首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Porphyromonas gingivalis is a predominant periodontal pathogen, whose infection causes inflammatory responses in periodontal tissue and alveolar bone resorption. Various virulence factors of this pathogen modulate host innate immune responses. It has been reported that gingipains degrade a wide variety of host cell proteins, and fimbriae are involved in bacterial adhesion to and invasion of host cells. In the present study, we profiled ST2 stromal cell gene expression following infection with the viable P. gingivalis strain ATCC33277 as well as with its gingipain- and fimbriae-deficient mutants, using microarray technology and quantitative real-time polymerase chain reaction. Using a mouse array of about 20,000 genes, we found that infection with the wild strain elicited a significant upregulation (greater than 2-fold) of expression of about 360 genes in ST2 cells, which included the chemokines CCL2, CCL5, and CXCL10, and other proinflammatory proteins such as interleukin-6 (IL-6) and matrix metalloproteinase-13 (MMP-13). Further, infection with the gingipain-deficient mutant elicited a reduced expression of the CXCL10, IL-6 and MMP-13 genes, suggesting that gingipains play an important role in inducing the expression of those genes following P. gingivalis infection. On the other hand, the pattern of global gene expression induced by the fimbriae-deficient mutant was similar to that by the wild strain. These results suggest that P. gingivalis infection induces gene expression of a wide variety of proinflammatory proteins in stromal cells/osteoblasts, and gingipains may be involved in inducing several of the proinflammatory factors.  相似文献   

3.
How parasites develop and survive, and how they stimulate or modulate host immune responses are important in understanding disease pathology and for the design of new control strategies. Microarray analysis and bulk RNA sequencing have provided a wealth of data on gene expression as parasites develop through different life-cycle stages and on host cell responses to infection. These techniques have enabled gene expression in the whole organism or host tissue to be detailed, but do not take account of the heterogeneity between cells of different types or developmental stages, nor the spatial organisation of these cells. Single-cell RNA-seq (scRNA-seq) adds a new dimension to studying parasite biology and host immunity by enabling gene profiling at the individual cell level. Here we review the application of scRNA-seq to establish gene expression cell atlases for multicellular helminths and to explore the expansion and molecular profile of individual host cell types involved in parasite immunity and tissue repair. Studying host-parasite interactions in vivo is challenging and we conclude this review by briefly discussing the applications of organoids (stem-cell derived mini-tissues) to examine host-parasite interactions at the local level, and as a potential system to study parasite development in vitro. Organoid technology and its applications have developed rapidly, and the elegant studies performed to date support the use of organoids as an alternative in vitro system for research on helminth parasites.  相似文献   

4.
Systemic infections of plants by viruses require that viruses modify host cells in order to facilitate infections. These modifications include induction of host factors required for replication, propagation and movement, and suppression of host defense responses, which are likely to be associated with changes in host gene expression. Past studies of the effects of viral infection on gene expression in susceptible hosts have been limited to only a handful of genes. To gain broader insight into the responses elicited by viruses in susceptible hosts, high-density oligonucleotide probe microarray technology was used. Arabidopsis leaves were either mock inoculated or inoculated with cucumber mosaic cucumovirus, oil seed rape tobamovirus, turnip vein clearing tobamovirus, potato virus X potexvirus, or turnip mosaic potyvirus. Inoculated leaves were collected at 1, 2, 4, and 5 days after inoculation, total RNA was isolated, and samples were hybridized to Arabidopsis GeneChip microarrays (Affymetrix). Microarray hybridization revealed co-ordinated changes in gene expression in response to infection by diverse viruses. These changes include virus-general and virus-specific alterations in the expression of genes associated with distinct defense or stress responses. Analyses of the promoters of these genes further suggest that diverse RNA viruses elicit common responses in susceptible plant hosts through signaling pathways that have not been previously characterized.  相似文献   

5.
6.
So far the responses of chickens to Salmonella have not been studied in vivo on a whole genome-wide scale. Furthermore, the influence of the host genetic background on gene expression responses is unknown. In this study gene expression profiles in the chicken (Gallus gallus) intestine of two genetically different chicken lines were compared, 24 h after a Salmonella enteritidis inoculation in 1-day-old chicks. The two chicken lines differed in the severity of the systemic infection. For gene expression profiles, a whole genome oligonucleotide array and a cDNA microarray were used to compare both platforms. Genes upregulated in both chicken lines after the Salmonella infection had a function in the innate immune system or in wound healing. Genes regulated after the Salmonella infection in one chicken line encoded proteins involved in inflammation, or with unknown functions. In the other chicken line upregulated genes encoded proteins involved in acute phase response, the fibrinogen system, actin polymerisation, or with unknown functions. Some of the host gene responses found in this study are not described before as response to a bacterial infection in the intestine. The two chicken lines reacted with different intestinal gene responses to the Salmonella infection, implying that it is important to use chickens with different genetic background to study gene expression responses.  相似文献   

7.
Microarrays are used to study gene expression in a variety of biological systems. A number of different platforms have been developed, but few studies exist that have directly compared the performance of one platform with another. The goal of this study was to determine array variation by analyzing the same RNA samples with three different array platforms. Using gene expression responses to benzo[a]pyrene exposure in normal human mammary epithelial cells (NHMECs), we compared the results of gene expression profiling using three microarray platforms: photolithographic oligonucleotide arrays (Affymetrix), spotted oligonucleotide arrays (Amersham), and spotted cDNA arrays (NCI). While most previous reports comparing microarrays have analyzed pre-existing data from different platforms, this comparison study used the same sample assayed on all three platforms, allowing for analysis of variation from each array platform. In general, poor correlation was found with corresponding measurements from each platform. Each platform yielded different gene expression profiles, suggesting that while microarray analysis is a useful discovery tool, further validation is needed to extrapolate results for broad use of the data. Also, microarray variability needs to be taken into consideration, not only in the data analysis but also in specific probe selection for each array type.  相似文献   

8.
9.
10.
11.
Plant defense responses are mediated by elementary regulatory proteins that affect expression of thousands of genes. Over the last decade, microarray technology has played a key role in deciphering the underlying networks of gene regulation in plants that lead to a wide variety of defence responses. Microarray is an important tool to quantify and profile the expression of thousands of genes simultaneously, with two main aims: (1) gene discovery and (2) global expression profiling. Several microarray technologies are currently in use; most include a glass slide platform with spotted cDNA or oligonucleotides. Till date, microarray technology has been used in the identification of regulatory genes, end-point defence genes, to understand the signal transduction processes underlying disease resistance and its intimate links to other physiological pathways. Microarray technology can be used for in-depth, simultaneous profiling of host/pathogen genes as the disease progresses from infection to resistance/susceptibility at different developmental stages of the host, which can be done in different environments, for clearer understanding of the processes involved. A thorough knowledge of plant disease resistance using successful combination of microarray and other high throughput techniques, as well as biochemical, genetic, and cell biological experiments is needed for practical application to secure and stabilize yield of many crop plants. This review starts with a brief introduction to microarray technology, followed by the basics of plant–pathogen interaction, the use of DNA microarrays over the last decade to unravel the mysteries of plant–pathogen interaction, and ends with the future prospects of this technology.  相似文献   

12.
13.
14.
15.
The infectious cycles of viruses are known to cause dramatic changes to host cell function. The development of microarray technology has provided means to monitor host cell responses to viral infection at the level of global changes in mRNA levels. We have applied this methodology to investigate gene expression changes caused by a small, icosahedral, single-stranded-RNA phage, PRR1 (a member of the Leviviridae family), on its host, Pseudomonas aeruginosa, at different times during its growth cycle. Viral infection in this system resulted in changes in expression levels of <4% of P. aeruginosa genes. Interestingly, the number of genes affected by viral infection was significantly lower than the number of genes affected by changes in growth conditions during the experiment. Compared with a similar study that focused on the complex, double-stranded-DNA bacterial virus PRD1, it was evident that there were no universal responses to viral infection. However, in both cases, translation was affected in infected cells.  相似文献   

16.
17.
核型多角体病毒(Nucleopolyhedrovirus,NPV)应用广泛,已被开发成微生物杀虫剂和用于重组蛋白表达等.NPV具有两种病毒颗粒:包埋型病毒粒子(occlusion-derived virus,ODV)和芽生型病毒粒子(budded virus,BV),两者的构成和组装存在差异.病毒包涵体在肠道中溶解后释...  相似文献   

18.
19.
Maternally inherited endosymbionts are found in numerous insect species and have various effects on host ecology. New symbioses are most commonly established following lateral transfer of an existing symbiont from one host species to another. Laboratory study has demonstrated that symbionts commonly perform poorly in novel hosts, with weak vertical transmission and maladaptive pathogenicity being observed in the generations following transfer. This poor performance probably limits symbiont occurrence. We here use microarray technology to test whether poor symbiont performance observed following 1 year of vertical transmission through a new host is associated with alteration in host gene expression or whether it occurs independently of this. We utilize the Drosophila melanogaster--Spiroplasma interaction and test the response of the host in the presence of both natural Spiroplasma infections and novel Spiroplasma infections transinfected previously from other host species. None of the Spiroplasma infections investigated produced upregulation in host haemolymph/fat body-based immune responses, and we therefore rejected the hypothesis that failure to thrive was associated with immune upregulation. One infection was associated with a downregulation of genes associated with egg production compared to uninfected controls, indicative of damage to the host. The Spiroplasma infection showed that the weakest vertical transmission showed no significant disturbance to host gene expression compared to uninfected controls. We conclude that the failure of Spiroplasma in novel host species is associated either with causing harm to their new hosts or through a failure to thrive in the new host that occurs independently of host responses to infection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号