首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acute administration of repeated doses of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) dramatically reduces striatal dopamine (DA) content, tyrosine hydroxylase (TH), and DA transporter-immunoreactivity in mice. In this study, we show for the first time the spatiotemporal pattern of dopaminergic damage and related molecular events produced by MDMA administration in mice. Our results include the novel finding that MDMA produces a significant decrease in the number of TH-immunoreactive neurons in the substantia nigra (SN). This decrease appears 1 day after injection, remains stable for at least 30 days, and is accompanied by a dose-dependent long-lasting decrease in TH- and DA transporter-immunoreactivity in the striatum, which peaked 1 day after treatment and persisted for at least 30 days, however, some recovery was evident from day 3 onwards, evidencing sprouting of TH fibers. No change is observed in the NAc indicating that MDMA causes selective destruction of DA-containing neurons in the nigrostriatal pathway, sparing the mesolimbic pathway. The expression of Mac-1 increased 1 day after MDMA treatment and glial fibrillary acidic protein increased 3 days post-treatment in the striatum and SN but not in the NAc, in strict anatomical correlation with dopaminergic damage. These data provide the first evidence that MDMA causes persistent loss of dopaminergic cell bodies in the SN.  相似文献   

2.
Baltic salmon Salmo salar females displaying wiggling behaviour had significantly lower (P<0.05) hepatic and ovarian thiamine (vitamin B1) concentrations than the normal females, confirming that they suffered from a thiamine deficiency. A significantly (P<0.05) increased monoaminergic activity was found in the telencephalon and the hypothalamus of the wiggling individuals as indicated by [5-hydroxyindoleacetic acid (5-HIAA)]: [5-hydroxytryptamine (5-HT)] and [3,4-dihydroxyphenylacetic acid (DOPAC)]: [dopamine (DA)] ratios. The 5-HIAA concentrations of wiggling individuals were significantly (P<0.05) higher in the telencephalon and the hypothalamus compared to normal fish. Wiggling fish showed significantly (P<0.05) higher concentrations of the DA metabolite DOPAC in the hypothalamus and the brain stem compared to normal fish. Furthermore, the brain stem in wiggling fish contained significantly (P<0.05) less 5-HT than in normal individuals, which was also reflected in a significant (P<0.05) increase in the (5-HIAA): (5-HT) ratio. These results demonstrate an increased serotonergic and dopaminergic activity in wiggling compared to normal fish. The altered monoaminergic activity may be directly related to altered brain thiamine metabolism, but a general stress caused by thiamine deficiency and an inability to regulate swim bladder inflation may contribute. Furthermore, a changed brain monoaminergic activity may contribute to the behaviour characterizing wiggling fish.  相似文献   

3.
Tyrosine hydroxylase activity was assayed in microdissected substantia nigra and striata from seven strains of mice (BALB, CBA, YBR, WB, IS, MOLG, and CAST). In the substantia nigra where tyrosine hydroxylase activity is thought to be proportional to dopaminergic neuron number, only CBA had a different (lower) enzyme activity compared with BALB. However in the striatum, tyrosine hydroxylase activity was larger for IS, MOLG and CAST compared with BALB. Further investigation of the CAST striatum showed that dopamine content and dopamine uptake activity were also higher in comparison with BALB. All three dopaminergic parameters were larger because of lower protein levels in the CAST striatum. A lower absolute amount of glutamic acid decarboxylase activity in CAST versus BALB striatum was consistent with the possibility of a smaller CAST striatum. In contrast to dopamine, the serotonin content in CAST striatum was reduced in proportion to the decrease in protein content. We suggest that the CAST striatum is smaller than BALB striatum and is innervated by proportionally fewer serotoninergic terminals, but the amount of dopaminergic innervation of the CAST striatum is not altered by the size of the target.  相似文献   

4.
Dopamine (DA) receptors generate many cellular signals and play various roles in locomotion, motivation, hormone production, and drug abuse. According to the location and expression types of the receptors in the brain, DA signals act in either stimulatory or inhibitory manners. Although DA autoreceptors in the substantia nigra pars compacta are known to regulate firing activity, the exact expression patterns and roles of DA autoreceptor types on the firing activity are highly debated. Therefore, we performed individual correlation studies between firing activity and receptor expression patterns using acutely isolated rat substantia nigra pars compacta DA neurons. When we performed single-cell RT-PCR experiments, D(1), D(2)S, D(2)L, D(3), and D(5) receptor mRNA were heterogeneously expressed in the order of D(2)L > D(2)S > D(3) > D(5) > D(1). Stimulation of D(2) receptors with quinpirole suppressed spontaneous firing similarly among all neurons expressing mRNA solely for D(2)S, D(2)L, or D(3) receptors. However, quinpirole most strongly suppressed spontaneous firing in the neurons expressing mRNA for both D(2) and D(3) receptors. These data suggest that D(2) S, D(2)L, and D(3) receptors are able to equally suppress firing activity, but that D(2) and D(3) receptors synergistically suppress firing. This diversity in DA autoreceptors could explain the various actions of DA in the brain.  相似文献   

5.
The present study was undertaken in order to investigate the muscarinic (M(1)), dopaminergic (D(1) and D(2)) and serotonergic (5-HT(2)) receptors densities in hippocampus and striatum of Wistar rats after status epilepticus (SE) induced by pilocarpine. The control group was treated with 0.9% saline. An other group of rats received pilocarpine (400 mg/kg, s.c.) and both groups were sacrificed 1 h after treatment. The results have shown that pilocarpine administration and resulting SE produced a downregulation of M(1) receptor in hippocampus (41%) and striatum (51%) and an increase in the dissociation constant (K(d)) values in striatum (42%) alone. In both areas the 5-HT(2) receptor density remained unaltered, but a reduction (50%) and an increase (15%) in the K(d) values were detected in striatum and hippocampus, respectively. D(1) and D(2) receptor densities in hippocampus and striatum remained unaltered meanwhile K(d) values for D(1) receptor declined significantly, 33% in hippocampus and 26% in striatum. Similarly, K(d) values for D(2) decreased 55% in hippocampus and 52% in striatum. From the preceding results, it is clear that there is a possible relation between alterations in muscarinic receptor density and others systems studied as well as they suggest that changes in dissociation constant can be responsible for the establishment of pilocarpine-induced SE by altering the affinity of neurotransmitters such as acetylcholine, dopamine and serotonine.  相似文献   

6.
Presynaptic regulation of dopaminergic transmission in the striatum   总被引:1,自引:0,他引:1  
1. In vitro studies have indicated that several transmitters present in the striatum can regulate presynaptically the release of dopamine (DA) from nerve terminals of the nigrostriatal DA neurons. 2. The receptors involved in these local regulatory processes are located or not located on DA nerve terminals. 3. Recent in vivo investigations have demonstrated that the corticostriatal glutamatergic neurons facilitate presynaptically the release of DA and have allowed the analysis of the respective roles of presynaptic events and nerve activity in the control of DA transmission.  相似文献   

7.
Inductive signals mediating the differentiation of neural precursors into serotonergic (5-HT) or dopaminergic neurons have not been clarified. We have recently shown that in cell aggregates obtained from rat mesencephalic precursors, reduction of serotonin levels induces a marked increase in generation of dopaminergic neurons. In the present study we treated rat neurospheres with antagonists of the main subtypes of 5-HT receptors, 5-HT transport inhibitors, or 5-HT receptor agonists, and studied the effects on generation of dopaminergic neurons. Cultures treated with Methiothepin (5-HT(1,2,5,6,7) receptor antagonist), the 5-HT(4) receptor antagonist GR113808;67:00-.or the 5-HT(7) receptor antagonist SB 269970 showed a significant increase in generation of dopaminergic cells. Treatment with the 5-HT(1B/1D) antagonist GR 127935, the 5-HT(2) antagonist Ritanserin, the 5-HT transporter inhibitor Fluoxetine, the dopamine and norepinephrine transport inhibitor GBR 12935, or with both inhibitors together, or 5-HT(4) or 5-HT(7) receptor agonists induced significant decreases in generation of dopaminergic cells. Cultures treated with WAY100635 (5-HT(1A) receptor antagonist), the 5-HT(3) receptor antagonist Ondasetron, or the 5-HT(6) receptor antagonist SB 258585 did not show any significant changes. Therefore, 5-HT(4) and 5-HT(7) receptors are involved in the observed serotonin-induced decrease in generation of dopaminergic neurons from proliferating neurospheres of mesencephalic precursors. 5-HT(4) and 5-HT(7) receptors were found in astrocytes and serotonergic cells using double immunolabeling and laser confocal microscopy, and the glial receptors appeared to play a major role.  相似文献   

8.
The therapeutic benefits of dopamine (DA) agonists after traumatic brain injury (TBI) imply a role for DA systems in mediating functional deficits post‐TBI. We investigated how experimental TBI affects striatal dopamine systems using fast scan cyclic voltammetry (FSCV), western blot, and d‐amphetamine‐induced rotational behavior. Adult male Sprague–Dawley rats were injured by a controlled cortical impact (CCI) delivered unilaterally to the parietal cortex, or were naïve controls. Amphetamine‐induced rotational behavior was assessed 10 days post‐CCI. Fourteen days post‐CCI, animals were anesthetized and underwent FSCV with bilateral striatal carbon fiber microelectrode placement and stimulating electrode placement in the medial forebrain bundle (MFB). Evoked DA overflow was assessed in the striatum as the MFB was electrically stimulated at 60 Hz for 10 s. In 23% of injured animals, but no naïve animals, rotation was observed with amphetamine administration. Compared with naïves, striatal evoked DA overflow was lower for injured animals in the striatum ipsilateral to injury (p < 0.05). Injured animals exhibited a decrease in Vmax (52% of naïve, p < 0.05) for DA clearance in the hemisphere ipsilateral to injury compared with naïves. Dopamine transporter (DAT) expression was proportionally decreased in the striatum ipsilateral to injury compared with naïve animals (60% of naïve, p < 0.05), despite no injury‐related changes in vesicular monoamine transporter or D2 receptor expression (DRD2) in this region. Collectively, these data appear to confirm that the clinical efficacy of dopamine agonists in the treatment of TBI may be related to disruptions in the activity of subcortical dopamine systems.  相似文献   

9.
Intraperitoneal injection 10 min before sacrifice of 1.5 g ethanol/kg weight produced an increase in rat striatal levels of homovanillic acid (HVA) (p < 0.05) but did not affect the striatal concentrations of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA). A similar ethanol treatment led to decreases in 5-HT (p < 0.05) and 5-HIAA (p < 0.05) from cerebral cortex (prefrontal and anterior cingulate areas). The results point to several ethanol-linked alterations in central serotonergic and dopaminergic systems.  相似文献   

10.
The serotonergic system plays a key role in the modulation of olfactory processing. The present study examined the plastic response of this centrifugal system after unilateral naris occlusion, analysing both serotonergic afferents and receptors in the main olfactory bulb. After 60 days of sensory deprivation, the serotonergic system exhibited adaptive changes. Olfactory deprivation caused a general increase in the number of fibres immunopositive for serotonin but not of those immunopositive for the serotonin transporter. HPLC data revealed an increase in serotonin levels but not in those of its major metabolite, 5-hydroxyindole acetic acid, resulting in a decrease in the 5-hydroxyindole acetic acid/serotonin ratio. These changes were observed not only in the deprived but also in the contralateral olfactory bulb. Double serotonin-tyrosine hydroxylase immunolabelling revealed that the glomerular regions of the deprived olfactory bulb with a high serotonergic fibre density showed a strong reduction in tyrosine hydroxylase. Finally, the serotonin(2A) receptor distribution density and the number of juxtaglomerular cells immunopositive for serotonin(2A) receptor remained unaltered after olfactory deprivation. Environmental stimulation modulated the serotonergic afferents to the olfactory bulb. Our results indicate the presence of a bilateral accumulation of serotonin in the serotonergic axon network, with no changes in serotonin(2A) receptor density after unilateral olfactory deprivation.  相似文献   

11.
Brain-derived neurotrophic factor (BDNF) regulates monoamine neuronal growth, survival and function in development and throughout adulthood. At 18 months of age, mice with constitutive reductions in BDNF expression show decreased serotonin innervation in the hippocampus compared with age-matched wildtype mice. It is not known, however, whether age-accelerated loss of serotonergic innervation in BDNF(+/-) mice occurs in other brain regions, advances beyond 18 months or is associated with alterations in other neurotransmitter systems. In this study, immunocytochemistry was used to assess serotonergic and catecholaminergic innervation in 26-month-old BDNF(+/-) mice. Age-related loss of serotonin axons in the hippocampus was potentiated in BDNF(+/-) mice compared with wildtype mice at this late age, particularly in the CA1 subregion. By contrast, aging BDNF(+/-) mice showed increased serotonin innervation of the basomedial nucleus of the amygdala. In the noradrenergic system, BDNF(+/-) mice showed reduced numbers of cell bodies and fibers in the locus coeruleus compared with age-matched wildtype mice, whereas no changes were observed in dopaminergic innervation with respect to genotype. In vivo zero net flux microdialysis in awake mice showed a significant decrease in extracellular serotonin levels in the hippocampus in BDNF(+/-) mice at 20 months of age. Thus, reduced BDNF is associated with altered serotonergic and noradrenergic innervation in aging mice and, in particular, with accelerated loss of serotonergic innervation to the hippocampus that is manifest as a decrease in basal neurotransmission.  相似文献   

12.
Amphetamine (AMPH) is thought to disrupt normal patterns of action potential-dependent dopaminergic signaling by depleting dopamine (DA) vesicular stores and promoting non-exocytotic DA efflux. Voltammetry in brain slices concurrently demonstrates these key drug effects, along with competitive inhibition of neuronal DA uptake. Here, we perform comparable kinetic and voltammetric analyses in vivo to determine whether AMPH acts qualitatively and quantitatively similar in the intact brain. Fast-scan cyclic voltammetry measured extracellular DA in dorsal and ventral striata of urethane-anesthetized rats. Electrically evoked recordings were analyzed to determine K(m) and V(max) for DA uptake and vesicular DA release, while background voltammetric current indexed basal DA concentration. AMPH (0.5, 3, and 10 mg/kg i.p.) robustly increased evoked DA responses in both striatal subregions. The predominant contributor to these elevated levels was competitive uptake inhibition, as exocytotic release was unchanged in the ventral striatum and only modestly decreased in the dorsal striatum. Increases in basal DA levels were not detected. These results are consistent with AMPH augmenting action potential-dependent dopaminergic signaling in vivo across a wide, behaviorally relevant dose range. Future work should be directed at possible causes for the distinct in vitro and in vivo pharmacology of AMPH.  相似文献   

13.
Nigrostriatal dopaminergic neurons release dopamine from dendrites in substantia nigra and axon terminals in striatum. The cellular mechanisms for somatodendritic and axonal dopamine release are similar, but somatodendritic and nerve terminal dopamine release may not always occur in parallel. The current studies used in vivo microdialysis to simultaneously measure changes in dendritic and nerve terminal dopamine efflux in substantia nigra and ipsilateral striatum respectively, following intranigral application of various drugs by reverse dialysis through the nigral probe. The serotonin releasers (+/-)-fenfluramine (100 micro m) and (+)-fenfluramine (100 micro m) significantly increased dendritic dopamine efflux without affecting extracellular dopamine in striatum. The non-selective serotonin receptor agonist 1-(m-chlorophenyl)-piperazine (100 micro m) elicited a similar pattern of dopamine release in substantia nigra and striatum. NMDA (33 micro m) produced an increase in nigral dopamine of a similar magnitude to mCPP or either fenfluramine drug. However, NMDA also induced a concurrent increase in striatal dopamine. The D2 agonist quinpirole (100 micro m) had a parallel inhibitory effect on dopamine release from dendritic and terminal sites as well. Taken together, these data suggest that serotonergic afferents to substantia nigra may evoke dendritic dopamine release through a mechanism that is uncoupled from the impulse-dependent control of nerve terminal dopamine release.  相似文献   

14.
15.
16.
Diclofenac (DCF) is a widely used non-steroidal anti-inflammatory drug, which also act as a mitochondrial toxin. As it is known that selective mitochondrial complex I inhibition combined with mild oxidative stress causes striatal dopaminergic dysfunction, we tested whether DCF also compromise dopaminergic function in the striatum. [3H]Dopamine ([3H]DA) release was measured from rat striatal slices after in vitro (2 h, 10-25 micromol/L) or in vivo (3 mg/kg i.v. for 28 days) DCF treatment. In vitro treatment significantly decreased [3H]DA uptake and dopamine (DA) content of the slices. H2O2 (0.1 mmol/L)-evoked DA release was enhanced. Intracellular reactive oxygen species production was not significantly changed in the presence of DCF. After in vivo DCF treatment no apparent decrease in striatal DA content was observed and the uptake of [3H]DA into slices was increased. The intensity of tyrosine hydroxylase immunoreactivity in the striatum was highly variable, and both decrease and increase were observed in individual rats. The H2O2-evoked [3H]DA release was significantly decreased and the effluent contained a significant amount of [3H]octopamine, [3H]tyramine, and [3H]beta-phenylethylamine. The ATP content and adenylate energy charge were decreased. In conclusion, whereas in vitro DCF pre-treatment resembles the effect of the mitochondrial toxin rotenone, in vivo it rather counteracts than aggravates dopaminergic dysfunction.  相似文献   

17.
The present experiment examined the effect of the dopamine transporter blocker nomifensine on subsecond fluctuations in dopamine concentrations, or dopamine transients, in the nucleus accumbens and olfactory tubercle. Extracellular dopamine was measured in real time using fast-scan cyclic voltammetry at micron-dimension carbon fibers in freely-moving rats. Dopamine transients occurred spontaneously throughout the ventral striatum in the absence of apparent sensory input or change in behavioral response. The frequency of dopamine transients increased at the presentation of salient stimuli to the rat (food, novel odors and unexpected noises). Administration of 7 mg/kg nomifensine amplified spontaneous dopamine transients by increasing both amplitude and duration, consistent with its known action at the dopamine transporter and emphasizing the dopaminergic origin of the signals. Moreover, nomifensine increased the frequency of detected dopamine transients, both during baseline conditions and at the presentation of stimuli, but more profoundly in the nucleus accumbens than in the olfactory tubercle. This difference was not explained by nomifensine effects on the kinetics of dopamine release and uptake, as its effects on electrically-evoked dopamine signals were similar in both regions. These findings demonstrate the heterogeneity of dopamine transients in the ventral striatum and establish that nomifensine elevates the tone of rapid dopamine signals in the brain.  相似文献   

18.
Psychostimulant methamphetamine (METH) is toxic to striatal dopaminergic and serotonergic nerve terminals in adult, but not in the adolescent, brain. Betulinic acid (BA) and its derivatives are promising anti‐HIV agents with some toxic properties. Many METH users, particularly young men, are HIV‐positive; therefore, they might be treated with BA or its derivative for HIV infection. It is not known whether BA, or any of its derivatives, are neurotoxic in combination with METH in the adolescent brain. The present study investigated the effects of BA and binge METH in the striatum of late adolescent rats. BA or METH alone did not decrease the levels of dopaminergic or serotonergic markers in the striatum whereas BA and METH together decreased these markers in a BA dose‐dependent manner. BA+METH also caused decreases in the levels of mitochondrial complex I in the same manner; BA alone only slightly decreased the levels of this enzyme in striatal synaptosomes. BA or METH alone increased cytochrome c. METH alone decreased parkin, increased complex II and striatal BA levels. These results suggest that METH in combination with BA can be neurotoxic to striatal dopaminergic and serotonergic nerve terminals in the late adolescent brain via mitochondrial dysfunction and parkin deficit.

  相似文献   


19.
Acupuncture and moxibustion are traditional medical treatments that have come to play important roles in complementary and alternative medicines. Moxibustion also has a long history as a folk remedy in Japan, particularly due to the technical simplicity and selective efficacy on certain types of disease and distress. This study examined the effects of moxibustion focusing on the brain reward system, particularly in the nucleus accumbens. The effects of moxibustion stimulation at various sites and frequencies on monoamine levels of adult male Sprague-Dawley rats were examined using high-preformance liquid chromatography of dissected nucleus accumbens tissues. The rats weighing 290–310 g were divided into 3 groups according to the moxibustion point used: hindlimb, lumbar or parietal points. Each group was further divided into 3 subgroups, with stimulation for 10 consecutive days, for 1 day, or sham treatment (control). On each day of stimulation, 5 moxibustion cones with a peak temperature of 200°C were applied consecutively. Stimulation of any point on 1 day only did not change dopamine or serotonin levels, but lumbar stimulation significantly increased the metabolic turnover of dopamine. Conversely, stimulation for 10 consecutive days resulted in significantly decreased serotonin levels for hindlimb and parietal stimulations, and significantly increased 5-hydroxyindolacetic acid/serotonin ratio for hindlimb stimulation. These results suggest that the metabolic turnover of serotonin release may be accentuated by moxibustion in a reward-related brain area. Moxibustion over consecutive days, especially that to peripheral regions, appears most efficient to influence on monoamine levels in the nucleus accumbens. Special issue dedicated to Dr. Simo S. Oja  相似文献   

20.
Disturbances in serotonergic neurotransmission have been suggested to be closely interlinked with hyperactivity of the hypothalamic-pituitary-adrenocortical (HPA) system, and are likely to be involved in the pathophysiology of anxiety disorders and major depression. We therefore investigated markers of serotonergic transmission and their modulation by chronic paroxetine in rats selectively bred for high (HAB) or low (LAB) anxiety-related behaviour, both under basal conditions and in response to emotional stress. Hippocampal serotonin 1 A (5-HT1A) receptor mRNA expression was reduced in HAB rats, whereas 5-HT concentrations in hippocampal microdialysates did not differ between HAB and LAB rats under basal conditions. In the hippocampus, overall expression of serotonin transporter binding sites was increased in HAB compared with LAB rats. Exposure to emotional stress failed to increase intrahippocampal 5-HT release in HAB rats whereas LAB rats displayed a physiological, albeit small rise. Chronic paroxetine treatment markedly increased the stress-induced rise in hippocampal 5-HT in HAB, but not LAB rats. This effect may be (at least in part) related to a greater down-regulation of hippocampal serotonin transporter binding sites by paroxetine in HABs compared with LABs, while 5-HT1A receptor expression remained unaffected in this brain area. The findings indicate reduced hippocampal serotonergic transmission in HAB rats as compared with LAB rats, which is evident both at the presynaptic (5-HT release) and the postsynaptic (5-HT1A receptor) level. Chronic paroxetine enhanced the presynaptic responsivity in HAB rats, but not LAB rats, pointing to a preferential efficacy of paroxetine in rats with enhanced anxiety/depression-related behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号