首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhao MW  Hao R  Chen JF  Martin F  Eriani G  Wang ED 《Biochemistry》2003,42(25):7694-7700
Aquifex aeolicus alphabeta-LeuRS is the only known heterodimeric LeuRS, while Escherichia coli LeuRS is a canonical monomeric enzyme. By using the genes encoding A. aeolicus and E. coli LeuRS as PCR templates, the genes encoding the alpha and beta subunits from A. aeolicus alphabeta-LeuRS and the equivalent amino- and carboxy-terminal parts of E. coli LeuRS (identified as alpha' and beta') were amplified and recombined using suitable plasmids. These recombinant plasmids were transformed or cotransformed into E. coli to produce five monomeric and five heterodimeric LeuRS mutants. Seven of these were successfully overexpressed in vivo and purified, while three dimeric mutants with the beta' part of E. coli LeuRS were not successfully expressed. The seven purified mutants catalyzed amino acid activation, although several exhibited reduced aminoacylation properties. Removal of the last 36 residues of the alpha subunit of the A. aeolicus enzyme was determined to be deleterious for tRNA charging. Indeed, subunit exchange showed that the cross-species-specific recognition of A. aeolicus tRNA(Leu) occurs at the alpha subunit. None of the mixed E. coli-A. aeolicus enzymes were as thermostable as the native alphabeta-LeuRS. However, the fusion of the two alpha and beta peptides from A. aeolicus as a single chain analogous to canonical LeuRS resulted in a product more resistant to heat denaturation than the original enzyme.  相似文献   

2.
In a hyperthermophilic bacterium, Aquifex aeolicus, leucyl-tRNA synthetase (LeuRS) consists of two non-identical polypeptide subunits (alpha and beta), different from the canonical LeuRS, which has a single polypeptide chain. By PCR, using genome DNA of A. aeolicus as a template, genes encoding the alpha and beta subunits were amplified and cloned in Escherichia coli. The alpha subunit could not be expressed stably in vivo, whereas the beta subunit was overproduced and purified by a simple procedure. The beta subunit was inactive in catalysis but was able to bind tRNA(Leu). Interestingly, the heterodimer alphabeta-LeuRS could be overproduced in E. coli cells containing both genes and was purified to 95% homogeneity as a hybrid dimer. The kinetics of A. aeolicus LeuRS in pre-steady and steady states and cross-recognition of LeuRS and tRNA(Leu) from A. aeolicus and E. coli were studied. Magnesium concentration, pH value, and temperature aminoacylation optima were determined to be 12 mm, 7.8, and 70 degrees C, respectively. Under optimal conditions, A. aeolicus alphabeta-LeuRS is stable up to 65 degrees C.  相似文献   

3.
大肠杆菌亮氨酰 tRNA合成酶 (LeuRS)是第 1类氨基酰 tRNA合成酶 ,由 860个氨基酸残基组成 ,催化亮氨酸tRNA的亮氨酰化。研究发现 ,在它的CP1结构域内 3 68和 3 69间的肽键间插入 2 5 3~ 3 68的肽段 ,该插入变种的酶仍具有酶活力 ,取名为LeuRS C。由于这一插入变种的不稳定性 ,构建了His6 LeuRS C的表达质粒 ,用Ni NTA柱亲和层析的方法进行纯化。发现His6 LeuRS C虽然插入了 116个氨基酸残基 ,但仍具有全部的天然LeuRS的活力。测定了His6 LeuRS C的酶学动力学常数 ,比较了它与天然LeuRS的从CD光谱得到的二级结构和热稳定性  相似文献   

4.
Arginine is coded for by CGN (N = G, A, U, C), AGA and AGG. In Escherichia coli there is little tRNA for AGA and AGG and the use of these codons is strongly avoided in virtually all genes. Recently, we demonstrated that the presence of tandem AGA or AGG codons in mRNA causes frameshifts with high frequency. Here, we show that phaseshifts can be suppressed when cells are transformed with the gene for tRNA(T4Arg) or E. coli tRNA(argU,Arg) demonstrating that such errors are the result of tRNA depletion. Bacteriophage T4 encoded tRNA(Arg) (anticodon UCU) corrects shifts at AGA-AGA but not at AGG-AGG, suggesting that this tRNA can only read AGA. Similarly, comparison of the translational efficiencies in an argU (Ts) mutant and in its isogenic wild type parent indicates that argU tRNA (anticodon UCU) reads AGA but not AGG. An argU (Ts) mutant barely reads through AGA-AGA at 42 degrees C but translation of AGG-AGG is hardly, if at all, affected. Overexpression of argU+ relaxes the codon specificity. The thermosensitive mutant in argU, previously called dnaY because it is defective in DNA replication, can be complemented for growth by the gene for tRNA(T4Arg). This implies that the sole function of the argU gene product is to sustain protein synthesis and that its role in replication is probably indirect.  相似文献   

5.
The expression of the proUK gene was improved by the coexpression of the argU gene cloned in a moderate copy number vector. As the proUK gene contains 2% AGG/AGA codons, which is much higher than the normal frequency in E. coli, about 0.14%-0.21%, the argU gene cloned in a multicopy plasmid was coexpressed with the proUK expression vector in our experiments. In E. coli strain BL21(DE3), IPTG is known to induce the expression of T7 RNA polymerase gene and this enzyme can transcribe the proUK gene under the control of the T7 promoter leading to expression of proUK. To replace IPTG by a cheaper alternative on a large scale, we constructed a plasmid in which the vgb promoter--which is known to be activated by the onset of hypoxic conditions--controls the T7RNA polymerase gene expression. Low oxygen conditions were then used to activate the vgb promoter causing T7RNA polymerase gene expression and finally leading to the expression of proUK as inactive inclusion bodies. Our experiments on a large scale in a bioreactor show that the expression of proUK accounts for about 30% of total protein after about 6 h of anaerobic cultivation, so the presented model represents an economical alternative to IPTG induction.  相似文献   

6.
The thermostable class I HMG-CoA reductase of Sulfolobus solfataricus offers potential for industrial applications and for the initiation of crystallization trials of a biosynthetic HMG-CoA reductase. However, of the 15 arginine codons of the hmgA gene that encodes S. solfataricus HMG-CoA reductase, 14 (93%) are AGA or AGG, the arginine codons used least frequently by Escherichia coli. The presence of these rare codons in tandem or in the first 20 codons of a gene can complicate expression of that gene in E. coli. Problems include premature chain termination and misincorporation of lysine for arginine. We therefore sought to improve the expression and subsequent yield of S. solfataricus HMG-CoA reductase by expanding the pool size of tRNA(AGA,AGG), the tRNA that recognizes these two rare codons. Coexpression of the S. solfataricus hmgA gene with the argU gene that encodes tRNA(AGA,AGG) resulted in an over 10-fold increase in enzyme yield. This has provided significantly greater quantities of purified enzyme for potential industrial applications and for crystallographic characterization of a stable class I HMG-CoA reductase. It has, in addition, facilitated determination of kinetic parameters and of pH optima for all four catalyzed reactions, for determination of the K(i) for inhibition by the statin drug mevinolin, and for comparison of the properties of the HMG-CoA reductase of this thermophilic archaeon to those of other class I HMG-CoA reductases.  相似文献   

7.
This report takes a proteomic/genomic approach to characterize the DNA polymerase III replication apparatus of the extreme thermophile, Aquifex aeolicus. Genes (dnaX, holA, and holB) encoding the subunits required for clamp loading activity (tau, delta, and delta') were identified. The dnaX gene produces only the full-length product, tau, and therefore differs from Escherichia coli dnaX that produces two proteins (gamma and tau). Nonetheless, the A. aeolicus proteins form a taudeltadelta' complex. The dnaN gene encoding the beta clamp was identified, and the taudeltadelta' complex is active in loading beta onto DNA. A. aeolicus contains one dnaE homologue, encoding the alpha subunit of DNA polymerase III. Like E. coli, A. aeolicus alpha and tau interact, although the interaction is not as tight as the alpha-tau contact in E. coli. In addition, the A. aeolicus homologue to dnaQ, encoding the epsilon proofreading 3'-5'-exonuclease, interacts with alpha but does not form a stable alpha.epsilon complex, suggesting a need for a brace or bridging protein to tightly couple the polymerase and exonuclease in this system. Despite these differences to the E. coli system, the A. aeolicus proteins function to yield a robust replicase that retains significant activity at 90 degrees C. Similarities and differences between the A. aeolicus and E. coli pol III systems are discussed, as is application of thermostable pol III to biotechnology.  相似文献   

8.
We previously cloned a panel of peanut allergens by phage display technology. Examination of the codons used in these sequences indicated that most of the cDNAs contain an excess of the least used codons in Escherichia coli, namely AGG/AGA, that correspond to a minor tRNA, the product of the dnaY gene. To achieve high-level expression of the peanut allergens, the cDNAs were subcloned into an expression vector of the pET series (Novagen) in order to produce (His)(10)-tagged fusion proteins in conventional E. coli BL21(DE3) cells. The peanut allergens Ara h 1, Ara h 2, and Ara h 6 with an AGG/AGA codon content of 8-10% were only marginally expressed, whereas the peanut profilin Ara h 5, with an AGG/AGA codon content of only 0.8%, was efficiently expressed in these cells. Hence, by using modified BL21(DE3) E. coli cells, namely BL21-CodonPlus(DE3)-RIL cells (Stratagene) with extra copies of E. coli argU, ileY, and leuW tRNA genes, it was possible to attain high-level expression of the proteins affected by rare codon usage. IPTG-induced expression of several recombinant peanut allergens, such as Ara h 1, Ara h 2, and Ara h 6, was greatly increased in these special cells compared to the expression yield achieved by conventional E. coli hosts. The purification of the soluble and the insoluble fraction of Ara h 2 was performed by metal-affinity chromatography and yielded a total of about 30 mg (His)(10)-tagged recombinant protein per liter of culture of transformed BL21(DE3)CodonPlus-RIL cells. This is over 100 times more than achieved by production of Ara h 2 in conventional BL21(DE3) cells.  相似文献   

9.
We previously cloned a panel of peanut allergens by phage display technology. Examination of the codons used in these sequences indicated that most of the cDNAs contain an excess of the least used codons in Escherichia coli, namely AGG/AGA, that correspond to a minor tRNA, the product of the dnaY gene. To achieve high-level expression of the peanut allergens, the cDNAs were subcloned into an expression vector of the pET series (Novagen) in order to produce (His)10-tagged fusion proteins in conventional E. coli BL21(DE3) cells. The peanut allergens Ara h 1, Ara h 2, and Ara h 6 with an AGG/AGA codon content of 8–10% were only marginally expressed, whereas the peanut profilin Ara h 5, with an AGG/AGA codon content of only 0.8%, was efficiently expressed in these cells. Hence, by using modified BL21(DE3) E. coli cells, namely BL21-CodonPlus(DE3)-RIL cells (Stratagene) with extra copies of E. coli argU, ileY, and leuW tRNA genes, it was possible to attain high-level expression of the proteins affected by rare codon usage. IPTG-induced expression of several recombinant peanut allergens, such as Ara h 1, Ara h 2, and Ara h 6, was greatly increased in these special cells compared to the expression yield achieved by conventional E. coli hosts. The purification of the soluble and the insoluble fraction of Ara h 2 was performed by metal-affinity chromatography and yielded a total of about 30 mg (His)10-tagged recombinant protein per liter of culture of transformed BL21(DE3)CodonPlus-RIL cells. This is over 100 times more than achieved by production of Ara h 2 in conventional BL21(DE3) cells.  相似文献   

10.
Six archaeal proteins containing a high number of Escherichia coli rare codons in their genes were not well expressed in E. coli. These genes showed a five to twenty-fold increase in production when expressed in the presence of a plasmid harboring and expressing the argU and ileX genes encoding rare tRNAs (tRNA arg(de)AGA/AGG and tRNA ile(de)AUA. © Rapid Science Ltd. 1998  相似文献   

11.
Ma JJ  Zhao MW  Wang ED 《Biochemistry》2006,45(49):14809-14816
Leucyl-tRNA synthetase (LeuRS) from Aquifex aeolicus is the only known heterodimer synthetase. It is named LeuRS alphabeta;, and its alpha and beta subunits contain 634 and 289 residues, respectively. Like Thermus thermophilus LeuRS, LeuRS alphabeta has a large extra domain, the leucine-specific domain, inserted into the catalytic domain. The subunit split site is exactly in the middle of the leucine-specific domain and may have a unique function. Here, a series of mutants of LeuRS alphabeta consisting of either mutated alpha subunits and wild-type beta subunits or wild-type alpha subunits and mutated beta subunits were constructed and purified. ATP-PPi exchange and aminoacylation activities and the ability of the mutants to charge minihelix(Leu) were assayed. Interaction of the mutants with the tRNA was assessed by gel shift. Two peptides of eight and nine amino acid residues in the domain located in the alpha subunit were found to be essential for the enzyme's activity. We also showed that the domain in LeuRS alphabeta plays an important role in minihelix(Leu) recognition. Additionally, the domain was found to have little impact on the assembly of the heterodimer, to play a role in the thermal stability of the whole enzyme, and to interact with the cognate tRNA in the predicted manner.  相似文献   

12.
Zhao MW  Zhu B  Hao R  Xu MG  Eriani G  Wang ED 《The EMBO journal》2005,24(7):1430-1439
The editing reactions catalyzed by aminoacyl-tRNA synthetases are critical for the faithful protein synthesis by correcting misactivated amino acids and misaminoacylated tRNAs. We report that the isolated editing domain of leucyl-tRNA synthetase from the deep-rooted bacterium Aquifex aeolicus (alphabeta-LeuRS) catalyzes the hydrolytic editing of both mischarged tRNA(Leu) and minihelix(Leu). Within the domain, we have identified a crucial 20-amino-acid peptide that confers editing capacity when transplanted into the inactive Escherichia coli LeuRS editing domain. Likewise, fusion of the beta-subunit of alphabeta-LeuRS to the E. coli editing domain activates its editing function. These results suggest that alphabeta-LeuRS still carries the basic features from a primitive synthetase molecule. It has a remarkable capacity to transfer autonomous active modules, which is consistent with the idea that modern synthetases arose after exchange of small idiosyncratic domains. It also has a unique alphabeta-heterodimeric structure with separated catalytic and tRNA-binding sites. Such an organization supports the tRNA/synthetase coevolution theory that predicts sequential addition of tRNA and synthetase domains.  相似文献   

13.
嗜酸热硫化叶菌麦芽寡粉基海藻糖合酶基因的克隆和表达   总被引:5,自引:0,他引:5  
王辉  吴襟 《生物工程学报》2001,17(3):339-341
The gene of MTSase (maltooligosyltrehalose synthase) from Sulfolobus acidocaldarius ATCC49426 was amplified by PCR. The primers were designed according to the published sequence of homologous gene from Sulfolobus acidocaldarius ATCC33909. This gene was inserted into the plasmid pBV220 and the resultant recombinant plasmid pBV220-GT was transformed to E. coli DH5 alpha. The activity of recombinant enzyme was about 10 u/g(wet cell). In order to improve the expression level of target protein, some nucleotides in the 3' and 5' of the gene were modified to optimize the second structure of mRNA by PCR amplification using the new primers devised according to the biosoftware GOLDKEY2.0. As a result, the activity of recombinant enzyme increase to 19.8 u/g(wet cell). Then, the helping plasmid pUBS520 which carried the gene encoding the tRNA of rare codons AGG and AGA was transformed to the recombinant strain. But it took little effect.  相似文献   

14.
The hpt gene from the archaeon Methanobacterium thermoautotrophicum, encoding hypoxanthine (guanine) phosphoribosyltransferase, was cloned by functional complementation into Escherichia coli. The hpt-encoded amino acid sequence is most similar to adenine phosphoribosyltransferases, but the encoded enzyme has activity only with hypoxanthine and guanine. The synthesis of the recombinant enzyme is apparently limited by the presence of the rare arginine codons AGA and AGG and the rare isoleucine AUA codon on the hpt gene. The recombinant enzyme was purified to apparent homogeneity.  相似文献   

15.
Structural studies of eukaryotic ribosomes are complicated by the tendency of their constituent proteins to be expressed at very low levels in Escherichia coli. We find that this is mainly due to their exceptionally high content of AGA/AGG arginine codons, which are poorly utilized by the bacterial translational machinery. In fact, we could overcome this limitation by the combined use of a T7 RNA polymerase expression vector and a plasmid carrying the E. coli gene argU, which encodes the minor tRNA(Arg) species that reads AGA/AGG codons. In this system, five cytoplasmic ribosomal proteins from three different eukaryotic lineages (Saccharomyces cerevisiae S8, L13, and L14; Arabidopsis thaliana L13; and Homo sapiens L7) could be overexpressed to up to 50% of total bacterial protein and were purified to homogeneity in tens of milligrams amounts. The purification procedure simply involved metal affinity chromatography followed, in some cases, by an additional heparin chromatography step. Recombinant polypeptides bound RNA with high affinity (K(d) between 50 and 300 nM). This novel overexpression/purification strategy will allow the production of high amounts of most eukaryotic ribosomal proteins in a form suitable for structural and functional studies. Coupled with recently completed and ongoing whole-genome sequencing projects, it will facilitate the molecular characterization of the eukaryotic ribosome.  相似文献   

16.
Influence of rare codons upon gene expression in E. coli was investigated. The chimeric gene was created combining CAT gene and a fragment of the gene, encoding for alpha-domain of beta-galactosidase. The synthetic oligonucleotides were inserted in different parts of the chimeric gene. The constructed synthetic oligonucleotides encoded the same amino acid sequences and contained arginine codons AGG, AGA and CGT in various combinations. It was shown that the presence of rare arginine codons AGG and AGA in the template and their mutual arrangement significantly influence the level of gene expression. At the same time the presence of leucine, isoleucine, glycine and proline rare codons does not cause such an effect. Translation of AGGAGG and AGAAGA sequences was found to lead to the formation of a considerable amount of polypeptides of incomplete length. It was shown that the presence of such a cluster of rare codons effects on the length of specific mRNA.  相似文献   

17.
Okon M  Frank PG  Marcel YL  Cushley RJ 《FEBS letters》2002,518(1-3):139-143
Class I aminoacyl-tRNA synthetases have been thought to be single polypeptide enzymes. However, the complete genome sequence of a hyper thermophile Aquifex aeolicus suggests that the gene for leucyl-tRNA synthetases (LeuRS) is probably split into two pieces (leuS and leuS'). In this research, each gene was separately cloned and overexpressed in Escherichia coli and the protein products were examined for LeuRS activity. Leucylation activity was detected only when both gene products coexisted. Gel filtration analysis showed that the active form of A. aeolicus LeuRS has a heterodimeric (alpha/beta type) quaternary structure that is unique among class I aminoacyl-tRNA synthetases.  相似文献   

18.
High-level expression from one particular heterologous gene in Escherichia coli generally requires the optimization of codon usage. Genes encoding for Hepatitis C virus core protein (HCcAg), human interferon alpha2 and 8 subtypes (HUIFNalpha2 and HUIFNalpha8) show a high content of AGA/AGG codons. These are encoded by the product of the dnaY gene in E. coli. The proteins used in this work have a high therapeutic value and were used as models for studying the effects of these rare codons on the efficiency of heterologous gene expression in E. coli. Expression plasmids were constructed to express any of these proteins and the dnaY gene product simultaneously in E. coli. After dnaY gene expression, HCcAg, and HUIFNalpha2 expression levels increased 5 and 3 times, respectively. However, HUIFNalpha8 expression was barely detected either supplying or not the additional dnaY gene product. These results suggest that the high frequency of AGA/AGG codons present in the HCcAg and HUIFNalpha2 genes could be one of the factors limiting its expression in E. coli. Nevertheless, for HUIFNalpha8 it seems that other factors prevail upon the lack of dnaY product. Data presented here for HCcAg and HUIFNalpha2 expressions proved the value of this approach to obtain therapeutic proteins in E. coli.  相似文献   

19.
稀有密码子对proUK基因在大肠杆菌中高表达的影响   总被引:6,自引:0,他引:6  
AGG/AGA密码子在proUK基因中出现的频率高达2%,大肠杆菌中现有的编码tRNAUCU的argU基因不能满足proUK高表达的需要。本文研究了argU基因剂量对proUK表达的影响,结果表明带有argU基因的中等拷贝数质粒能促进proUK基因表达。  相似文献   

20.
AGA and AGG codons for arginine are the least used codons in Escherichia coli, which are encoded by a rare tRNA, the product of the dnaY gene. We examined the positions of arginine residues encoded by AGA/AGG codons in 678 E. coli proteins. It was found that AGA/AGG codons appear much more frequently within the first 25 codons. This tendency becomes more significant in those proteins containing only one AGA or AGG codon. Other minor codons such as CUA, UCA, AGU, ACA, GGA, CCC and AUA are also found to be preferentially used within the first 25 codons. The effects of the AGG codon on gene expression were examined by inserting one to five AGG codons after the 10th codon from the initiation codon of the lacZ gene. The production of beta-galactosidase decreased as more AGG codons were inserted. With five AGG codons, the production of beta-galactosidase (Gal-AGG5) completely ceased after a mid-log phase of cell growth. After 22 hr induction of the lacZ gene, the overall production of Gal-AGG5 was 11% of the control production (no insertion of arginine codons). When five CGU codons, the major arginine codon were inserted instead of AGG, the production of beta-galactosidase (Gal-CGU5) continued even after stationary phase and the overall production was 66% of the control. The negative effect of the AGG codons on the Gal-AGG5 production was found to be dependent upon the distance between the site of the AGG codons and the initiation codon. As the distance was increased by inserting extra sequences between the two codons, the production of Gal-AGG5 increased almost linearly up to 8 fold. From these results, we propose that the position of the minor codons in an mRNA plays an important role in the regulation of gene expression possibly by modulating the stability of the initiation complex for protein synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号