首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Serotonin-like immunoreactivity was investigated in the pineal complex of the golden hamster by use of the indirect immunohistochemical technique. The superficial and deep portions of the pineal gland, and also the pineal stalk exhibited an intense cellular immunoreaction for serotonin. In addition, perivascular serotonin-immunoreactive nerve fibers were observed. Some serotonin-immunoreactive processes of the pinealocytes terminated on the surface of the ventricular lumen in the pineal and suprapineal recesses, indicating a receptive or secretory function of these cells. Several serotonin-immunoreactive processes connected the deep pineal with the habenular area. One week after bilateral removal of both superior cervical ganglia the serotonin immunoreaction of the entire pineal complex was greatly decreased. However, some cells in the pineal complex, of which several exhibited a neuron-like morphology, remained intensively stained after ganglionectomy. This indicates that the indoleamine content of some cells in the pineal complex of the golden hamster is independent of the sympathetic innervation.Supported by a Grant from the Italian Society for Veterinary Sciences  相似文献   

2.
Summary Intraventricular blood vessels and choroidal-like cells were studied using scanning electron microscopy and correlative light microscopy. The intraventricular blood vessels were covered on their ependymal surface with a layer of cells essentially identical to the ependyma of the choroid plexus in the gerbil. Similar choroidal-like cells were seen either singly or in clusters associated with the cerebrospinal fluid-contacting pinealocytes of the suprapineal recess. Processes of the cerebrospinal fluid-contacting pinealocytes were seen extending to and making contact with the choroidal-like cells. The intraventricular blood vessels appeared to be derived from the choroid plexus, and typically took one of three courses in and around the surface of the deep pineal: (1) the vessels or their equivalent were located in the suprapineal recess with no indication of penetration into the substance of the deep pineal; (2) the vessels coursed from the suprapineal recess around the anterior surface of the habenular commissure to enter the ventral surface of the deep pineal; or (3) the vessels entered the parenchyma of the deep pineal from its dorsal surface and could be seen coursing through the substance of the gland. The close association between the choroidal-like cells and the intraventricular blood vessels with the deep pineal gland add morphological support for the possibility of interaction between the cerebrospinal fluid, or perhaps the choroid plexus, and the deep pineal gland.  相似文献   

3.
Summary A combined thin-section/freeze-fracture study was performed on the superficial pineal gland of the golden hamster, comparing the parenchymal and interstitial cells of this animal with those previously investigated in rats. In contrast to rats, no gap junctions and gap/tight junction combinations could be found between pineal parenchymal cells of the hamster. Furthermore, the interstitial cells of the hamster pineal gland were found to have large flat cytoplasmic processes, which abut over large areas equipped with tight junctions. In thin sections, profiles of interstitial cell processes were seen to surround groups of pinealocytes. Interstitial cells and their sheet-like, tight junction-sealed processes thus appear to delimit lobule-like compartments of the hamster pineal gland. Because the classification of the interstitial cells is uncertain, the expression of several markers characteristic of mature and immature astrocytes and astrocyte subpopulations has been investigated by indirect immunohistology. Many of the non-neuronal elements in the pineal gland are vimentin-positive glial cells, subpopulations of which express glial fibrillary acidic protein (GFA) and C1 antigen. The astroglial character of these cells is supported by the lack of expression of markers for neuronal, meningeal and endothelial cells. M1 antigen-positive cells have not been detected.Supported by a grant from Deutsche Forschungsgemeinschaft (Scha 185/9-2)  相似文献   

4.
Postnatal development of S-Ag and GFAP immunoreactivity in the in situ pineal glands of golden hamsters and gerbils was examined using the avidin-biotin-peroxidase immunohistochemical technique. S-Ag was present in the gerbil pineal gland on the first postnatal day (P1), whereas it did not appear in the hamster pineal until P6. GFAP-immunoreactive astrocytes were first observed in the hamster pineal gland on P7 and in the gerbil pineal gland on P10. The number of S-Ag-immunoreactive pinealocytes and GFAP-immunoreactive astrocytes in the pineal glands of hamsters and gerbils increased with increasing age from P7 to 3 weeks. By 4 weeks, strong S-Ag and GFAP immunoreactivity was observed in both hamster and gerbil pineal glands. GFAP-immunoreactive stellate astrocytes were distributed evenly throughout the gerbil superficial pineal gland, but they were more often located in the peripheral region of the hamster superficial pineal. For the pineal grafts, pineal glands from neonatal (3-5 day old) hamsters were transplanted into the third cerebral ventricle (infundibular recess or posterior third ventricle) or beneath the renal capsule of adult male hamsters. S-Ag immunoreactivity appeared in the pineal grafts within 1 week following transplantation. By 4 weeks the pineal grafts showed strong S-Ag immunoreactivity which was maintained until at least 12 weeks after transplantation. The time course of glial cell maturation in the cerebroventricular pineal grafts is generally parallel to the hamster pineal gland in situ before 4 weeks. By 12 weeks, however, more astrocytes differentiated and developed GFAP-immunoreactivity in the pineal grafts than in the in situ pineals. These studies have described the postnatal development of S-Ag and GFAP immunoreactivity in in situ pineal glands and in neonatal pineal grafts.  相似文献   

5.
By use of antibodies raised against leu-enkephalin and met-enkephalin immunoreactive, opioidergic bi- and multipolar cells were demonstrated in the pineal gland of the European hamster. Ultrastructural analysis of these opioidergic cells revealed them to be pinealocytes. Processes emerged from the cell bodies and terminated in club-shaped swellings containing many small clear and some larger granular vesicles. Some of the terminals made synapse-like contacts with non-immunoreactive pinealocytes. The presence of the opioidergic pinealocytes strongly indicates that the pineal gland of the European hamster, in addition to its pinealopetal nervous regulation, is regulated by intrapineal peptidergic pinealocytes via a synaptic mechanism. A possible paracrine role of the opioidergic cells must also be considered.  相似文献   

6.
Induction of c-fos protein (FOS) after the onset of darkness was studied immunocytochemically in the rat and hamster pineal gland. The animals were kept on a 12:12 h light-dark cycle. Before the dark period no FOS staining was seen in either rat or hamster pineal cells. Five hours after the onset of darkness 342 +/- 18 pinealocytes/0.2 mm2 (mean +/- SD) displayed FOS-like immunoreactivity in the hamster pineal gland; in the rat pineal gland only 5 +/- 2 pinealocytes/0.2 mm2 showed a faint staining. Two hours later the density of FOS positive cells was decreased to 60 +/- 11/0.2 mm2 in the hamster but increased to 519 +/- 103/0.2 mm2 in the rat pineal gland. Three hours before the beginning of the light period no FOS positive cells were detected in either animal. Both the rat and hamster pineal gland showed a transient and temporally defined expression of c-fos protein in the middle of the dark period. This may be related to a more active functional state of pinealocytes, which is reflected in a peak of melatonin synthesis during the darkness.  相似文献   

7.
Summary Capillaries in the pineal gland of the rat (Rattus norvegicus), gerbil (Meriones unguiculatus) and golden hamster (Mesocricetus auratus) were investigated by means of electron-microscopical tracer studies using lanthanum. The tracer was administered together with the fixative solution by perfusion via the left cardiac ventricle. In the rat, endothelial junctions of fenestrated capillaries are permeable to lanthanum. In the gerbil the tracer does not leave the capillaries, which are of the non-fenestrated type throughout the organ. In the golden hamster the two portions of the pineal system have different types of capillaries. While in the superficial pineal fenestrated capillaries permeable to lanthanum predominate, the deep pineal possesses capillaries that are, without exception, devoid of fenestrations and impermeable to the tracer. It is suggested that differences in the structure of the capillaries are related to differences in the extent of a specialized contact of the pineal gland to the third ventricle.The authors dedicate this paper to Professor H. Rollhäuser, Münster, on the occasion of his 65th birthday  相似文献   

8.
Summary The pineal system of the Mongolian gerbil (Meriones unguiculatus) was investigated by light and electron microscopy, special attention being paid to the sites of contact with the ventricular system. The results reveal that the pineal system of this species has a specific topographical relationship to the suprapineal recess of the third ventricle. The dorsal side of the proximal part of the pineal system forms the floor and the caudal wall of this recess. Here, a consistent and relatively large area lacks an ependymal lining, enabling pinealocytes to come into direct contact with the cerebrospinal fluid (CSF). This area is assumed to be the morphological correlate of a close functional interrelationship between the pineal tissue and the CSF.  相似文献   

9.
Summary Postnatal development of the innervation of the pineal gland in situ as well as the reinnervation of pineal grafts by tyrosine hydroxylase (TH)- and neuropeptide Y (NPY)-immunoreactive nerve fibers were examined using the avidin-biotin-peroxidase immunohistochemical technique. TH-immunoreactive nerve fibers appeared in the pineal gland on the second postnatal day (P2) in both hamsters and gerbils. NPY-immunoreactive nerve fibers first appeared in the pineal gland of gerbils on P2 and in the hamsters on P3. By the seventh postnatal day (P7), the pineal glands of both hamsters and gerbils were richly innervated by TH- and NPY-fibers that appeared as smooth fibers or fibers with sporadic varicosities. By the age of 4 weeks, the innervation of the pineal glands of hamsters and gerbils by TH-and NPY-fibers was fully developed. Abundant TH- and NPY-fibers formed a dense meshwork in the parenchyma of the superficial and deep pineals. The great majority of the fibers bore a large number of varicosities. More NPY-fibers were found in the pineal glands of gerbils than hamsters. NPY fibers were distributed evenly throughout the pineal glands of the gerbil, but they were more often located in the central region of the superficial pineal of the hamster. For the pineal grafts, superficial pineals from neonatal and 4-week-old hamsters were transplanted to different sites in the third cerebral ventricle (infundibular recess, posterior third ventricle) or beneath the renal capsule. The pineal grafts from 4-week-old donors appeared to undergo severe degeneration and eventually disappeared. The pineal grafts from neonatal hamsters, however, successfully survived and became well integrated into their new locations. Abundant TH-and NPY-fibers in the host brain were found surrounding the pineal grafts placed in the third cerebral ventricle, but were only rarely seen entering the parenchyma of the grafts. A few TH-fibers were demonstrated in the renal grafts 4 weeks after transplantation. These studies describe the postnatal development of the innervation of the pineal glands in situ by TH-and NPY-nerve fibers, and demonstrate a lack of reinnervation of cerebroventricular pineal grafts by TH and NPY fibers from adjacent host brain.Portions of the results of this paper were previously reported in abstract form at the 1990 Meeting of The American Association of Anatomists (Anat Rec 226:57A)  相似文献   

10.
Summary Induction of c-fos protein (FOS) after the onset of darkness was studied immunocytochemically in the rat and hamster pineal gland. The animals were kept on a 12:12 h light-dark cycle. Before the dark period no FOS staining was seen in either rat or hamster pineal cells. Five hours after the onset of darkness 342±18 pinealocytes/0.2 mm2 (mean±SD) displayed FOS-like immunoreactivity in the hamster pineal gland; in the rat pineal gland only 5±2 pinealocytes/0.2 mm2 showed a faint staining. Two hours later the density of FOS positive cells was decreased to 60±11/0.2 mm2 in the hamster but increased to 519±103/0.2 mm2 in the rat pineal gland. Three hours before the beginning of the light period no FOS positive cells were detected in either animal. Both the rat and hamster pineal gland showed a transient and temporally defined expression of c-fos protein in the middle of the dark period. This may be related to a more active functional state of pinealocytes, which is reflected in a peak of melatonin synthesis during the darkness.  相似文献   

11.
A mass of pineal tissue has been observed associated with the habenular commissure and the apex of the pineal recess in the golden hamster. Previously, it had been thought that all of the pineal system in the hamster was located at the confluence of sinuses just beneath the skull. To distinguish the two components of the pineal system, that in the dural position is called the superficial pineal and the mass associated with the habenular commissure is called the deep pineal.  相似文献   

12.
Weekly subcutaneous implants of melatonin in a beeswax pellet prevented the testicular regression which normally occurs in hamsters exposed to short photoperiod for 8 weeks. Normal (14L:10D) hamster testes were indistinguishable from the testes of melatonin-treated (1L:23D) hamsters. The exogenous melatonin had varied effects on the fine structure of the golden hamster pineal gland. Pinealocyte nuclear characteristics of melatonin-treated hamsters (smaller average diameter, less polymorphism, and more heterochromatin) as well as apparent reductions in the amounts of hypertrophic SER and lipid moieties seemed to indicate that melatonin caused inhibition of pineal gland activity, and in this respect counteracted the effects of short photoperiod. However, an apparent increase in the number of large mitochondria, membrane whorls and dense-cored secretory vesicles in pinealocytes of melatonin-treated hamsters suggests enhanced pineal gland activity.  相似文献   

13.
Summary Antigenic markers characteristic of astrocytes and their differentiative states (i.e., glial fibrillary acidic protein (GFAP), vimentin, and M1 and C1 antigens) were investigated in the pineal gland of mouse and rat using double immunolabeling techniques. In both species the socalled interstitial cells as characterized by TEM were shown to be astrocytes, since they expressed vimentin, but neither fibronectin (a marker for fibroblasts and endothelial cells) nor the neuron-specific L1 antigen or tetanus toxin receptors. Subpopulations of vimentin-positive pineal astrocytes were also GFAP- and C1- antigen-positive. M1- antigenpositive cells were not detected.It is concluded that a considerable proportion of interstitial cells in the pineal gland of rat and mouse are immature astrocytes which, in contrast to other parts of the central nervous system, persist into adulthood.Supported in part by Deutsche Forschungsgemeinschaft (Scha 185/9-4)S.-K. Huang was a recipient of a Humboldt Foundation fellowship.  相似文献   

14.
Summary Synaptic ribbons, functionally enigmatic structures of mammalian pinealocytes, were studied during the postnatal development of the pineal gland in the golden hamster (Mesocricetus auratus). On day 4 post partum, synaptic ribbons appear in cells that have already started to differentiate into pinealocytes. Between days 4 and 9, an increase in the number of synaptic ribbons occurs, concomitant with the continuing differentiation of the pineal tissue. Between days 9 and 16, when differentiation of this tissue is almost completed, the number of synaptic ribbons decreases and approaches that characteristic of the adult pineal gland. During development, the synaptic ribbons increase in length, and dense core vesicles are frequently found in the vicinity of these structures. It is assumed that a functional relationship exists between dense core vesicles and the synaptic ribbons, which are considered to be engaged in a certain form of secretory activity of the mammalian pineal gland.Supported by the Deutsche Forschungsgemeinschaft  相似文献   

15.
Several neuropeptides are present in the mammalian pineal gland. Most of these peptides, eg neuropeptide Y, vasoactive intestinal peptide, and peptide histidine isoleucine, are located in nerve fibres innervating the gland. In some mammalian species, neuropeptides are also found in cells scattered in the pineal parenchyma. In the rat, bipolar cells immunoreactive for somatostatin are present, just as cells containing mRNA encoding somatostatin can be detected in the gland by in situ hybridisation. In the pineal gland of the European hamster, many cells are immunoreactive for enkephalin. Ultrastructural cytochemical analysis of these cells reveals a pinealocyte morphology. Processes from the opioidergic pinealocytes terminate in the parenchyma between the non-immunoreactive pinealocytes. Some of the processes contain small clear and large dense core vesicles and end in club shaped swellings which make synapse-like contacts with other pinealocytes. The ultrastructural morphology suggests that the opioidergic cells exert a paracrine regulation on other pinealocytes.  相似文献   

16.
K S Lu  H S Lin 《Histochemistry》1979,61(2):177-187
The pineal gland of adult golden hamsters (Mesocricetus auratus) was studied by various cytochemical methods at the electron microscopic level: (1) the modified chromaffin reaction specific for 5-hydroxytryptamine (5-HT), (2) argentaffin reaction, (3) zinc-iodide-osmium (ZIO) mixture reaction and (4) acid phosphatase reaction. In the pinealocytes, the dense-cored vesicles (80-160 nm in diameter) show both chromaffinity and argentaffinity, while the population of dense bodies (150-400 nm in diameter) is reactive to ammoniacal silver solution and ZIO mixture but not to the modified chromaffin reaction. After incubation for demonstration of acid phosphatase activity, reaction products are localized in some, but not all, of the dense bodies, in some of the small vesicles in the Golgi region and in one or two inner Golgi saccules. In nerve fibers in the pineal gland, small granulated vesicles are also reactive to the modified chromaffin reaction and ZIO mixture. Based upon these cytochemical results the following conclusions have been reached: (1) dense cored vesicles in the pinealocytes and small granulated vesicles in the nerve fibers of the hamster pineal gland contain 5-HT, and (2) the population of dense bodies in the pinealocytes is heterogeneous, some are lysosomes and the other are possibly the granules responsible for the secretion of pineal peptides.  相似文献   

17.
The anatomy and innervation of the mammalian pineal gland   总被引:8,自引:0,他引:8  
The parenchymal cells of the mammalian pineal gland are the hormone-producing pinealocytes and the interstitial cells. In addition, perivascular phagocytes are present. The phagocytes share antigenic properties with microglial and antigen-presenting cells. In certain species, the pineal gland also contains neurons and/or neuron-like peptidergic cells. The peptidergic cells might influence the pinealocyte by a paracrine secretion of the peptide. Nerve fibers innervating the mammalian pineal gland originate from perikarya located in the sympathetic superior cervical ganglion and the parasympathetic sphenopalatine and otic ganglia. The sympathetic nerve fibers contain norepinephrine and neuropeptide Y as neurotransmitters. The parasympathetic nerve fibers contain vasoactive intestinal peptide and peptide histidine isoleucine. Recently, neurons in the trigeminal ganglion, containing substance P, calcitonin gene-related peptide, and pituitary adenylate cyclase-activating peptide, have been shown to project to the mammalian pineal gland. Finally, nerve fibers originating from perikarya located in the brain containing, for example, GABA, orexin, serotonin, histamine, oxytocin, and vasopressin innervate the pineal gland directly via the pineal stalk. Biochemical studies have demonstrated numerous receptors on the pinealocyte cell membrane, which are able to bind the neurotransmitters located in the pinealopetal nerve fibers. These findings indicate that the mammalian pinealocyte can be influenced by a plethora of neurotransmitters.  相似文献   

18.
C M Craft  R J Reiter 《Life sciences》1984,34(18):1775-1782
The purpose of this study was to determine the viability of the hamster pineal gland in organ culture and to test the effect of norepinephrine (NE) on [3H]serotonin derivatives. In this study, elevated levels of melatonin (7-fold, p less than .05), 5- hydroxytrytophol (5-fold, p less than .001), 5-methoxytryptophol (1.78-fold, p less than .05), and depressed levels of 5-hydroxyindoleacetic acid (3.8-fold, p less than .02) and methoxyindoleacetic acid (1.78-fold, p less than .05) were detected in the glands following the addition of NE to the medium. In a separate experiment, melatonin concentration in the media was also periodically measured by radioimmunoassay to determine the viability of the organ culture over a four-day period. The melatonin level on day 2 (2321 +/- 106 pg/gland) was significantly higher (p less than 0.01) than on day 3 (1542 +/- 86 pg/gland) or day 4 (805 +/- 39 pg/gland). The results of these experiments verify the viability of the hamster pineal organ culture and show that the gland responds to NE in vitro.  相似文献   

19.
A rod-specific antiserum was used to immunolabel elements within the retina and pineal of the adult Djungarian hamster and Welsh Mountain sheep. In the retina immunostaining was localized to the outer segments and perikarya of photoreceptor cells, while in the pineal limited numbers of labelled pinealocytes were scattered throughout the gland. An enzyme-linked immunosorbent assay (ELISA) was then used to obtain a quantitative measure of rod opsin in total eye and pineal extracts from the Djungarian hamster. Total rod opsin (+/- SEM) in the eye was measured by absorbance spectroscopy (1.88 +/- 0.10 nmoles opsin/eye) and by using the ELISA (1.75 +/- 0.02 nmoles opsin/eye). The opsin content from a total of 56 pineals gave a mean value of 0.34 +/- 0.01 pmoles opsin/pineal. Since a functional photopigment should be coupled in a 1:1 ratio to a chromophore, we investigated whether we could identify 11-cis and/or all-trans retinaldehydes in the pineal extracts by quantitative extraction and HPLC analysis as the oximes. No evidence of 11-cis or all-trans retinaloxime could be found, the chromatograms were indistinguishable from those produced by extracts of cortical brain tissue. We conclude that the opsin present within the adult hamster pineal is not coupled to the common vertebrate retinaldehyde chromophore, and as a result, is unlikely to be part of a functional photopigment.  相似文献   

20.
Summary Fine structural changes of testicular interstitial cells of Leydig and secretory cells of seminal vesicles were studied in golden hamsters under different functional states of the pineal gland. Experiments were performed in the reproductive season (summer months). In the hamsters blinded for 8 weeks the testes and the seminal vesicles were markedly atrophic, and the Leydig cells and the secretory cells of seminal vesicles were extremely involuted. By contrast, both types of cells in the pinealectomized or superior cervical ganglionectomized hamsters exhibited cytological features suggestive of an enhanced secretory activity. This study shows that functional activity of Leydig cells as well as secretory cells of seminal vesicles in the hamster may be depressed or augmented by stimulating or inhibiting the pineal antigonadal function, respectively, without performing hypophysectomy or hormonal administration.Dedicated to Professor Shu Yeh on the occasion of his 70th birthday. This study was supported in part by a grant from the National Science Council, the Republic of China  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号