首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
"Beta 2-Interferon/hepatocyte stimulating factor/interleukin-6" (IFN-beta 2) has emerged as a major mediator of the plasma protein response to tissue injury (the acute phase response) in addition to its numerous effects on cells of the immune system. Human fibroblasts and monocytes induced with tumor necrosis factor, interleukin-1, bacterial lipopolysaccharide (endotoxin) or virus infection secrete multiple forms of differentially glycosylated IFN-beta 2 polypeptides: at least a doublet of molecular mass approximately 25 kD and a triplet of mass approximately 30 kD. We report that immunoprecipitation analyses of medium from [32P]orthophosphate- labeled cultures of induced fibroblasts carried out using a rabbit polyclonal antibody to recombinant E. coli-derived human IFN-beta 2 reveal that the secreted gp23-25 and gp28-30 forms of IFN-beta 2 are phosphorylated. IFN-beta 2 gp23-25 secreted by induced monocytes is phosphorylated whereas the monocytic gp28-30 is poorly labeled with [32P]orthophosphate suggesting tissue-specific differences in IFN-beta 2 phosphorylation. Phosphoamino acid analyses indicate that all of the detected phosphate is in phosphoserine residues. Furthermore, IFN-beta 2 can be completely dephosphorylated by alkaline phosphatase (E.C. No. 3.1.3.1); thus all of the phosphate label is in readily accessible sites. These observations suggest the possibility that differential phosphorylation of IFN-beta 2 forms may be a mechanism to modulate its functions in a tissue-specific manner.  相似文献   

3.
IL-6, which is also known as IFN-beta 2, hybridoma growth factor, hepatocyte-stimulating factor, and B cell differentiation factor, mediates acute phase responses including fever, has lymphocyte-stimulating capacities, and antiviral activity. IL-6 is produced by monocytes, fibroblasts, certain lymphocytes, and various tumor cells. The present study demonstrates that this multifunctional cytokine is released also by normal human epidermal cells (EC) and human epidermoid carcinoma cell lines (A431, KB). Accordingly, supernatants derived from freshly isolated EC, long term keratinocyte cultures, A431, or KB cells stimulated the proliferation of a hybridoma growth factor/IL-6-dependent plasmacytoma cell line (B9). IL-6 constitutively was produced in the presence of serum proteins. The addition of IL-1 alpha, IL-1 beta, or the tumor promoter PMA significantly enhanced the synthesis and release of EC-derived IL-6 (EC-IL 6). Like monocyte or fibroblast-derived IL-6, EC-IL-6 exhibited Mr microheterogeneity within 21 and 28 kDa. Similarly in Western blotting experiments an antiserum directed against human rIFN-beta 2/IL-6 detected the different Mr forms of EC-IL-6. Moreover, this antiserum was able to block the B9 cell growth-promoting capacity of EC-IL-6 strongly suggesting that this EC-derived mediator is closely related, if not identical with IL-6. This was further confirmed by Northern blot analysis detecting IL-6 specific mRNA both in long term cultured keratinocytes and A431 cells by hybridization with a cDNA fragment encoding for B cell differentiating factor 2/IL-6. Therefore, in addition to the production of other cytokines as previously reported, EC and in particular keratinocytes also synthesize and release IL-6. This further supports the important regulatory role of the epidermis during the pathogenesis of inflammatory, autoimmune, and neoplastic diseases.  相似文献   

4.
EBV infects human B lymphocytes and induces them to proliferate, to produce Ig, and to give rise to immortal cell lines. Although the mechanisms of B cell activation by EBV are largely unknown, the continuous proliferation of EBV-immortalized B cells is dependent, at least in part, upon autocrine growth factors produced by the same EBV-infected B cells. In the present studies we have examined the influence of monocytes on B cell activation by EBV and found that unlike peripheral blood T cells and B cells, monocytes enhance by as much as 30- to 50-fold virus-induced B cell proliferation and Ig production. Upon activation with LPS, monocytes secrete a growth factor activity that promotes both proliferation and Ig secretion in EBV-infected B cells and thus reproduces the effects of monocytes in these cultures. Unlike a number of other factors, rIFN-beta 2/B cell stimulatory factor 2 (BSF-2)/IL-6 stimulates the growth of human B cells activated by EBV in a manner similar to that induced by activated monocyte supernatants. In addition, an antiserum to IFN-beta that recognizes both IFN-beta 1 and IFN-beta 2 completely neutralizes the B cell growth factor activity of activated monocyte supernatants. These findings demonstrate that IFN-beta 2/BSF-2/IL-6 is a growth factor for human B cells activated by EBV and suggest that this molecule is responsible for B cell growth stimulation induced by activated monocyte supernatants. We have examined the possibility that IFN-beta 2/BSF-2/IL-6 might also be responsible for B cell growth stimulation by supernatants of EBV-immortalized B cells and thus may function as an autocrine growth factor. However, IFN-beta 2/BSF-2/IL-6 is not detectable in supernatants of EBV-immortalized B cells by immunoprecipitation. Also, an antiserum to IFN-beta that neutralizes IFN-beta 2/BSF-2/IL-6 fails to neutralize autocrine growth factor activity. This suggests that autocrine growth factors produced by EBV-immortalized B cells are distinct from IFN-beta 2/BSF-2/IL-6. Thus, the continuous proliferation of EBV-immortalized B cells is enhanced by either autocrine or paracrine growth factors. One of the mediators with paracrine growth factor activity is IFN-beta 2/BSF-2/IL-6.  相似文献   

5.
Conditioned medium from human monocytes contains a partially characterized hepatocyte-stimulating factor that simultaneously elevates the mRNA levels of the acute-phase protein beta-fibrinogen and decreases albumin mRNA in rat hepatoma cells. We demonstrate that recombinant human B-cell stimulatory factor 2, which is identical to interferon-beta 2/26 kDa protein and interleukin-HP1, exhibits the same activity as hepatocyte-stimulating factor. Furthermore, a specific antibody against B-cell stimulatory factor 2 was able to inhibit hepatocyte-stimulating factor in conditioned medium from human monocytes. Our data show that hepatocyte-stimulating factor and B-cell stimulatory factor 2 are functionally and immunologically related proteins.  相似文献   

6.
7.
J D Wolchok  J Vilcek 《Cytokine》1992,4(6):520-527
Expression of HLA class I antigens is known to be regulated by various cytokines at both the mRNA and protein levels. We have examined the induction of HLA-B7 by tumor necrosis factor alpha (TNF), interleukin 1 alpha (IL-1) and interferon beta (IFN-beta) in normal human diploid FS-4 fibroblasts. Optimal induction of HLA-B7 by TNF at 24 h was shown to require a continuous presence of TNF. Since TNF also induces IFN-beta in these cells and the latter cytokine itself has the capacity to upregulate HLA class I expression, we investigated the role of autocrine IFN-beta in the induction of HLA-B7 by TNF. Experiments with neutralizing polyclonal antibodies to recombinant IFN-beta showed that the induction of HLA-B7 mRNA by TNF was partially dependent on autocrine IFN-beta. However, TNF and IFN-beta induced HLA-B7 mRNA with similar kinetics and treatment with saturating concentrations of both TNF and IFN-beta resulted in an additive or possibly synergistic response. The latter findings support the idea that induction of HLA class I by TNF is not mediated solely by autocrine IFN-beta produced in response to TNF. In addition, experiments with the protein synthesis inhibitor cycloheximide suggested that the induction of mRNAs for both the heavy and light (beta 2-microglobulin) chains of the HLA class I antigen by TNF did not require de novo protein synthesis. IL-1 was also shown to increase steady-state mRNA levels of HLA-B7 with kinetics similar to those of TNF and IFN-beta in FS-4 cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
9.
Earlier studies demonstrated the induction of beta 2-interferon (IFN-beta 2) in human diploid fibroblasts (FS-4 strain) exposed to tumor necrosis factor (TNF). These studies suggested that IFN-beta 2 mediates an antiviral effect in TNF-treated cells and exerts a feedback inhibition of the mitogenic effect of TNF. Here we demonstrate that the expression of the antiviral action of TNF can be enhanced by prior exposure of FS-4 cells to trace amounts of IFN-beta 1. IFN-beta 1, at a higher concentration, can directly increase the expression of IFN-beta 2. Exposure of cells to TNF enhanced IFN-beta 2 (but not IFN-beta 1) mRNA expression in response to poly(I).poly(C), an IFN inducer which is also known to stimulate FS-4 cell growth. Platelet-derived growth factor and interleukin-1 also led to the increased expression of IFN-beta 2. However, platelet-derived growth factor and interleukin-1 could override the antiviral effect of TNF and also that of exogenously added IFN-beta 1. Our data suggest that a complex network of interactions that involves the endogenous production of IFN-beta 2 is triggered by several growth-modulatory cytokines. Cellular homeostasis is likely to represent a balance between the induction of IFN-beta 2 by these cytokines and their ability to override the inhibitory actions of IFN-beta 2.  相似文献   

10.
11.
Earlier studies showed that tumor necrosis factor (TNF) exerts a mitogenic effect in human diploid fibroblasts. Here we demonstrate that purified E. coli-derived recombinant human TNF inhibits encephalomyocarditis virus replication in "aged" human fibroblasts. Addition of neutralizing antibodies to human beta interferon (IFN-beta) blocked the antiviral action of TNF, indicating that this action is mediated by the generation of IFN-beta. We also show that antiserum to IFN-beta enhanced the mitogenic effect of TNF in confluent, serum-starved human fibroblasts, suggesting that induction of IFN-beta by TNF represents a physiological negative feedback mechanism regulating cell proliferation. Blot hybridization analysis of cytoplasmic polyadenylated RNA showed that TNF induced IFN-beta 2 mRNA, whereas no induction of IFN-beta 1 mRNA could be demonstrated. The results suggest that IFN-beta 2 has biological functions distinct from the other interferons.  相似文献   

12.
Tumor necrosis factor (TNF), interleukin-1 (IL-1), and epidermal growth factor (EGF) were mitogenic for human diploid FS-4 fibroblasts. Dexamethasone amplified the growth-stimulating action of all three agents. Amplification of the growth-stimulating action was maximal when dexamethasone was added along with TNF or EGF; no amplification was seen if the addition of dexamethasone was delayed for more than 3 hr. Prolonged simultaneous treatment with TNF and EGF resulted in less growth stimulation than treatment with EGF alone. Dexamethasone abolished this apparent antagonistic interaction between TNF and EGF. Dexamethasone also inhibited the antiviral action of TNF against encephalomyocarditis (EMC) virus in FS-4 cells. TNF and IL-1 increased the steady state level of interferon (IFN)-beta 2 mRNA but failed to induce detectable levels of IFN-beta 1 mRNA in FS-4 cells. Dexamethasone inhibited the increase of IFN-beta 2 mRNA levels by IL-1 or TNF. Inhibition of IFN-beta synthesis is likely to be responsible for the inhibition of the TNF-induced antiviral state by dexamethasone. Since IFNs suppress cell growth, inhibition of endogenous IFN-beta synthesis may also be responsible for the amplification by dexamethasone of the growth-stimulating action of TNF and IL-1. Amplification of the mitogenic action of EGF by dexamethasone appears to be mediated by different mechanism.  相似文献   

13.
14.
The cytokine IFN-beta 2/IL-6 has emerged as an important means of communication between cells--both within the immune system as well as outside it. In exploring the link between the endocrine and the immune systems, we have studied the secretion of IFN-beta 2/IL-6 by freshly explanted human endometrial stromal cells and its modulation by estrogens. Endometrial stromal cells produced IFN-beta 2/IL-6 in response to other inflammation-associated cytokines such as IL-1 alpha or beta, TNF, and IFN-gamma. This secretion was strongly inhibited by estradiol-17 beta at concentrations as low as 10(-9) M. Multiple species of stromal cell IFN-beta 2/IL-6 in the size range 23 to 30 kDa were detected using immunoprecipitation or immunoblotting procedures. The endometrial stromal cell IFN-beta 2/IL-6 species were phosphorylated and differentially glycosylated in a manner comparable to IFN-beta 2/IL-6 secreted by induced human peripheral blood monocytes or foreskin fibroblasts. However, in contrast to peripheral blood monocytes and fibroblasts, bacterial LPS did not induce IFN-beta 2/IL-6 production in endometrial stromal cells. Additionally, the IFN-beta 2/IL-6 identified in medium from IL-1 alpha-induced stromal cells is biologically active on hepatocytes. These observations, taken together with the observation that IFN-beta 2/IL-6 strongly inhibits the proliferation of human epithelial cells, suggest the possibility that stromal cell secreted IFN-beta 2/IL-6 may affect the physiology of the overlying epithelium in an hormonally modulated manner. Estrogen-regulated production of endometrial IFN-beta 2/IL-6 may participate in gender-specific systemic immunomodulation.  相似文献   

15.
16.
The regulation of the three major acute-phase proteins alpha 2-macroglobulin, cysteine proteinase inhibitor and alpha 1-antitrypsin by recombinant human interleukin-1 beta, recombinant human interleukin-6 and recombinant human tumor necrosis factor alpha was studied in rat hepatocyte primary cultures. Synthesis and secretion of the acute-phase proteins was measured after labeling with [35S]methionine and immunoprecipitation. Incubation of hepatocytes with interleukin-6 led to dose-dependent and time-dependent changes in the synthesis of the three major acute-phase proteins and albumin, similar to those occurring in vivo during experimental inflammation. alpha 2-Macroglobulin and cysteine proteinase inhibitor synthesis was induced 54-fold and 8-fold, respectively, 24 h after the addition of 100 units/ml interleukin-6. At the same time synthesis of the negative acute-phase protein albumin was reduced to 30% of controls. Half-maximal effects were achieved with 4 units interleukin-6/ml. Interleukin-1 beta had only a partial effect on the regulation of the four patients studied: only a twofold stimulation of alpha 2-macroglobulin and a 60% reduction of albumin synthesis were observed. Tumor necrosis factor alpha did not alter the synthesis of acute-phase proteins. The stimulation of alpha 2-macroglobulin and cysteine proteinase inhibitor synthesis by interleukin-6 was inhibited by interleukin-1 beta in a dose-dependent manner. In pulse-chase experiments the effect of interleukin-1 beta, interleukin-6 and tumor necrosis factor alpha on the secretion of acute-phase proteins was examined. Interleukin-6 markedly accelerated the secretion of total proteins and alpha 2-macroglobulin, whereas the secretion of cysteine proteinase inhibitor, alpha 1-antitrypsin and albumin was not affected. The inhibition of N-glycosylation by tunicamycin abolished the effect of interleukin-6 on the secretion of alpha 2-macroglobulin, indicating a possible role of interleukin-6 on N-glycosylation.  相似文献   

17.
The macrophage proinflammatory response to Francisella tularensis (Ft) live vaccine strain (LVS) was shown previously to be TLR2 dependent. The observation that intracellular Ft LVS colocalizes with TLR2 and MyD88 inside macrophages suggested that Ft LVS might signal from within the phagosome. Macrophages infected with LVSDeltaiglC, a Ft LVS mutant that fails to escape from the phagosome, displayed greatly increased expression of a subset of TLR2-dependent, proinflammatory genes (e.g., Tnf) but decreased expression of others (e.g., Ifnb1). This latter subset was similarly mitigated in IFN-beta(-/-) macrophages indicating that while Ft LVS-induced TLR2 signaling is necessary, cytosolic sensing of Ft to induce IFN-beta is required for full induction of the macrophage proinflammatory response. Although LVSDeltaiglC greatly increased IL-1beta mRNA in wild-type macrophages, protein secretion was not observed. IL-1beta secretion was also diminished in Ft LVS-infected IFN-beta(-/-) macrophages. rIFN-beta failed to restore IL-1beta secretion in LVSDeltaiglC-infected macrophages, suggesting that signals in addition to IFN-beta are required for assembly of the inflammasome and activation of caspase-1. IFN-beta plays a central role in controlling the macrophage bacterial burden: bacterial recovery was greater in IFN-beta(-/-) than in wild-type macrophages and treatment of Ft LVS-infected macrophages with rIFN-beta or 5,6-dimethylxanthenone-4-acetic acid, a potent IFN-beta inducer, greatly decreased the intracellular Ft LVS burden. In toto, these observations support the hypothesis that the host inflammatory response to Ft LVS is complex and requires engagement of multiple signaling pathways downstream of TLR2 including production of IFN-beta via an unknown cytosolic sensor and activation of the inflammasome.  相似文献   

18.
Synthesis of gp115 by aorta smooth muscle cells and tendon fibroblasts isolated from chick embryos was investigated. gp115 was specifically immunoprecipitated by both polyclonal and monoclonal antibodies from cell lysates and culture medium of matrix free cells metabolically labeled with [3H]leucine and [35S]methionine. The component of gp115 isolated from the cell lysate had an apparent Mr in reduced sodium dodecyl sulfate polyacrylamide gels lower (105,000) than the protein isolated from the culture medium (Mr = 115,000). In immunoblot experiments, the latter corresponded in apparent Mr to the form isolated from chick tissues. gp115 was glycosylated in vitro; it was labeled with [3H]fucose, and when cells were cultured and labeled in the presence of tunicamycin, a lower Mr form with an apparent Mr = 90,000 was immunoprecipitated in both the cell lysate and the culture medium. In pulse-chase experiments, the intracellular and the extracellular forms were clearly suggestive of a direct precursor-product relationship in the absence of intermediate forms. The kinetics of secretion appeared very slow compared with that of other proteins of the extracellular matrix investigated in the same system; about 50-70% of gp115 in the form of the Mr = 105,000 species was still cell-associated after 4 h, whereas the half-time for secretion of fibronectin, type VI collagen, and tropoelastin was about 60 min, 3 h, and 60 min, respectively. Newly synthesized and processed cell-associated gp115 migrated in both reduced and non-reduced gels as a monomer. On the contrary, the secreted protein was present in the culture medium as large aggregates that did not enter the gel in the absence of reducing agents.  相似文献   

19.
Platelets play an important role in hemostasis, thrombosis, and antimicrobial host defense and are also involved in the induction of inflammation, tissue repair, and tumor metastasis. We have previously characterized the platelet aggregation-inducing sialoglycoprotein (Aggrus/gp44) overexpressed on the surface of tumor cells. Because a platelet aggregation-neutralizing 8F11 monoclonal antibody that could specifically recognize Aggrus suppressed tumor-induced platelet aggregation, we have previously purified Aggrus by 8F11-affinity chromatography and found that purified Aggrus possessed the ability to induce aggregation of platelets. Here we show that Aggrus is identical to the T1alpha/gp38P/OTS-8 antigen, the function of which in tumors is unknown. Expression of mouse Aggrus and its human homologue (also known as T1alpha-2/gp36) induced platelet aggregation without requiring plasma components. Using the 8F11 antibody, we identified the highly conserved platelet aggregation-stimulating domain with putative O-glycosylated threonine residues as the critical determinant for exhibiting platelet aggregation-inducing capabilities. We compared the expression level of human aggrus mRNA using an array containing 160 cDNA pair samples derived from multiple human tumorigenic and corresponding normal tissues from individual patients. We found that expression level of aggrus was enhanced in most colorectal tumor patients. To confirm the protein expression, we generated anti-human Aggrus polyclonal antibodies. Immunohistochemical analysis revealed that Aggrus expression was frequently up-regulated in colorectal tumors. These results suggest that Aggrus/T1alpha is a newly identified, platelet aggregation-inducing factor expressed in colorectal tumors.  相似文献   

20.
Biosynthesis of the receptor for epidermal growth factor was investigated in two human tumor-derived cell lines, Hep 3B and A431. When grown in the presence of tunicamycin, both cells expressed a receptor-related species p135, the presumptive aglycosylated form of the biosynthetic precursor, gp145, of the mature form of the receptor, gp165, expressed at the cell surface. Two additional receptor-related species, p115 and p70, were detected when A431, but not Hep 3B, cells were treated with tunicamycin. Furthermore, digestion of the A431 receptor-related proteins with endoglycosidase F resulted in the detection of these three aglycosylated species. P70 appears to be the aglycosylated form of gp95, the presumptive intracellular precursor of the receptor-related species gp120 that is secreted by A431 but not Hep 3B cells; gp120 has a complex pattern of N-linked glycosylation, with consequent molecular weight and charge heterogeneity. P115 may be the aglycosylated form of a third biosynthetic intermediate, possibly a gp135 species detected in the early time points of pulse-chase labeling. Alternatively, p115 and gp135 may be derived co- or post-translationally by Ca2+-mediated proteolysis from p135 and gp145, respectively. The implications of the complexity of the biosynthesis of this molecule with regard to the multiple opportunities it affords the cell to modulate cell proliferation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号