首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Goal, Scope and Background  This paper is the second part of the publication which is devoted to comparative LCA analysis of the industrial pumps. The previous paper deals with the methodological aspects concerning quality assessment and forms an independent work. This paper uses practically only the methodological suggestions made there. The main aim of the presented study is to make a comparison between the industrial pumps which are based on two different technologies. The Life Cycle Assessment method is used to check whether the differences of the manufacturing processes influence the level of the potential environmental impact during the whole life cycle of the analysed products. Methods  The Life Cycle Assessment is carried out using the Ecoindicator99 method. Additionally, an extensive quality analysis of the LCA study is made (Part I). To make the process of an identification of the data easier and faster, they are assigned to a special data documentation form. To ensure the credibility of the LCA results different methods of interpretation are used. Results and Discussion  The LCA analysis shows clear superiority of the pumps manufactured using modern technology. It seems that this superiority results not only from the differences in the emissions, but also from different characteristics of effectiveness in the usage stage. Thanks to the uncertainty analysis, each LCA result is provided with the range of uncertainty. Conclusions  The LCA results are supported by different techniques of interpretation: the sensitivity-, the contribution-, the comparative-, the discernability- and the uncertainty analysis. There is strong evidence of the superiority of the pumps based on the modern technology. Recommendations and Outlook  The main source of the environmental impact in the case of pumps is the usage stage and the consumption of energy. That is why it should be the main area to improve. The LCA results show that actions taken in the usage stage and energy consumption can lead to a considerable reduction of the environmental impacts.  相似文献   

2.
Intention, Goal, Scope, Background It has gained growing acceptance in recent years that there are values in LCA, and several authors have discussed how value orientations can influence LCA models and results. The aim of this article is to continue this discussion and to focus on value choices in LCA. Objectives To find a way of describing value orientations in relation to choices in LCA. Methods This objective has been pursued in this paper by investigating the relationship between values and traditional science, exploring the concept of values, investigating the relationship between values and choice, and suggesting a way to describe the value base for specific choices in LCA. Results and Discussion Research on how to improve the environmental performance of products resembles peace research in that it aims to achieve a certain value-laden situation in society. The epistemological basis for peace research also seems to apply to LCA research. The term value has many meanings. There are several classification methods for values and I claim that one is more suitable for choices in LCA than the others. The correlation between values and choice is not straightforward, and values can only partially explain choices. Conclusions Describing the value base for choices in LCA increases the consistency and transparency of the value choices and offers a means of justifying them. Recommendations and Outlook It is recommended that the value base is described in terms of 1) what is included in the concern for the environment 2) how tradeoffs are made and 3) how uncertainty is handled.  相似文献   

3.
Background, Goal and Scope  For the life cycle assessment (LCA) tool to provide maximum benefit for decision makers, the uncertainty of its results should be reported. Several methods for assessing uncertainty have been developed, but despite recent efforts, there remains disagreement about their merits. Objectives  The objectives of the study were to review several assessment methods for estimating numerical and qualitative uncertainty of impact scores and recommend an appropriate uncertainty assessment scheme. The methods review has been conducted on the basis of an LCA case study regarding the comparison of the use of either brown or black coals in Australian electricity generation. Results and Discussion  Each assessment method indicated greater uncertainty in the impact scores calculated for black coal use than for brown coal use. Due to overlap of the uncertainty ranges in calculated impact scores neither of the coals could be regarded environmentally preferred. Conclusions  Both qualitative and quantitative methods were found to provide useful information about the uncertainty of calculated impact scores for the case study. Methods that combine qualitative and quantitative uncertainty provided no additional benefits, and obscured much of the information gained from using qualitative methods. Recommendation and Outlook  It is recommended that LCA results should include separate numerical (using Monte-Carlo simulation) and qualitative uncertainty assessments. When the ranges of calculated impact scores for compared options overlap, the normalised difference method is recommended.  相似文献   

4.

Background and Objective

. Values in the known weighting methods in Life Cycle Assessment are mostly founded by the societal systems of developed countries. What source of weights and which weighting methods are reliable for a big developing country like China? The purpose of this paper is to find a possible weighting method and available data that will work well for LCA practices conducted in China. Since government policies and decisions play a leading role in the process of environmental protection in developing countries, the weights derived from political statements may be a consensus by representatives of the public.

Methods

'Distance-to-political target' principle is used in this paper to derive weights of five problem-oriented impact categories. The critical policy targets are deduced from the environmental policies issued in the period of the Ninth Five-year (1996-2000) and the Tenth Five-year (2001-2005) Plan for the Development of National Economy and Society of China. Policy targets on two five-year periods are presented and analyzed. Weights are determined by the quotient between the reference levels and target levels of a certain impact category.

Results and Discussion

Since the Tenth Five-year Plan put forward the overall objective to reduce the level of regional pollution by 2005, the weights for AP, EP and POCP for 2000-2005 are more than 1. By comparison between the Ninth Five-year and Tenth Five-year period, the results show that the weights obtained in this paper effectively represent Chinese political environmental priorities in different periods. For the weights derived from China's political targets for the overall period 1995-2005, the rank order of relative importance is ODP>AP>POCP>EP>GWP. They are recommended to the potential users for the broader disparity among the five categories. By comparison with the weights presented by the widespread EDIP method, the result shows that there's a big difference in the relative importance of ozone depletion and global warming.

-

In conclusion, the weighting factors and rank order of impact categories determined in this study represent the characteristics of the big developing country. The derived weighting set can be helpful to LCA practices of products within the industrial systems of China.
  相似文献   

5.
Applications of information and communications technology (ICT) for the management of environmental data, if used during the design and at the end of the product life cycle, can improve the environmental performance of products. This specific application of ICT for data management is called product data technology (PDT) and is based on the use of international standards developed by ISO TC184/SC4. PDT enables the computerized representations of information about products, processes, and their properties that are independent of any proprietary computer system or software application. The standard product data models are designed to integrate the necessary information about materials used in the product, and such information can be accessed and used at any point in the life cycle, from design to disposal. In the article, we present how PDT can support life cycle assessment (LCA) by focusing on a series of standards for communicating data for design and manufacture and standards for business and commercial information. Examples of possibilities for using PDT and semantic web for LCA data are introduced. The findings presented here are based on DEPUIS (Design of Environmentally‐Friendly Products Using Information Standards), a project aimed at improving the eco‐design of new products and services through the innovative use of new information standards.  相似文献   

6.
7.
    
Government agencies, companies, and other entities are using environmental assessments, like life cycle assessment (LCA), as an input to decision‐making processes. Communicating the esoteric results of an LCA to these decision makers can present challenges, and interpretation aids are commonly provided to increase understanding. One such method is normalizing results as a means of providing context for interpreting magnitudes of environmental impacts. Normalization is mostly carried out by relating the environmental impacts of a product (or process) under study to those of another product or a spatial reference area (e.g., the United States). This research is based on the idea that decision makers might also benefit from normalization that considers comparisons to their entity's (agency, company, organization, etc.) total impacts to provide additional meaning and aid in comprehension. Two hybrid normalization schemes have been developed, which include aspects of normalization to both spatially based and entity‐based impacts. These have been named entity‐overlaid and entity‐accentuated normalization, and the schemes allow for performance‐based planning or emphasizing environmental impact types that are most relevant to an entity's operational profile, respectively. A hypothetical case study is presented to demonstrate these schemes, which uses environmental data from a U.S. transportation agency as the basis for entity normalization factors. Results of this case study illustrate how entity‐related references may be developed, and how this additional information may enhance the presentation of LCA results using the hybrid normalization schemes.  相似文献   

8.
中国生命周期评价理论与实践研究进展及对策分析   总被引:6,自引:0,他引:6       下载免费PDF全文
王玉涛  王丰川  洪静兰  孙明星 《生态学报》2016,36(22):7179-7184
主要分析了我国生命周期评价的理论与实践研究进展与数据库构建现状,针对当前我国生命周期评价理论与应用研究的关键薄弱环节即不确定性分析、本土化数据库构建、本土化生命周期环境影响评价模型构建,指出了利用泰勒系列展开模型进行符合我国产业链生产现状的精确、完整、具有代表性、具有时空动态特征的生命周期数据库构建的必要性;并指出需要根据我国国情(例如:环境、地理、人口、暴露等)来构建生命周期环境影响评价模型的紧迫性。  相似文献   

9.
There is a strong need for methods within life cycle assessment (LCA) that enable the inclusion of all complex aspects related to land use and land use change (LULUC). This article presents a case study of the use of one hectare (ha) of forest managed for the production of wood for bioenergy production. Both permanent and temporary changes in above‐ground biomass are assessed together with the impact on biodiversity caused by LULUC as a result of forestry activities. The impact is measured as a product of time and area requirements, as well as by changes in carbon pools and impacts on biodiversity as a consequence of different management options. To elaborate the usefulness of the method as well as its dependency on assumptions, a range of scenarios are introduced in the study. The results show that the impact on climate change from LULUC dominates the results, compared to the impact from forestry operations. This clearly demonstrates the need to include LULUC in an LCA of forestry products. For impacts both on climate change and biodiversity, the results show large variability based on what assumptions are made; and impacts can be either positive or negative. Consequently, a mere measure of land used does not provide any meaning in LCA, as it is not possible to know whether this contributes a positive or negative impact.  相似文献   

10.
    
Life cycle assessment (LCA) has only had limited application in the geotechnical engineering discipline, though it has been widely applied to civil engineering systems such as pavements and roadways. A review of previous geotechnical LCAs showed that most studies have tracked a small set of impact categories, such as energy and global warming potential. Accordingly, currently reported environmental indicators may not effectively or fully capture important environmental impacts and tradeoffs associated with geotechnical systems, including those associated with land and soil resources. This research reviewed previous studies, methods, and models for assessment of land use and soil‐related impacts to understand their applicability to geotechnical LCA. The results of this review show that critical gaps remain in current knowledge and practice. In particular, further development or refinement of environmental indicators, impact categories, and cause–effect pathways is needed as they pertain to geotechnical applications—specifically those related to soil quality, soil functions, and the ecosystem services soils provide. In addition, many existing methods emerge from research on land use and land use change related to other disciplines (e.g., agriculture). For applicability to geotechnical projects, the resolution of many of these methods and resulting indicators need to be downscaled from the landscape/macro scale to the project scale. In the near term, practitioners of geotechnical LCA should begin tracking changes to soil properties and report impacts to land and soil resources qualitatively.  相似文献   

11.
One of the most important problems today is the scarcity of fresh water safe enough for human, industrial, and agricultural use. Desalination is an alternative source of fresh water supply in areas with severe problems of water availability. Desalination plants generate a huge amount of brine as the main residual from the plant (about 55% of collected seawater). Because of that, it is important to determine the best environmental option for the brine disposal. This article makes a global environmental analysis, under Spanish conditions, of a desalination plant and an environmental assessment of different final brine disposals, representing a range of the most common alternatives: direct disposal, wastewater treatment plant (WWTP) outflow dilution, and dilution with seawater. The environmental profile of the plant operation and a comparison of the brine final disposal alternatives were established by means of the life cycle assessment (LCA) methodology. From an analysis of the whole plant we observed that the highest environmental impact was caused by energy consumption, especially at the reverse osmosis stage, while the most relevant waste was brine. From an analysis of brine final disposal we have elaborated a comparison of the advantages and detriments of the three alternatives. As all of them might be suitable in different specific situations, the results might be useful in decisions about final brine disposal.  相似文献   

12.

Goal, Scope and Background

This paper presents a new LCA method of technology evolution (TE-LCA), and its application to the production of ammonia, the second largest chemical product in the world, over the last fifty years. The TE-LCA of a chemical process is the procedure in which historical information on a process, mainly the evolution of technical parameters, is translated by simulation to mass and energy balances as a function of time. These mass and energy balances are then transformed into environmental impact indicators using common LCA approaches. Finally, the evolution of environmental impact resulting from the investigated process can be related to its technical and other, i.e. legislative, developments.

Methods

The technological evolution of the production of ammonia was compiled according to three basic sources of information: patents, publications and industry data. From these sources in a first step, the major technological advances of the process were identified as a function of time delivering different process variants that were modelled using the simulation software Aspen Plus®. In a second step, the evolution of environmental regulations is studied. For those energy related emissions that were regulated, e.g. SOx and NOx, it was assumed that threshold values defined in legislation were realized immediately. The aggregation of both steps allows the calculation of the emissions resulting from the production (cradle to gate view) of the investigated chemical as a function of time.

Results and Discussion

The application of the TE-LCA to the production of ammonia revealed when and to which extent technological and legislative developments resulted in the reduction of energy related emissions in the production of this chemical compound. Overall, the reduction of emissions from ammonia production was highly influenced by the technological development and only to a lower extent by environmental regulations.

Conclusion

The results obtained from the TE-LCA method is useful to reveal how the environmental performance of a process developed in the past and to identify the reasons for this development. The investigated case study of ammonia production shows that investment in technological development also paid off in terms of being ahead of tightened environmental legislation that might bear potential cost consequences such as carbon dioxide tax.

Outlook

The presented method can be easily extended by including an economic analysis, which provides additional information on why certain technological developments were enforced and which the economic consequences of changes in environmental legislation were. The new methodology has to be applied to additional case studies, i.e. to other chemical sectors than basic chemicals and to other branches than chemicals. In other chemical sectors, toxic emissions from the production process might have to be considered and trade-offs between these and the overall energy consumption might result.  相似文献   

13.
Zinc oxide (ZnO) polycrystalline ceramics are the focal point of lightning arrester technology. These semiconductor materials are able to switch rapidly from high to low impedance while handling large amounts of electrical energy. Since the early 1970s, considerable efforts have been made to improve the specific energy absorption capacity and device reliability of such components. This document describes a case study carried out on the life cycle impacts of three different designs of electroceramics made of ZnO. Results show that the best design involves decreasing the diameter while maintaining the thickness of the compound. Of the production, transport, use, and end‐of‐life phases, the use phase is found to contribute by far the most to environmental impacts, with leakage currents in the 10?6 ampere range. The next‐largest impacts come in the transport and production stages. Sensitivity analysis shows that impacts associated with the production stage originate from ZnO production and are related to the by‐products (heavy metals) of zinc metallurgy.  相似文献   

14.
In view of recent studies of the historical development and current status of industrial symbiosis (IS), life cycle assessment (LCA) is proposed as a general framework for quantifying the environmental performance of by‐product exchange. Recent guidelines for LCA (International Reference Life Cycle Data System [ILCD] guidelines) are applied to answer the main research questions in the IS literature reviewed. A typology of five main research questions is proposed: (1) analysis, (2) improvement, and (3) expansion of existing systems; (4) design of new eco‐industrial parks, and (5) restructuring of circular economies. The LCA guidelines were found useful in framing the question and choosing an appropriate reference case for comparison. The selection of a correct reference case reduces the risk of overestimating the benefits of by‐product exchange. In the analysis of existing systems, environmentally extended input‐output analysis (EEIOA) can be used to streamline the analysis and provide an industry average baseline for comparison. However, when large‐scale changes are applied to the system, more sophisticated tools are necessary for assessment of the consequences, from market analysis to general equilibrium modeling and future scenario work. Such a rigorous application of systems analysis was not found in the current IS literature, but would benefit the field substantially, especially when the environmental impact of large‐scale economic changes is analyzed.  相似文献   

15.
This article describes an approach developed to estimate the environmental external costs of the Belgian building sector. Several existing methods and related data sets for determining the monetary value of environmental impacts were reviewed and compared in light of their relevance to an impact assessment of the construction sector. This study concludes that the methods available consider different impacts and differ substantially in monetary values for identical impacts. A harmonized and transparent method is recommended to improve the feasibility and acceptance of internalizing external costs; agreement on the impacts to be assessed and their external costs based on current insights is important. Here, a new method is proposed for a life cycle impact assessment‐based valuation of environmental external costs for application to the Belgian building sector. To enable a comprehensive assessment, it became clear that solely considering “key” pollutants is insufficient. Although this article focuses on the development and not on the implementation of the method proposed, implementation revealed that the life cycle environmental external cost of new buildings (meeting current insulation standards or better) is relatively small compared to the life cycle financial cost.  相似文献   

16.
Goal, Scope and Background  An extensive life cycle inventory of the maintenance of floor coverings has been carried out for the professional cleaning sector in Sweden. Different maintenance methods for linoleum and PVC were inventoried. The objective has been to develop a model for estimating the resource use in the Swedish professional floor cleaning and maintenance sector. Several important actors involved in the Swedish professional cleaning sector participated in the inventory. An agreement could be reached for a limited number of methods and products. The result can be regarded as representative for the maintenance of linoleum and PVC in respect to professional maintenance in Sweden. Methods, Results and Discussion  The maintenance was divided into two different types: periodical and frequent maintenance. It showed that 36 maintenance systems were relevant (each system is a combination of periodical and frequent maintenance) and that the expected impacts from maintenance could be found through an inventory of these 36 systems. The resource use for each system was inventoried and pertaining LCI data was collected. However, it showed that the resource use for the maintenance systems could not be quantified without estimating three so called ‘application-specific context parameters’, which were not depending on the maintenance system but related to the specific type of premises. The three parameters were: the frequency of the periodical maintenance (P); the frequency of the frequent maintenance (P), and; the estimated service life (L) of the floor covering. The prediction of a specific resource use for maintenance of a specific floor covering could thereby not be carried out without the knowledge of the three application-specific parameters. However, all collected data were supplied to a specifically developed calculation program, which made it possible to estimate the impact from the 36 maintenance systems for different choices of estimated service life and maintenance intervals for the periodical and frequent maintenance. Approximately 1300 different scenarios were provided, using different values for F, P and L, respectively, and compared in order to answer several questions of concern to the professional cleaning sector in Sweden. Conclusions  Some of the most important conclusions generated from the scenarios were: The impacts from maintenance proved to be significant compared to the impacts from the floor. In several cases, wax-based systems turned out to be preferable to polish systems. However, the result is sensitive to the chosen cleaning method. When polish systems are chosen, the choice of floor covering may influence the usage phase in a significant way. Recommendation and Outlook  A framework has been provided as a base for further development. Possibly, the data could be improved and supplied with data of other products and materials. Even other types of floor coverings may be considered. The focus has primarily been on energy use and emission of chemicals recorded as dry substance. It is desirable with a development of a method for quantitative assessment of the actual chemicals.  相似文献   

17.
As governments elaborate strategies to counter climate change, there is a need to compare the different options available on an environmental basis. This study proposes a life cycle assessment framework integrating the Lashof accounting methodology, which enables the assessment and comparison of different carbon mitigation projects (e.g., biofuel use, a sequestering plant, an afforestation project). The Lashof accounting methodology is chosen amid other methods of greenhouse gas (GHG) emission characterization for its relative simplicity and capability to characterize all types of carbon mitigation projects. Using the unit of megagram‐year (Mg‐year), which accounts for the mass of GHGs in the atmosphere multiplied by the time it stays there, the methodology calculates the cumulative radiative forcing caused by GHG emission within a predetermined time frame. Basically, the developed framework uses the Mg‐year as a functional unit and isolates impacts related to the climate mitigation function with system expansion. The proposed framework is demonstrated with a case study of tree ethanol pathways (maize, sugarcane, and willow). The study shows that carbon mitigation assessment through life cycle assessment is possible and that it could be a useful tool for decision makers, as it can compare different projects regardless of their original context. The case study reveals that system expansion, as well as each carbon mitigation project's efficiency at reducing carbon emissions, are critical factors that have a significant impact on the results. Also, the framework proves to be useful for treating land‐use change emissions, as they are considered through the functional unit.  相似文献   

18.
Modular construction practices are used in many countries as an alternative to conventional on‐site construction for residential homes. While modular home construction has certain advantages in terms of material and time efficiency, it requires a different infrastructure than conventional home construction, and the overall environmental trade‐offs between the two methods have been unclear. This study uses life cycle assessment to quantify the environmental impacts of constructing a typical residential home using the two methods, based on data from several modular construction companies and conventional homebuilders. The study includes impacts from material production and transport, off‐site and on‐site energy use, worker transport, and waste management. For all categories considered, the average impacts of building the home are less for modular construction than for conventional construction, although these averages obscure significant variation among the individual projects and companies.  相似文献   

19.
Goal, Scope and Background Whilst initially designed for industrial production systems, environmental life cycle assessment (LCA) has recently been increasingly applied to agriculture and forestry projects. Several authors suggested that the standard LCA methodology needs to be refined to cover the particularities of agri- and silvicultural production systems. Until now, water quantity received little attention in these methodological revisions, notwithstanding the well-known impact of agriculture and forestry on issues like water availability, drought and flood risk. This paper proposes an add-on to existing LCA methods in the form of an indicator set that integrates water quantity impacts of agri- and silvicultural production. Method First, system boundaries are discussed in order to identify the water flows between the production system and the environment. These flows are attributed to impact categories, linked to environmental burdens and to the areas of protection. Appropriate indicators are selected for each potential burden. Results and Discussion At the present, two input related impact categories deal with water quantity: Abiotic resource depletion and land use. The list of output related impact categories presented by Udo de Haes et al. (1999) does not include water quantity impacts like flood and drought risk. A new impact category “regional water balance” is introduced to cover these risks. Exceedance probabilities are used as indicators for these temporal variations in streamflow. Conclusion and Outlook The method presented in this paper can bring a life cycle assessment closer to real world concerns. The main drawback, however, is the increasing data requirement that might hinder the feasibility of the method. Future research should focus on this problem, for instance by applying a relatively simple numerical model that can calculate the indicator scores from more easily accessible data.  相似文献   

20.
Goal, Scope and Background Exergy has been put forward as an indicator for the energetic quality of resources. The exergy of a resource accounts for the minimal work necessary to form the resource or for the maximally obtainable amount of work when bringing the resource’s components to their most common state in the natural environment. Exergy measures are traditionally applied to assess energy efficiency, regarding the exergy losses in a process system. However, the measure can be utilised as an indicator of resource quality demand when considering the specific resources that contain the exergy. Such an exergy measure indicates the required resources and assesses the total exergy removal from nature in order to provide a product, process or service. In the current work, the exergy concept is combined with a large number of life cycle inventory datasets available with ecoinvent data v1.2. The goal was, first, to provide an additional impact category indicator to Life-Cycle Assessment practitioners. Second, this work aims at making a large source of exergy scores available to scientific communities that apply exergy as a primary indicator for energy efficiency and resource quality demand. Methods The indicator Cumulative Exergy Demand (CExD) is introduced to depict total exergy removal from nature to provide a product, summing up the exergy of all resources required. CExD assesses the quality of energy demand and includes the exergy of energy carriers as well as of non-energetic materials. In the current paper, the exergy concept was applied to the resources contained in the ecoinvent database, considering chemical, kinetic, hydro-potential, nuclear, solar-radiative and thermal exergies. The impact category indicator is grouped into the eight resource categories fossil, nuclear, hydropower, biomass, other renewables, water, minerals, and metals. Exergy characterization factors for 112 different resources were included in the calculations. Results CExD was calculated for 2630 ecoinvent product and process systems. The results are presented as average values and for 26 specific groups containing 1197 products, processes and infrastructure units. Depending on the process/product group considered, energetic resources make up between 9% and 100% of the total CExD, with an average contribution of 88%. The exergy of water contributes on the average to 8% the total exergy demand, but to more than 90% in specific process groups. The average contribution of minerals and metal ores is 4%, but shows an average value as high as 38% and 13%, in metallic products and in building materials, respectively. Looking at individual processes, the contribution of the resource categories varies substantially from these average product group values. In comparison to Cumulative Energy Demand (CED) and the abiotic-resource-depletion category of CML 2001 (CML’01), non-energetic resources tend to be weighted more strongly by the CExD method. Discussion Energy and matter used in a society are not destroyed but only transformed. What is consumed and eventually depleted is usable energy and usable matter. Exergy is a measure of such useful energy. Therefore, CExD is a suitable energy based indicator for the quality of resources that are removed from nature. Similar to CED, CExD assesses energy use, but regards the quality of the energy and incorporates non-energetic materials like minerals and metals. However, it can be observed for non-renewable energy-intensive products that CExD is very similar to CED. Since CExD considers energetic and non-energetic resources on the basis of exhaustible exergy, the measure is comparable to resource indicators like the resource use category of Eco-indicator 99 and the resource depletion category of CML 2001. An advantage of CExD in comparison to these methods is that exergy is an inherent property of the resource. Therefore less assumptions and subjective choices need to be made in setting up characterization factors. However, CExD does not coversocietal demand (distinguishing between basic demand and luxury), availability or scarcity of the resource. As a consequence of the different weighting approach, CExD may differ considerably from the resource category indicators in Eco-indicator 99 and CML 2001. Conclusions The current work shows that the exergy concept can be operationalised in product life cycle assessments. CExD is a suitable indicator to assess energy and resource demand. Due to the consideration of the quality of energy and the integration of non-energetic resources, CExD is a more comprehensive indicator than the widely used CED. All of the eight CExD categories proposed are significant contributors to Cumulative Exergy Demand in at least one of the product groups analysed. In product or service assessments and comparative assertions, a careful and concious selection of the appropriate CExD-categories is required based on the energy and resource quality demand concept to be expressed by CExD. Recommendations and Perspectives A differentiation between the exergy of fossil, nuclear, hydro-potential, biomass, other renewables, water and mineral/metal resources is recommended in order to obtain a more detailed picture of resource quality demand and to recognise trade-offs between resource use, for instance energetic and non-energetic raw materials, or nonrenewable and renewable energies. ESS-Submission Editor: Dr. Gerald Rebitzer (Gerald.Rebitzer@alcan.com)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号