and C75 with the protein and by intra-RNA interactions of A73 with adjacent nucleotides. The 4-amino group of the "bulged out" C75 is trapped by two negatively charged residues of the beta subunit (Glubeta31 and Aspbeta33), highly conserved in eubacterial PheRSs. The position of the A76 base is stabilized by interactions with Hisalpha212 of motif 2 (universally conserved in PheRSs) and class II-invariant Argalpha321 of motif 3. Important conformational changes induced by the binding of tRNA(Phe) and PheOH-AMP are observed in the catalytic domain: the motif 2 loop and a "helical" loop (residues 139-152 of the alpha subunit) undergo coordinated displacement; Metalpha148 of the helical loop adopts a conformation preventing the 2'-OH group of A76 from approaching the alpha-carbonyl carbon of PheOH-AMP. The unfavorable position of the terminal ribose stems from the absence of the alpha-carbonyl oxygen in the analogue. Our data suggest that the idiosyncratic feature of PheRS, which aminoacylates the 2'-OH group of the terminal ribose, is dictated by the system-specific topology of the CCA end-binding site.  相似文献   

3.
The haloacid dehalogenase (HAD) superfamily includes a variety of enzymes that catalyze the cleavage of substrate C-Cl, P-C, and P-OP bonds via nucleophilic substitution pathways. All members possess the alpha/beta core domain, and many also possess a small cap domain. The active site of the core domain is formed by four loops (corresponding to sequence motifs 1-4), which position substrate and cofactor-binding residues as well as the catalytic groups that mediate the "core" chemistry. The cap domain is responsible for the diversification of chemistry within the family. A tight beta-turn in the helix-loop-helix motif of the cap domain contains a stringently conserved Gly (within sequence motif 5), flanked by residues whose side chains contribute to the catalytic site formed at the domain-domain interface. To define the role of the conserved Gly in the structure and function of the cap domain loop of the HAD superfamily members phosphonoacetaldehyde hydrolase and beta-phosphoglucomutase, the Gly was mutated to Pro, Val, or Ala. The catalytic activity was severely reduced in each mutant. To examine the impact of Gly substitution on loop 5 conformation, the X-ray crystal structure of the Gly50Pro phosphonoacetaldehyde hydrolase mutant was determined. The altered backbone conformation at position 50 had a dramatic effect on the spatial disposition of the side chains of neighboring residues. Lys53, the Schiff Base forming lysine, had rotated out of the catalytic site and the side chain of Leu52 had moved to fill its place. On the basis of these studies, it was concluded that the flexibility afforded by the conserved Gly is critical to the function of loop 5 and that it is a marker by which the cap domain substrate specificity loop can be identified within the amino acid sequence of HAD family members.  相似文献   

4.
Shikimate dehydrogenase catalyzes the NADPH-dependent reversible reduction of 3-dehydroshikimate to shikimate. We report the first X-ray structure of shikimate dehydrogenase from Haemophilus influenzae to 2.4-A resolution and its complex with NADPH to 1.95-A resolution. The molecule contains two domains, a catalytic domain with a novel open twisted alpha/beta motif and an NADPH binding domain with a typical Rossmann fold. The enzyme contains a unique glycine-rich P-loop with a conserved sequence motif, GAGGXX, that results in NADPH adopting a nonstandard binding mode with the nicotinamide and ribose moieties disordered in the binary complex. A deep pocket with a narrow entrance between the two domains, containing strictly conserved residues primarily contributed by the catalytic domain, is identified as a potential 3-dehydroshikimate binding pocket. The flexibility of the nicotinamide mononucleotide portion of NADPH may be necessary for the substrate 3-dehydroshikimate to enter the pocket and for the release of the product shikimate.  相似文献   

5.
6.
Human HPTP beta is unique among mammalian receptor-like protein tyrosine phosphatases in that it has only a single catalytic domain. The intracellular region of HPTP beta was expressed in bacteria, purified, and characterized. It exhibits high activity toward all substrates tested and is potently inhibited by zinc. Vanadate and polyanions also inhibited activity. The juxta-membrane segment of HPTP beta (residues 1622-1639) potentially functions as a negative regulatory sequence since its deletion can increase HPTP beta activity 5-fold. This segment contains up to two sites for protein kinase C phosphorylation, although in vitro phosphorylation by this kinase did not affect HPTP beta activity. The boundaries of the catalytic domain were delineated by truncation analyses. Successive deletion of N-terminal sequence prior to residue 1684 had little effect on substrate affinity and at most reduced activity about 6-fold. Further removal of residues 1684-1686 resulted in a marked 50-500-fold drop in activity, and loss of N-terminal sequence prior to residue 1690 abolished activity. Based on these analyses a highly conserved motif was identified in all mammalian tyrosine phosphatases (E/q) (F/y)XX(L/i), corresponding to positions 1684-1688 of HPTP beta. Mutation of residue 1684 or 1685 generally gave rise to proteins with marked temperature sensitivity. These mutant HPTP beta were active but had reduced activity compared to the wild type enzyme. In conjunction, these results suggest that this region represents the N-terminal border of the catalytic domain and is essential for correct phosphatase folding although not directly involved in catalysis. Parallel truncation studies have defined residues 1930-1939/40 as the C-terminal border of the catalytic domain.  相似文献   

7.
The room-temperature structure of xylanase (EC 3.2.1.8) from the bacterial plant pathogen Erwinia chrysanthemi expressed in Escherichia coli, a 45 kDa, 413-amino acid protein belonging to glycoside hydrolase family 5, has been determined by multiple isomorphous replacement and refined to a resolution of 1.42 A. This represents the first structure of a xylanase not belonging to either glycoside hydrolase family 10 or family 11. The enzyme is composed of two domains similar to most family 10 xylanases and the alpha-amylases. The catalytic domain (residues 46-315) has a (beta/alpha)(8)-barrel motif with a binding cleft along the C-terminal side of the beta-barrel. The catalytic residues, Glu165 and Glu253, determined by correspondence to other family 5 and family 10 glycoside hydrolases, lie inside this cleft on the C-terminal ends of beta-strands 4 and 7, respectively, with an O(epsilon)2...O(epsilon)1 distance of 4.22 A. The smaller domain (residues 31-43 and 323-413) has a beta(9)-barrel motif with five of the strands interfacing with alpha-helices 7 and 8 of the catalytic domain. The first 13 N-terminal residues form one beta-strand of this domain. Residues 44, 45, and 316-322 form the linkers between this domain and the catalytic domain.  相似文献   

8.
SufC, a cytoplasmic ABC-ATPase, is one of the most conserved Suf proteins. SufC forms a stable complex with SufB and SufD, and the SufBCD complex interacts with other Suf proteins in the Fe-S cluster assembly. We have determined the crystal structure of SufC from Thermus thermophilus HB8 in nucleotide-free and ADP-Mg-bound states at 1.7A and 1.9A resolution, respectively. The overall architecture of the SufC structure is similar to other ABC ATPases structures, but there are several specific motifs in SufC. Three residues following the end of the Walker B motif form a novel 3(10) helix which is not observed in other ABC ATPases. Due to the novel 3(10) helix, a conserved glutamate residue involved in ATP hydrolysis is flipped out. Although this unusual conformation is unfavorable for ATP hydrolysis, salt-bridges formed by conserved residues and a strong hydrogen-bonding network around the novel 3(10) helix suggest that the novel 3(10) helix of SufC is a rigid conserved motif. Compared to other ABC-ATPase structures, a significant displacement occurs at a linker region between the ABC alpha/beta domain and the alpha-helical domain. The linker conformation is stabilized by a hydrophobic interaction between conserved residues around the Q loop. The molecular surfaces of SufC and the C-terminal helices of SufD (PDB code: 1VH4) suggest that the unusual linker conformation conserved among SufC proteins is probably suitable for interacting with SufB and SufD.  相似文献   

9.
The gene (palI) encoding isomaltulose synthase (PalI) from a soil bacterial isolate, Klebsiella sp. strain LX3, was cloned and characterized. PalI converts sucrose into isomaltulose, trehalulose, and trace amounts of glucose and fructose. Sequence domain analysis showed that PalI contains an alpha-amylase domain and (beta/alpha)(8)-barrel structures, suggesting that it belongs to the alpha-amylase family. Sequence alignment indicated that the five amino acid residues of catalytic importance in alpha-amylases and glucosyltransferases (Asp(241), Glu(295), Asp(369), His(145), and His(368)) are conserved in PalI. Purified recombinant PalI displayed high catalytic efficiency, with a Km of 54.6 +/- 1.7 mM for sucrose, and maximum activity (approximately 328.0 +/- 2.5 U/mg) at pH 6.0 and 35 degrees C. PalI activity was strongly inhibited by Fe3+ and Hg2+ and was enhanced by Mn2+ and Mg2+. The half-life of PalI was 1.8 min at 50 degrees C. Replacement of selected amino acid residues by proline significantly increased the thermostability of PalI. Simultaneous replacement of Glu(498) and Arg(310) with proline resulted in an 11-fold increase in the half-life of PalI at 50 degrees C.  相似文献   

10.
11.
Mammalian cells contain two isoforms of the type II PI4K (phosphoinositol 4-kinase), PI4KIIalpha and beta. These 55 kDa proteins have highly diverse N-terminal regions (approximately residues 1-90) but conserved catalytic domains (approximately from residue 91 to the C-termini). Nearly the entire pool of PI4KIIalpha behaves as an integral membrane protein, in spite of a lack of a transmembrane domain. This integral association with membranes is due to palmitoylation of a cysteine-rich motif, CCPCC, located within the catalytic domain. Although the CCPCC motif is conserved in PI4KIIbeta, only 50% of PI4KIIbeta is membrane-associated, and approximately half of this pool is only peripherally attached to the membranes. Growth factor stimulation or overexpression of a constitutively active Rac mutant induces the translocation of a portion of cytosolic PI4KIIbeta to plasma membrane ruffles and stimulates its activity. Here, we demonstrate that membrane-associated PI4KIIbeta undergoes two modifications, palmitoylation and phosphorylation. The cytosolic pool of PI4KIIbeta is not palmitoylated and has much lower lipid kinase activity than the membrane-associated kinase. Although only membrane-associated PI4KIIbeta is phosphorylated in the unique N-terminal region, this modification apparently does not influence its membrane binding or activity. A series of truncation mutants and alpha/beta chimaeras were generated to identify regions responsible for the isoform-specific behaviour of the kinases. Surprisingly, the C-terminal approx. 160 residues, and not the diverse N-terminal regions, contain the sites that are most important in determining the different solubilities, palmitoylation states and stimulus-dependent redistributions of PI4KIIalpha and beta.  相似文献   

12.
Eukaryotic MPN domain proteins are components of the complexes proteasome lid, COP9-signalosome (CSN), and translation initiation factor 3 (eIF3). The proteasome lid Rpn11 and COP9-signalosome Csn5 subunits, which contain the conserved JAMM motif involved in zinc ion coordination, show catalytic isopeptidase activity. Homology modeling indicates that the MPN domain of Mov34 cannot coordinate a zinc ion in the same manner as catalytically active MPN domains. In this work, we show that the MPN domain of Mov34 is highly resistant to proteolysis and the major product comprises residues 9-186, which includes the conserved MPN domain. Two clones containing the MPN domain region (MPN1-177 and MPN1-186) including the eight N-terminal residues show a less pronounced band in the 220 nm region of the CD, indicating lower alpha-helical content relative to the clones lacking these residues (MPN9-177 and MPN9-186). However, clones lacking residues 1-8 show lower expression levels and thermal stability, indicating that residues 1-8 are required for proper folding and stability of this particular MPN domain.  相似文献   

13.
Two new cloned human cDNAs encode paralogs of the 85-kDa cytosolic phospholipase A2 (cPLA2). We propose to call these cPLA2beta (114 kDa) and cPLA2gamma (61 kDa), giving the name cPLA2alpha to the well known 85-kDa enzyme. cPLA2beta mRNA is expressed more highly in cerebellum and pancreas and cPLA2gamma more highly in cardiac and skeletal muscle. Sequence-tagged site mapping places cPLA2beta on chromosome 15 in a region near a phosphoinositol bisphosphate phosphatase. The mRNA for cPLA2beta is spliced only at a very low level, and Northern blots in 24 tissues show exclusively the unspliced form. cPLA2beta has much lower activity on 2-arachidonoyl-phosphatidylcholine liposomes than either of the other two enzymes. Its sequence contains a histidine motif characteristic of the catalytic center of caspase proteases of the apoptotic cascade but no region characteristic of the catalytic cysteine. Sequence-tagged site mapping places cPLA2gamma on chromosome 19 near calmodulin. cPLA2gamma lacks the C2 domain, which gives cPLA2alpha its Ca2+ sensitivity, and accordingly cPLA2gamma has no dependence upon calcium, although cPLA2beta does. cPLA2gamma contains a prenyl group-binding site motif and appears to be largely membrane-bound. cPLA2alpha residues activated by phosphorylation do not appear to be well conserved in either new enzyme. In contrast, all three previously known catalytic residues, as well as one additional essential arginine, Arg-566 in cPLA2alpha, are conserved in both new enzyme sequences. Mutagenesis shows strong dependence on these residues for catalytic activity of all three enzymes.  相似文献   

14.
Francis SH  Turko IV  Grimes KA  Corbin JD 《Biochemistry》2000,39(31):9591-9596
Class I cyclic nucleotide phosphodiesterases (PDEs) share a catalytic domain containing 18 invariant residues. In cGMP-binding cGMP-specific PDE (PDE5), we showed previously that point mutation of nine of these profoundly decreases k(cat) when the assay is conducted in the presence of Mg(2+); seven of these are in the prototypical metal-binding motifs A and B (HX(3)HX(n)()E) that we identified earlier. Tandem arrangement of two of these metal-binding motifs in PDEs is novel, and whether residues within these motifs are involved in metal support of catalytic activity is a fundamental question in this field. This report shows that mutation of either His-607 (A motif) or His-643 (B motif) to alanine profoundly diminishes support of PDE catalysis by Mn(2+) or Mg(2+), but mutation of His-647 in B motif or of Glu in either motif does not. H607A and H643A mutants have much greater maximum catalytic rates supported by Mn(2+) than that by Mg(2+); catalytic activity of H603A mutant is supported weakly by either. In H607A and H643A, K(a)s for Mn(2+) and Mg(2+) are increased, but the effect of Mn(2+) is 2-fold greater than that of Mg(2+) in each. Mutation of any of the other conserved residues (Asn-604, Asp-644, His-675, Asp-714, and Asp-754) causes unremarkable changes in Mn(2+) or Mg(2+) support of catalysis. This study identifies specific residues in PDE5 that contribute to interactions with catalytically relevant metals. The combined data suggest that despite a high degree of sequence similarity between each HX(3)HX(n)()E motif in PDEs and certain metallo-endopeptidases, PDEs employ a distinct complement of residues for interacting with metals involved in catalysis.  相似文献   

15.
The NCD3G [for nine-cysteine domain of family 3 G-protein-coupled receptors (GPCRs)] domain is a novel protein domain that is conserved in family 3 GPCRs, including metabotropic glutamate receptors, calcium-sensing receptors, pheromone receptors and taste receptors, with the exception of GABA(B) receptors. The NCD3G domain contains nine highly conserved cysteine residues. Structural predictions suggest that NCD3G might possess four beta strands and three disulfide bridges. The structural model of NCD3G highlights the conserved residues co-segregated with certain familial diseases.  相似文献   

16.
Transposon Tn5 employs a unique means of self-regulation by expressing a truncated version of the transposase enzyme that acts as an inhibitor. The inhibitor protein differs from the full-length transposase only by the absence of the first 55 N-terminal amino acid residues. It contains the catalytic active site of transposase and a C-terminal domain involved in protein-protein interactions. The three-dimensional structure of Tn5 inhibitor determined to 2.9-A resolution is reported here. A portion of the protein fold of the catalytic core domain is similar to the folds of human immunodeficiency virus-1 integrase, avian sarcoma virus integrase, and bacteriophage Mu transposase. The Tn5 inhibitor contains an insertion that extends the beta-sheet of the catalytic core from 5 to 9 strands. All three of the conserved residues that make up the "DDE" motif of the active site are visible in the structure. An arginine residue that is strictly conserved among the IS4 family of bacterial transposases is present at the center of the active site, suggesting a catalytic motif of "DDRE." A novel C-terminal domain forms a dimer interface across a crystallographic 2-fold axis. Although this dimer represents the structure of the inhibited complex, it provides insight into the structure of the synaptic complex.  相似文献   

17.
Human beta1,3-glucuronyltransferase I (GlcAT-I) is a central enzyme in the initial steps of proteoglycan synthesis. GlcAT-I transfers a glucuronic acid moiety from the uridine diphosphate-glucuronic acid (UDP-GlcUA) to the common linkage region trisaccharide Gal beta 1-3Gal beta 1-4Xyl covalently bound to a Ser residue at the glycosaminylglycan attachment site of proteoglycans. We have now determined the crystal structure of GlcAT-1 at 2.3 A in the presence of the donor substrate product UDP, the catalytic Mn(2+) ion, and the acceptor substrate analog Gal beta 1-3Gal beta 1-4Xyl. The enzyme is a alpha/beta protein with two subdomains that constitute the donor and acceptor substrate binding site. The active site residues lie in a cleft extending across both subdomains in which the trisaccharide molecule is oriented perpendicular to the UDP. Residues Glu(227), Asp(252), and Glu(281) dictate the binding orientation of the terminal Gal-2 moiety. Residue Glu(281) is in position to function as a catalytic base by deprotonating the incoming 3-hydroxyl group of the acceptor. The conserved DXD motif (Asp(194), Asp(195), Asp(196)) has direct interaction with the ribose of the UDP molecule as well as with the Mn(2+) ion. The key residues involved in substrate binding and catalysis are conserved in the glucuronyltransferase family as well as other glycosyltransferases.  相似文献   

18.
Cloning and expression of a divergent integrin subunit beta 8   总被引:15,自引:0,他引:15  
Rabbit and human cDNA clones have been identified that encode a novel integrin beta subunit. The sequences that encode this subunit, which has been designated as beta 8, were isolated initially from rabbit placental cDNA libraries using an oligonucleotide probe derived from a highly conserved region of integrin beta subunit sequences. The rabbit clone was used to isolate human beta 8 cDNA clones from human placental and MG-63 osteosarcoma cell libraries. The putative beta 8 polypeptides, which comprise 769 and 768 residues in human and rabbit, respectively, show a high degree of inter-species conservation (approximately 90% identity). In contrast, beta 8 is distinct from the other integrin beta subunits. At the amino acid level human beta 8 ranges from 31 to 37% identity with human beta 1-7. The domain structure of beta 8 is typical of the integrin beta subunits. Human beta 8 has a 42-residue N-terminal signal peptide, a large extracellular domain (approximately 639 residues) that contains four cysteine-rich repeats, a transmembrane domain (approximately 30 residues), and a C-terminal cytoplasmic domain (approximately 58 residues). There are several structural features that are unique to the beta 8 polypeptide, as compared with the other integrin beta subunits. Six of the 56 cysteine residues that are conserved within the extracellular domains of beta 1, beta 2, beta 3, beta 5, beta 6, and the beta subunit from Drosophila are absent in the beta 8 polypeptide. Also, the cytoplasmic domain of the beta 8 subunit shares no homology with the cytoplasmic regions of any of the other integrin beta subunits. Northern analysis demonstrated an approximately 8-kilobase beta 8 mRNA in rabbit placenta, kidney, brain, ovary, and uterus. PCR analysis revealed that beta 8 mRNA is also present in several transformed human cell lines. The beta 8 polypeptide has been transiently expressed in 293 human embryonic kidney cells. A polyclonal antipeptide antibody specific for beta 8 and a polyclonal antibody that recognizes alpha v epitopes were used to show that beta 8 can complex with the endogenous alpha v subunit in 293 cells and that the resulting integrin is expressed as a cell surface complex.  相似文献   

19.
Identification of a novel phosphatase sequence motif.   总被引:7,自引:1,他引:6       下载免费PDF全文
We have identified a novel, conserved phosphatase sequence motif, KXXXXXXRP-(X12-54)-PSGH-(X31-54)-SRXXXXX HXXXD, that is shared among several lipid phosphatases, the mammalian glucose-6-phosphatases, and a collection of bacterial nonspecific acid phosphatases. This sequence was also found in the vanadium-containing chloroperoxidase of Curvularia inaequalis. Several lines of evidence support this phosphatase motif identification. Crystal structure data on chloroperoxidase revealed that all three domains are in close proximity and several of the conserved residues are involved in the binding of the cofactor, vanadate, a compound structurally similar to phosphate. Structure-function analysis of the human glucose-6-phosphatase has shown that two of the conserved residues (the first domain arginine and the central domain histidine) are essential for enzyme activity. This conserved sequence motif was used to identify nine additional putative phosphatases from sequence databases, one of which has been determined to be a lipid phosphatase in yeast.  相似文献   

20.
Glycosylation of proteins and lipids is important in cellular communication and maintenance of tissues. B3GTL (beta3-glycosyltransferase-like) is a novel glycosyltransferase that is found in multicellular animals ranging from mammals to insects and nematodes. The aim of this work was to identify and characterize the B3GTL gene in the mouse and to study its expression in various tissues. The murine gene codes for a protein which shares 84% amino acid sequence identity with its human ortholog, and contains all the primary structural features that characterize B3GTL proteins. The murine and human B3GTL genes share an identical exon/intron organization, and both genes utilize multiple polyadenylation signals. Their promoter regions show extensive conservation, implying that the two genes also share regulatory similarities. This notion was reinforced by Northern hybridization analysis of mouse tissues, which showed the tissue distribution of B3GTL mRNA to be similar to that previously found in human tissues, with the heart, kidney, and brain being major sites of expression in both species. The localization of B3GTL mRNA was studied by in situ hybridization in an extensive collection of mouse tissues, of which the granular cells of the olfactory bulb and the epithelium of the seminal vesicle displayed particularly strong signals. Together, these analyses indicate that the B3GTL mRNA is subject to strong tissue-specific and developmental regulation. The findings reported here make possible the design of a B3GTL "knock-out" mouse, provide a framework for analyzing the regulation of the gene, and provide an extensive catalog of tissues in which this novel protein acts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号