首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intracellular Mg2+ concentration ([Mg2+]i) was measured in rat ventricular myocytes with the fluorescent indicator furaptra (25 degrees C). After the myocytes were loaded with Mg2+, the initial rate of decrease in [Mg2+]i (initial Delta[Mg2+]i/Deltat) was estimated upon introduction of extracellular Na+, as an index of the rate of Na+-dependent Mg2+ efflux. The initial Delta[Mg2+]i/Deltat values with 140 mM [Na+]o were essentially unchanged by the addition of extracellular Ca2+ up to 1 mM (107.3+/-8.7% of the control value measured at 0 mM [Ca2+]o in the presence of 0.1 mM EGTA, n=5). Intracellular loading of a Ca2+ chelator, either BAPTA or dimethyl BAPTA, by incubation with its acetoxymethyl ester form (5 microM for 3.5 h) did not significantly change the initial Delta[Mg2+]i/Deltat: 115.2+/-7.5% (seven BAPTA-loaded cells) and 109.5+/-10.9% (four dimethyl BAPTA loaded cells) of the control values measured in the absence of an intracellular chelator. Extracellular and/or intracellular concentrations of K+ and Cl- were modified under constant [Na+]o (70 mM), [Ca2+]o (0 mM with 0.1 mM EGTA), and membrane potential (-13 mV with the amphotericin-B-perforated patch-clamp technique). None of the following conditions significantly changed the initial Delta[Mg2+]i/Deltat: 1), changes in [K+]o between 0 mM and 75 mM (65.6+/-5.0% (n=11) and 79.0+/-6.0% (n=8), respectively, of the control values measured at 140 mM [Na+]o without any modification of extracellular and intracellular K+ and Cl-); 2), intracellular perfusion with K+-free (Cs+-substituted) solution from the patch pipette in combination with removal of extracellular K+ (77.7+/-8.2%, n=8); and 3), extracellular and intracellular perfusion with K+-free and Cl--free solutions (71.6+/-5.1%, n=5). These results suggest that Mg2+ is transported in exchange with Na+, but not with Ca2+, K+, or Cl-, in cardiac myocytes.  相似文献   

2.
W C Suh  S Leirmo  M T Record 《Biochemistry》1992,31(34):7815-7825
Comparative studies of the effects of Mg2+ vs Na+ and of acetate (OAc-) vs Cl- on the kinetics of formation and dissociation of E. coli RNA polymerase (E sigma 70)-lambda PR promoter open complexes have been used to probe the mechanism of this interaction. Composite second-order association rate constants ka and first-order dissociation rate constants kd, and their power dependences on salt concentration SKa (SKa identical to d log ka/d log [salt]) and Skd (Skd identical to d log kd/d log [salt]), were determined in MgCl2 and NaOAc to compare with the results of Roe and Record (1985) in NaCl. Replacement of NaCl by MgCl2 reduces the magnitude of Ska 2-fold (Ska = -11.9 +/- 1.1 in NaCl; Ska = -5.2 +/- 0.3 in MgCl2) and (by extrapolation) drastically reduces the magnitude of ka at any specified salt concentration (e.g., approximately 10(6)-fold at 0.2 M). Replacement of NaCl by NaOAc does not significantly affect Ska (Ska = -12.0 +/- 0.7 in NaOAc) and (by extrapolation) increased ka by approximately 80-fold at any fixed [Na+]. In the absence of Mg2+, replacement of NaCl by NaOAc is found to increase the half-life of the open complex by approximately 560-fold at fixed [Na+] without affecting Skd [Skd = 7.6 +/- 0.1 in NaOAc; in NaCl, Skd = 7.7 +/- 0.2 (Roe & Record, 1985)]. Replacement of NaCl by MgCl2 drastically reduces both Skd and the half-life of the open complex at any salt concentration below approximately 0.2 M. Strikingly, Skd = 0.4 +/- 0.1 in MgCl2, indicating that the net uptake of Mg2+ ions in the kinetically significant steps in dissociation of the open complex is much smaller than that expected by analogy with the uptake of approximately 8 Na+ ions in the corresponding steps in NaCl. In NaCl/MgCl2 mixtures, at a constant [NaCl] in the range 0.1-0.2 M, initial addition of MgCl2 (0.5 mM less than or equal to [MgCl2] less than or equal to 1 mM) increases the half-life of the open complex; further addition of MgCl2 causes the half-life to decrease, though the effect of [MgCl2] on kd is always less than that predicted by a simple competitive model. The observed effects of MgCl2 on Skd and kd differ profoundly from those expected from the behavior of kd and Skd in NaCl and NaOAc and indicate that the role of Mg2+ in dissociation is not merely that of a nonspecific divalent competitor with RNAP for interactions with DNA phosphates and of a DNA helix-stabilizer, both of which should cause kd to increase monotonically with increasing [Mg2+].(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Dissociated brain cells were isolated from newborn rat pups and loaded with fura-2. These cells were sensitive to low N-methyl-D-aspartate (NMDA) concentrations with EC50 values for NMDA-induced intracellular Ca2+ concentration ([Ca2+]i) increases of approximately 7-16 microM measured in the absence of Mg2+. NMDA-stimulated [Ca2+]i increases could be observed in buffer with Mg2+ when the cells were predepolarized with 15 mM KCl prior to NMDA addition. Under these predepolarized conditions, 100 mM ethanol inhibited 25 microM NMDA responses by approximately 50%, which was similar to the ethanol inhibition observed in buffer without added Mg2+. Ethanol did not alter [Ca2+]i prior to NMDA addition. In the absence of Mg2+, 50 and 100 mM ethanol did not significantly alter the EC50 value for NMDA, but did inhibit NMDA-induced increases in [Ca2+]i in a concentration-dependent manner at 4, 16, 64, and 256 microM NMDA. Whereas NMDA-induced increases in [Ca2+]i were dependent on extracellular Ca2+ and were inhibited by Mg2+, the ability of 100 mM ethanol to inhibit 25 microM NMDA responses was independent of the external Ca2+ or Mg2+ concentrations. Glycine (1, 10, and 100 microM) enhanced 25 microM NMDA-induced increases in [Ca2+]i by approximately 50%. Glycine (1-100 microM) prevented the 100 mM ethanol inhibition of NMDA-stimulated [Ca2+]i observed in the absence of exogenous glycine. MK-801 (25-400 nM) inhibited 25 microM NMDA-stimulated rises in [Ca2+]i in a concentration-dependent manner.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The effect of temperature on the apparent equilibrium constant of creatine kinase (ATP:creatine N-phosphotransferase (EC 2.7.3.2)) was determined. At equilibrium the apparent K' for the biochemical reaction was defined as [formula: see text] The symbol sigma denotes the sum of all the ionic and metal complex species of the reactant components in M. The K' at pH 7.0, 1.0 mM free Mg2+, and ionic strength of 0.25 M at experimental conditions was 177 +/- 7.0, 217 +/- 11, 255 +/- 10, and 307 +/- 13 (n = 8) at 38, 25, 15, and 5 degrees C, respectively. The standard apparent enthalpy or heat of the reaction at the specified conditions (delta H' degree) was calculated from a van't Hoff plot of log10K' versus 1/T, and found to be -11.93 kJ mol-1 (-2852 cal mol-1) in the direction of ATP formation. The corresponding standard apparent entropy of the reaction (delta S' degree) was +4.70 J K-1 mol-1. The linear function (r2 = 0.99) between log10 K' and 1/K demonstrates that both delta H' degree and delta S' degree are independent of temperature for the creatine kinase reaction, and that delta Cp' degree, the standard apparent heat capacity of products minus reactants in their standard states, is negligible between 5 and 38 degrees C. We further show from our data that the sign and magnitude of the standard apparent Gibbs energy (delta G' degree) of the creatine kinase reaction was comprised mostly of the enthalpy of the reaction, with 11% coming from the entropy T delta S' degree term. The thermodynamic quantities for the following two reference reactions of creatine kinase were also determined. [formula: see text] The delta H degree for Reaction 2 was -16.73 kJ mol-1 (-3998 cal mol-1) and for Reaction 3 was -23.23 kJ mol-1 (-5552 cal mol-1) over the temperature range 5-38 degrees C. The corresponding delta S degree values for the reactions were +110.43 and +83.49 J K-1 mol-1, respectively. Using the delta H' degree of -11.93 kJ mol-1, and one K' value at one temperature, a second K' at a second temperature can be calculated, thus permitting bioenergetic investigations of organs and tissues using the creatine kinase equilibria over the entire physiological temperature range.  相似文献   

5.
The effects of Mg2+, K+ and ATP on a H-ATPase activity from a native plasmalemma fraction of oat roots were explored at 20 degrees C and pH 6.5. In the presence of 3 mM ATP and no K+, H-ATPase activity vs. [Mg2+] approached a monotonic activation but it became biphasic, with a decline above 3 mM Mg2+, in the presence of 20 mM K+. Mg2+ inhibition occurred also in K-free solutions when [ATP] was lowered to 0.05 mM. Also, an apparent monotonic H-ATPase activation by [K+] at 3.0 mM ATP was transformed in biphasic (inhibition by high [K+]) when [ATP] was reduced to 0.05 mM. The best fits of the ATP stimulation curves of hydrolysis satisfied the sum of two Michaelian functions where that with higher affinity had lower Vmx. Taking into consideration all conditions of activity assay, the high-affinity component (1) had a Km about 11-16 microM and a Vmx around 0.14-0.28 mumol Pi/mg per min whereas that with lower affinity (2) had a Km of 220-540 microM and a Vmx of 0.5-1.0 mumol Pi/mg per min. Km2 was markedly affected by the [K+] and [Mg2+]; at optimal concentrations of these cations (1 mM Mg2+ and 10 mM K+) it had a value of 235 +/- 24 microM which was increased to 540 +/- 35 microM at 20 mM [Mg2+] and 60 mM [K+]. In addition, Vmx1 was reduced to about a half when the concentrations of Mg2+ and K+ were increased to inhibitory levels. These results could be explained by the existence of two different enzymes or one enzyme with two ATP sites. In the second case, we could not tell at this stage if both are catalytic or one is regulatory.  相似文献   

6.
Hydrostatic pressure can be used to perturb the ribosome-ribosomal subunit equilibrium. We have used glutaraldehyde fixation and subsequent sucrose gradient analysis to determine the equilibrium concentrations of Escherichia coli 70 S, 50 S, and 30 S particles at pressures from 1 to 1400 atm. This method is shown to be sufficiently rapid and free of interfering ribosomal aggregation artifacts when performed at Mg2+ concentrations below 8 mM. We show directly that the E. coli ribosome is in equilibrium with its subunits and that the pressure-sensitive reaction is appropriately described by the expression: In Kp = ln K0 + (P delta V/RT), where Kp and K0 are the equilibrium constants at pressure P and 1 atm, respectively, and delta V is the change in molecular volume that occurs during the reaction. The method provides values for K0 under different conditions, and the effects of Mg2+ ion can be readily ascertained. K0 and delta V were also estimated by a method of fitting computer-generated sucrose gradient profiles to experimental profiles. Determination of delta H0, delta S0, and delta V0 at 5 mM Mg2+ are presented. The results are discussed in the context of previous thermodynamic studies of the E. coli ribosome.  相似文献   

7.
Binding of S-adenosylhomocysteine to hydroxyindole O-methyltransferase   总被引:1,自引:0,他引:1  
Mg2+-selective microelectrodes have been used to measure the intracellular free Mg2+ concentration in frog skeletal muscle fibers. Glass capillaries with a tip diameter of less than 0.4 micron were backfilled with the Mg2+ sensor, ETH 1117. In the absence of interfering ions, they gave Nernstian responses between 1 and 10 mM free Mg2+. In the presence of an ionic environment resembling the myoplasm, the microelectrode response was sub Nernstian (18-24 mV) but still useful. The electrodes were calibrated before and after muscle-fiber impalements . In quiescent fibers from sartorius muscle (Rana pipiens), with resting membrane potentials not less than -82 mV, the intracellular free Mg2+ concentration was 3.8 +/- 0.41 (S.E.) mM (n = 58) at 22 degrees C. No significant change in the intracellular free Mg2+ was observed following extensive (approx. 6 h) incubation in Mg2+-free media. Increasing the external concentration of magnesium from 4 to 20 mM (approx. 15 min) produced a slow and small enhancement (1.8 mM) of [Mg2+]i, which was fully reverted when the divalent cation was removed from the bathing solution. No change in ionic magnesium resting concentration was observed when the muscle fibers were treated either with caffeine 3 mM or with Na+-free solutions. In depolarized muscle fibers (-23 +/- 2.7 mV) treated with 100 mM K+, the myoplasmic [Mg2+] was 3.7 +/- 0.45 (S.E.) mM, n = 6, immediately after the spontaneous relaxation of the contracture. Similar determinations in muscle fibers during stimulation at low frequency (5 Hz), and after fatigue development, showed no changes in the concentration of free cytosolic Mg2+. These results point out that [Mg2+]i is not modified under these three different experimental conditions.  相似文献   

8.
In Retzius neurones of the medicinal leech, Hirudo medicinalis, kainate activates ionotropic glutamate receptors classified as AMPA/kainate receptors. Activation of the AMPA/kainate receptor-coupled cation channels evokes a marked depolarization, intracellular acidification, and increases in the intracellular concentrations of Na+ ([Na+]i) and Ca2+. Qualitatively similar changes are observed upon the application of carbachol, an activator of acetylcholine receptor-coupled cation channels. Using multibarrelled ion-selective microelectrodes it was demonstrated that kainate, but not carbachol, caused additional increases in the intracellular free Mg2+ concentration ([Mg2+]i). Experiments were designed to investigate whether this kainate-induced [Mg2+]i increase was due to a direct Mg2+ influx through the AMPA/kainate receptor-coupled cation channels or a secondary effect due to the depolarization or the ionic changes. It was found that: (a) Similar [Mg2+]i increases were evoked by the application of glutamate or aspartate. (b) All kainate-induced effects were inhibited by the glutamatergic antagonist DNQX. (c) The magnitude of the [Mg2+]i increases depended on the extracellular Mg2+ concentration. (d) A reduction of the extracellular Ca2+ concentration increased kainate-induced [Mg2+]i increases, excluding possible Ca2+ interference at the Mg2+-selective microelectrode or at intracellular buffer sites. (e) Neither depolarizations evoked by the application of 30 mM K+, nor [Na+]i increases induced by the inhibition of the Na+/K+ ATPase caused comparable [Mg2+]i increases. (f) Inhibitors of voltage-dependent Ca2+ channels did not affect the kainate-induced [Mg2+]i increases. Moreover, previous experiments had already shown that intracellular acidification evoked by the application of 20 mM propionate did not cause changes in [Mg2+]i. The results indicate that kainate-induced [Mg2+]i increases in leech Retzius neurones are due to an influx of extracellular Mg2+ through the AMPA/kainate receptor-coupled cation channel. Mg2+ may thus act as an intracellular signal to distinguish between glutamatergic and cholinergic activation of leech Retzius neurones.  相似文献   

9.
BK channels are activated by physiological concentrations of intracellular Ca2+ and Mg2+ in a variety of cells. Previous studies have identified two sites important for high-affinity Ca2+ sensing between [Ca2+]i of 0.1-100 microM and a site important for Mg2+ sensing between [Mg2+]i of 0.1-10 mM. BK channels can be also activated by Ca2+ and Mg2+ at concentrations>10 mM so that the steady-state conductance and voltage (G-V) relation continuously shifts to more negative voltage ranges when [Mg2+]i increases from 0.1-100 mM. We demonstrate that a novel site is responsible for metal sensing at concentrations>=10 mM, and all four sites affect channel activation independently. As a result, the contributions of these sites to channel activation are complex, depending on the combination of Ca2+ and Mg2+ concentrations. Here we examined the effects of each of these sites on Ca2+ and Mg2+-dependent activation and the data are consistent with the suggestion that these sites are responsible for metal binding. We provide an allosteric model for quantitative estimation of the contributions that each of these putative binding sites makes to channel activation at any [Ca2+]i and [Mg2+]i.  相似文献   

10.
The Gibbs-Donnan near-equilibrium system of heart   总被引:3,自引:0,他引:3  
The gradients of the major inorganic ions across the plasma membrane of heart were examined to determine the factors controlling the extent and direction of the changes induced during injury, certain diseases, and electrolyte disturbances. The ionic environment was altered by changing only the concentration of inorganic phosphate, [sigma Pi]o, from 0 to 1.2 to 5 mM in the Krebs-Henseleit buffer perfusing working rat hearts. Raising [sigma Pi]o from 1.2 to 5 mM resulted in a decrease in total Mg2+ content and calculated free cytosolic [Mg2+] from 0.44 to 0.04 mM, conversion of 4 mmol of MgATP2- to ATP4- and a decrease in measured intracellular [Cl-]i from 41 to 16 mM. At all levels of [sigma Pi]o, both the [Na+]i and [K+]i were invariant at about 3 mM and 130 mM, respectively, as was the energy of hydrolysis of the terminal phosphate bond of sigma ATP, delta GATP Hydr, of -13.2 kcal/mol. The relationship maintained between the ions on both sides of the plasma membrane by the 3Na+/2K(+)transporting ATPase (EC 3.6.1.37) and an open K+ channel was: (formula; see text) The energy of the gradients of the other inorganic ions across the plasma membrane, delta G[ion]o/i, exhibited three distinct quanta of energy derived from the prime quantum of delta GATP Hydr of -13.2 kcal/mol. The second quantum was about one-third of delta GATP Hydr or +/- 4.4 kcal/mol and comprised the delta G[Na+]o/i, delta G[Mg2+]o/i, and delta G[HPO42-]o/i. These results indicated near-equilibrium was achieved by the reactants of the 3Na+/2K(+)-ATPase, the K+ channel, the Na(+)-Pi co-transporter, and a postulated net Mg2+/H2PO4- exchanger. The third quantum was one-third of delta G[Na+]o/i or about +/- 1.5 kcal/mol and comprised delta G[H+]o/i, delta G[HCO3-]o/i, and delta G[Cl-]o/i. The delta G[K+]o/i was 0, indicating near-equilibrium between the chemical energy of [K+]o/i and the E across the plasma membrane of -83 mV. It is concluded that the gradients of the major inorganic ions across the plasma membrane and the potential across that membrane constitute a Gibbs-Donnan equilibrium system catalyzed by transport enzymes sharing common substrates. The chemical and electrical energies of those gradients are equal in magnitude and opposite in sign to the chemical energy of ATP hydrolysis.  相似文献   

11.
Intracellular calcium ion ([Ca2+]i) transients were measured in single rat ventricular myocytes with the fluorescent indicator furaptra. Cells were voltage clamped with a single patch electrode containing the K+ salt of furaptra and fluorescence at 500 nm was measured during illumination with 350 and 370 nm light. Depolarizing voltage-clamp pulses elicited [Ca2+]-dependent fluorescent transients in 30 of 33 cells tested. The peak change in [Ca2+]i elicited by 50-ms depolarizations from -70 to +10 mV was 1.52 +/- 0.25 microM (mean +/- SEM, n = 7). The size of the [Ca2+]i transient increased in response to 10 microM isoproterenol, prolongation of the depolarization, and increasing pipette [Na+]. Because furaptra is sensitive to Ca2+ and Mg2+, changes in [Mg2+]i during the [Ca2+]i transient could not be measured. Instead, a single-compartment model was developed to simulate changes in [Mg2+] during [Ca2+] transients. The simulations predicted that a 2 microM [Ca2+] transient was accompanied by a slow increase in [Mg2+] (14-29 microM), which became larger as basal [Mg2+] increased (0.5-2.0 mM). The [Mg2+] transient reached a peak approximately 1 s after the peak of the [Ca2+] transient with the slow changes in [Mg2+] dominated by competition at the Ca2+/Mg2+ sites of Troponin. These changes in [Mg2+], however, were so small and slow that they were unlikely to affect the furaptra fluorescence signal at the peak of the [Ca2+]i transient. The [Ca2+]i transient reported by furaptra appears to be larger than that reported by other Ca2+ indicators; however, we conclude this larger transient is at least as accurate as [Ca2+]i transients reported by the other indicators.  相似文献   

12.
Divalent cations, such as Mg2+, Ba2+, and Co2+, are known to mimic the effects of Ca2+ in parathyroid cells, but it is not clear whether the mechanism of their action is the same as that of Ca2+. We have shown that extracellular Ca2+ concentration ([Ca2+]e) regulates the distribution and recycling of cell-surface heparan sulfate (HS) proteoglycans in a rat parathyroid cell line; at normal to high [Ca2+]e (e.g., 2 mM) HS proteoglycans are primarily localized intracellularly, while at low [Ca2+]e (0.05 mM) they are translocated to the cell surface and rapidly recycle (Takeuchi, Y., Sakaguchi, K., Yanagishita, M., Aurbach, G. D., and Hascall, V. C., 1990, J. Biol. Chem. 265, 13661-13668). We now show that a high concentration of Mg2+ (8 mM) reduces the amount of recycling HS proteoglycans in low [Ca2+]e. However, the primary effects of high Ca2+ and high Mg2+ on the recycling HS proteoglycans are different. High [Ca2+]e causes translocation of HS proteoglycans to intracellular compartments, while high Mg2+ stimulates cleavage of their core proteins and subsequent shedding of HS proteoglycans into the medium, thereby depleting the recycling molecules. However, high Mg2+ does not induce shedding of HS proteoglycans in high [Ca2+]e. The effects of Ba2+ and Co2+ were similar to those of Mg2+, but Sr2+ showed no significant effects on HS proteoglycan translocation. Otherwise, 8 mM Mg2+ did not alter biosynthesis or intracellular catabolism of HS proteoglycans. These observations suggest that the recycling of HS proteoglycans in parathyroid cells is sensitive only to [Ca2+]e, whereas several other divalent cations can deplete the recycling HS proteoglycans by a distinctly different mechanism. Thus, the mechanism by which Ca2+ regulates the amounts of the recycling HS proteoglycans may be more physiological and play a functional role in parathyroid cells.  相似文献   

13.
The steady-state level of phosphorylated intermediate (EP) of (Mg2+ + Ca2+)-ATPase is influenced by magnesium and calcium concentration in the Ca2+-transporting system of sarcoplasmic reticulum vesicles. At micromolar [Ca2+], the level of EP is increased by Mg2+, depending on its concentration. The effect of Mg2+ is less pronounced at lower Ca2+ concentration. At low [Mg2+], the EP formation increases at millimolar concentrations of Ca2+, suggesting, in accordance with earlier results, that the substrate may also be CaATP instead of MgATP. LaCl3 (1 mM) enhanced the EP formation at low Mg2+ concentration. Surprisingly, 10 microM LaCl3 caused a marked decrease in EP formation at high [Mg2+] and had little or no effect on the level of EP at low Mg2+ concentration. The inducing effect of 1 mM LaCl3 on the EP formation at low [Mg2+] and the inhibitory effect of 10 microM LaCl3 at high Mg2+ concentration draw attention to the involvement of divalent cation-binding sites with different affinity in phosphorylation and to the particular role of Mg2+ in the EP formation and EP decomposition.  相似文献   

14.
The block of rabbit skeletal ryanodine receptors (RyR1) and dog heart RyR2 by cytosolic [Mg2+], and its reversal by agonists Ca2+, ATP and caffeine was studied in planar bilayers. Mg2+ effects were tested at submaximal activating [Ca2+] (5 microM). Approximately one third of the RyR1s had low open probability ("LA channels") in the absence of Mg2+. All other RyR1s displayed higher activity ("HA channels"). Cytosolic Mg2+ (1 mM) blocked individual RyR1 channels to varying degrees (32 to 100%). LA channels had residual P(o) <0.005 in 1 mM Mg2+ and reactivated poorly with [Ca2+] (100 microM), caffeine (5 mM), or ATP (4 mM; all at constant 1 mM Mg2+). HA channels had variable activity in Mg2+ and variable degree of recovery from Mg2+ block with Ca2+, caffeine or ATP application. Nearly all cardiac RyR2s displayed high activity in 5 microM [Ca2+]. They also had variable sensitivity to Mg2+. However, the RyR2s consistently recovered from Mg2+ block with 100 microM [Ca2+] or caffeine application, but not when ATP was added. Thus, at physiological [Mg2+], RyR2s behaved as relatively homogeneous Ca2+/caffeine-gated HA channels. In contrast, RyR1s displayed functional heterogeneity that arises from differential modulatory actions of Ca2+ and ATP. These differences between RyR1 and RyR2 function may reflect their respective roles in muscle physiology and excitation-contraction coupling.  相似文献   

15.
The regulation of the intracellular free Mg2+ concentration ([Mg2+]i) was monitored in rat sublingual mucous acini using dual wavelength microfluorometry of the Mg(2+)-sensitive dye mag-fura-2. Acini attached to coverslips and superfused continuously with a Mg(2+)-containing medium (0.8 mM) have a steady-state [Mg2+]i of 0.35 +/- 0.01 mM. Adjusting the extracellular Mg2+ concentration to 0 and 10 mM or removing extracellular Na+ did not alter the resting [Mg2+]i. Stimulation with the Ca(2+)-mobilizing, muscarinic agonist, carbachol, induced a sustained increase in [Mg2+]i (approximately 50%; t1/2 < 20 s; Kd approximately 1.5 microM), the magnitude and the duration of which were unchanged in Mg(2+)-depleted medium indicating that the rise in [Mg2+]i was generated by Mg2+ release from an intracellular Mg2+ pool. Forskolin, which increases the intracellular cAMP content, produced a small, transient increase in the [Mg2+]i (< 10%). Muscarinic stimulation in a Ca(2+)-free medium blunted the initial increase in [Mg2+]i by approximately 50%, whereas the sustained increase in [Mg2+]i was lost. When the muscarinic-induced increase in [Ca2+]i was blocked by 8-(diethylamino)octyl 3,4,5-trimethoxybenzoate, an inhibitor of the agonist-sensitive intracellular Ca2+ release pathway, both the initial and the sustained phases of the increase in [Mg2+]i were virtually eliminated. Thapsigargin and 2,5-di-(terbutyl)-1,4-benzohydroquinone, which increase [Ca2+]i by inhibiting microsomal Ca(2+)-ATPase, caused a dramatic increase in [Mg2+]i. Stimulation in a Na(+)-free medium or in the presence of bumetanide, an inhibitor of Na+/K+/2Cl- cotransport, blunted the agonist-induced rise in [Mg2+]i (approximately 50%), whereas ouabain, a Na+,K(+)-ATPase inhibitor, had no significant effect. FCCP (carbonyl cyanide p-trifluoromethoxyphenylhydrazone), a mitochondrial uncoupler, mobilized an intracellular Mg2+ pool as well. The carbachol-induced increase in [Mg2+]i was markedly inhibited by FCCP (approximately 80%), suggesting that the same pool(s) of Mg2+ were primarily involved. The above results provide strong evidence that Ca(2+)-mobilizing agonists increase cytoplasmic free [Mg2+] by releasing an intracellular pool of Mg2+ that is associated with a rise in the [Na+]i.  相似文献   

16.
Apparent free cytoplasmic concentrations of Mg2+ ([Mg2+]i) and Na+ ([Na+]i) were estimated in rat ventricular myocytes using fluorescent indicators, furaptra (mag-fura-2) for Mg2+ and sodium-binding benzofuran isophthalate for Na+, at 25 degrees C in Ca2+-free conditions. Analysis included corrections for the influence of Na+ on furaptra fluorescence found in vitro and in vivo. The myocytes were loaded with Mg2+ in a solution containing 24 mM Mg2+ either in the presence of 106 mM Na+ plus 1 mM ouabain (Na+ loading) or in the presence of only 1.6 mM Na+ to deplete the cells of Na+ (Na+ depletion). The initial rate of decrease in [Mg2+]i from the Mg2+-loaded cells was estimated in the presence of 140 mM Na+ and 1 mM Mg2+ as an index of the rate of extracellular Na+-dependent Mg2+ efflux. Average [Na+]i, when estimated from sodium-binding benzofuran isophthalate fluorescence in separate experiments, increased from 12 to 31 mM and 47 mM after Na+ loading for 1 and 3 h, respectively, and decreased to approximately 0 mM after 3 h of Na+ depletion. The intracellular Na+ loading significantly reduced the initial rate of decrease in [Mg2+]i, on average, by 40% at 1 h and by 64% at 3 h, suggesting that the Mg2+ efflux was inhibited by intracellular Na+ with 50% inhibition at approximately 40 mM. A reduction of the rate of Mg2+ efflux was also observed when Na+ was introduced into the cells through the amphotericin B-perforated cell membrane (perforated patch-clamp technique) via a patch pipette that contained 130 mM Na+. When the cells were heavily loaded with Na+ with ouabain in combination with intracellular perfusion from the patch pipette containing 130 mM Na+, removal of extracellular Na+ caused an increase in [Mg2+]i, albeit at a very limited rate, which could be interpreted as reversal of the Mg2+ transport, i.e., Mg2+ influx driven by reversed Na+ gradient. Extracellular Na+ dependence of the rate of Mg2+ efflux revealed that the Mg2+ efflux was activated by extracellular Na+ with half-maximal activation at 55 mM. These results contribute to a quantitative characterization of the Na+-Mg2+ exchange in cardiac myocytes.  相似文献   

17.
Fractionated polyuridylic acid with an average chain length of 55 nucleotides forms binary complexes with 30S subunits with a stoichiometry of I:I. These complexes are heterogeneous in stability. The more stable one is characterized by an association constant K2 - 5.5xI09 M-I, and the less stable-by KI = I06xM-I, at 20 mM Mg2+, 200 mM NH4(+) and 0 degrees C. The main reason for this heterogeneity is the presence or absence of the ribosomal protein SI in the presence or absence of the ribosomal protein SI in the subunits. Decrease of Mg2+ concentration down to 5 mM hardly changes the K2 values but reduction of the NH4(+) concentration to 50 mM results in a 25-fold increase of K2. Association constants K2 for the stable complex, i.e. in the presence of SI protein, were measured at different temperatures (0 - 30 degrees C) and the thermodynamic parameters of binding (delta H degrees, delta S degrees, delta G degrees) were determined. Analogous experiments were made with 70S ribosomes. K2 values as well as delta H degrees, delta S degrees, delta G degrees appeared the same both for 30S and 70S ribosomes in all conditions examined. This is strong evidence that the 50S subunits do not contribute to the interaction of poly(U) with the complete 70S ribosomes.  相似文献   

18.
The concentration of intracellular free Ca2+ ([Ca2+]i) was measured in dissociated bovine parathyroid cells using the fluorescent indicator quin-2 or fura-2. Small increases in the concentration of extracellular Ca2+ produced relatively slow, monophasic increases in [Ca2+]i in quin-2-loaded cells, but rapid and transient increases followed by lower, yet sustained (steady-state), [Ca2+]i increases in fura-2-loaded cells. The different patterns of change in [Ca2+]i reported by quin-2 and fura-2 appear to result from the greater intracellular Ca2+-buffering capacity present within quin-2-loaded cells, which tends to damp rapid and transient changes in [Ca2+]i. In fura-2-loaded parathyroid cells, other divalent cations (Mg2+, Sr2+, Ba2+) also evoked transient increases in [Ca2+]i, and their competitive interactions suggest that they all affect Ca2+ transients by acting on a common site. In contrast, divalent cations failed to cause increases in steady-state levels of cytosolic Ca2+. Low concentrations of La3+ (0.5-10 microM) depressed steady-state levels of cytosolic Ca2+ elicited by extracellular Ca2+ but were without effect on transient increases in [Ca2+]i elicited by extracellular Ca2+, Mg2+ or Sr2+, suggesting that increases in the steady-state [Ca2+]i arise from the influx of extracellular Ca2+. Mg2+- and Sr2+-induced cytosolic Ca2+ transients persisted in the absence of extracellular Ca2+ but were abolished by pretreatment with ionomycin. These results show that cytosolic Ca2+ transients arise from the mobilization of cellular Ca2+ from a nonmitochondrial pool. Extracellular divalent cations thus appear to act at some site on the surface of the cell, and this site can be considered a "Ca2+ receptor" which enables the parathyroid cell to detect small changes in the concentration of extracellular Ca2+.  相似文献   

19.
Ca2+ and Mg2+ are important mediators and regulators of intracellular Ca2+ signaling in muscle. The effects of changes of cytosolic [Ca2+] or [Mg2+] on elementary Ca2+ release events were determined, as functions of concentration and time, in single fast-twitch permeabilized fibers of rat and frog. Ca2+ sparks were identified and their parameters measured in confocal images of fluo-4 fluorescence. Solutions with different [Ca2+] or [Mg2+] were rapidly exchanged while imaging. Faster and spatially homogeneous changes of [Ca2+] (reaching peaks >100 microM) were achieved by photolysing Ca NP-EGTA with laser flashes. In both species, incrementing cytosolic [Ca2+] caused a steady, nearly proportional increase in spark frequency, reversible upon [Ca2+] reduction. A greater change in spark frequency, usually transient, followed sudden increases in [Ca2+] after a lag of 100 ms or more. The nonlinearity, lag, and other features of this delayed effect suggest that it requires increase of [Ca2+] inside the SR. In the frog only, increases in cytosolic [Ca2+] often resulted, after a lag, in sparks that propagated transversally. An increase in [Mg2+] caused a fall of spark frequency, but with striking species differences. In the rat, but not the frog, sparks were observed at 4-40 mM [Mg2+]. Reducing [Mg2+] below 2 mM, which should enable the RyR channel's activation (CICR) site to bind Ca2+, caused progressive increase in spark frequency in the frog, but had no effect in the rat. Spark propagation and enhancement by sub-mM Mg2+ are hallmarks of CICR. Their absence in the rat suggests that CICR requires RyR3 para-junctional clusters, present only in the frog. The observed frequency of sparks corresponds to a channel open probability of 10(-7) in the frog or 10(-8) in the rat. Together with the failure of photorelease to induce activation directly, this indicates a basal inhibition of channels in situ. It is proposed that relief of this inhibition could be the mechanism by which increased SR load increases spark frequency.  相似文献   

20.
J Pimmer  E Holler 《Biochemistry》1979,18(17):3714-3723
The association of phenylalanylptRNA and Mg2+ follows a biphasic concentration dependence as indicated by the active site directed fluorescent indicator 2-p-toluidinyl-naphthalene-6-sulfonate. The macroscopic dissociation constants are 0.16 +/- 0.03 and 4.1 +/- mM. The effect of Mg2+ on the association of enzyme and MgATP, on the synergistic binding of MgATP and L-phenylalaninol, and on the pre-steady-state synthesis and pyrophosphorolysis of the enzyme-phenylalanyladenylate complex in the absence and the presence of tRNA Phe has been measured by established equilibrium and stopped-flow techniques using 2-p-toluidinylnaphthalene-6-sulfonate. At 10 mM Mg2+, the association of enzyme and MgATP is biphasic with dissociation constants of 0.25 +/- 0.03 and 9.1 +/- 1.7 mM. At 2 mM Mg2+, a single dissociation constant of 5.0 +/- 0.5 mM is indicated. The coupling constant of the synergistic reaction is 15 at 1 mM Mg2+ and 290 at 10 mM Mg2+. The Hill constant of the sigmoidal dependence is 3.6. The strengthening of the synergism is believed to reflect a Mg2+-dependent coupling of the synergistic reactions at the two active sites of the enzyme, the coupling being negligible at 1 mM and maximal at 10 mM Mg2+. The pre-steady-state rate of adenylate synthesis is accelerated by the presence of Mg2+. The effect is to decrease the value of the Michaelis-Menten constant of MgATP. Another effect is to increase the rate constant when tRNA Phe is present. At subsaturating [MgATP], the [Mg2+] dependence of the observed rate constant is hyperbolical in the absence and sigmoidal (Hill constant, 3.5) in the presence of tRNA Phe. The rate of the pyrophosphorolysis is enhanced by a decrease of the Michaelis-Menten constant of MgPPi. The effects on the thermodynamics and kinetics parallel the occupancy of the low-affinity Mg2+-binding sites of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号