首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
The physicochemical conditions and microbiological characteristics of the formation waters of the Kongdian oilfield of the Dagang oilfield (China) were studied. It was demonstrated that this oilfield is a high-temperature ecosystem with formation waters characterized by low mineralization. The concentrations of nitrogen and phosphorus compounds, as well as of electron acceptors, are low. Oil and oil gas are the main organic matter sources. The oilfield is exploited with water-flooding. The oil stratum was inhabited mostly by anaerobic thermophilic microorganisms, including fermentative (102–105 cells/ml), sulfate-reducing (0–102 cells/ml), and methanogenic (0–103 cells/ml) microorganisms. Aerobic bacteria were detected mainly in the near-bottom zone of injection wells. The rate of sulfate reduction varied from 0.002 to 18.940 μg S2? l?1 day?1 and the rate of methanogenesis from 0.012 to 16.235 μg CH4 l?1 day?1. Microorganisms with great biotechnological potential inhabited the oilfield. Aerobic thermophilic bacteria were capable of oxidizing oil with formation of biomass, the products of partial oxidation of oil (volatile acids), and surfactants. During growth on the culture liquid of oil-oxidizing bacteria, methanogenic communities produced methane and carbon dioxide, which also had oil-releasing capabilities. Using various labeled tracers, the primary filtration flows of injected solutions at the test site were studied. Our comprehensive investigations allowed us to conclude that the method for microbial enhancement of oil recovery based on the activation of the stratal microflora can be applied in the Kongdian oilfield.  相似文献   

2.
Microbiological technology for the enhancement of oil recovery based on the activation of the stratal microflora was tested in the high-temperature horizons of the Kongdian bed (60 degrees C) of the Dagang oil field (China). This biotechnology consists in the pumping of a water-air mixture and nitrogen and phosphorus mineral salts into the oil stratum through injection wells in order to stimulate the activity of the stratal microflora which produce oil-releasing metabolites. Monitoring of the physicochemical, microbiological, and production characteristics of the test site has revealed large changes in the ecosystem as a result of the application of biotechnology. The cell numbers of thermophilic hydrocarbon-oxidizing, fermentative, sulfate-reducing, and methanogenic microorganisms increased 10-10 000-fold. The rates of methanogenesis and sulfate reduction increased in the near-bottom zone of the injection wells and of some production wells. The microbial oil transformation was accompanied by the accumulation of bicarbonate ions, volatile fatty acids, and biosurfactants in the formation waters, as well as of CH4 and CO2 both in the gas phase and in the oil. Microbial metabolites promoted the additional recovery of oil. As a result of the application of biotechnology, the water content in the production liquid from the test site decreased, and the oil content increased. This allowed the recovery of more than 14000 tons of additional oil over 3.5 years.  相似文献   

3.
The physicochemical conditions and microbiological characteristics of the formation waters of the Kongdian bed of the Dagang oil field (China) were studied. It was demonstrated that this bed is a high-temperature ecosystem with formation waters characterized by low mineralization. The concentrations of nitrogen and phosphorus compounds, as well as of electron acceptors, are low. Oil and oil gas are the main organic matter sources. The bed is exploited with water-flooding. The oil stratum was inhabited mostly by anaerobic thermophilic microorganisms, including fermentative (10(2)-10(5) cells/ml), sulfate-reducing (0-10(2) cells/ml), and methanogenic (0-10(3) cells/ml) microorganisms. Aerobic bacteria were detected mainly in the near-bottom zone of injection wells. The rate of sulfate reduction varied from 0.002 to 18.940 microg S(2-) l(-1) day(-1) and the rate of methanogenesis from 0.012 to 16.235 microg CH4 l(-1) day(-1). Microorganisms with great biotechnological potential inhabited the bed. Aerobic thermophilic bacteria were capable of oxidizing oil with the formation of biomass, the products of partial oxidation of oil (volatile acids), and surfactants. During growth on the culture liquid of oiloxidizing bacteria, methanogenic communities produced methane and carbon dioxide, which also had oil-releasing capabilities. Using various labeled tracers, the primary filtration flows of injected solutions at the testing site were studied. Our comprehensive investigations allowed us to conclude that the tested method for microbial enhancement of oil recovery based on the activation of the stratal microflora can be applied in the Kongdian bed horizons.  相似文献   

4.
In the course of pilot trials of biotechnologies for the enhancement of oil recovery in formation waters of the Gangxi bed of the Dagang oil field (China), microbiological processes were investigated. The biotechnologies are based on injection into the petroleum reservoir of different oxygen sources (H2O2 solution or a water-air mixture) with nitrogen and phosphorus salts. The injection of water-air mixture with nitrogen and phosphorus salts resulted in an increase in the number of aerobic and anaerobic organotrophic bacteria, rates of sulfate reduction and methanogenesis in formation water and also the content of CO2 (from 4.8–12 to 15–23.2%) and methane (from 86–88 to 91.8%) in the gas. The preferential consumption of isotopically light bicarbonate by methanogens resulted in a higher content of the light 12C in methane; the δ13C/CH4 value changed from ?45.1…?48.3 to ?50.7…?59.3‰. At the same time, mineral carbonates of the formation water became isotopically heavier; the δ13C/Σcarbonates value increased from 3.4…4.0 to 5.4…9.6‰. Growth of hydrocarbon-oxidizing bacteria was accompanied by production of biosurfactants and decreased interfacial tension of formation water. Injection of H2O2 solution resulted in the activation of aerobic processes and in suppression of both sulfate reduction and methanogenesis. Methane content in the gas decreased from 86–88 to 75.7–79.8%, probably due to its consumption by methanotrophs. Due to consumption of isotopically light methane, the residual methane carbon became heavier, with the δ13C/CH4 values from ?39.0 to ?44.3‰. At the same time, mineral carbonates of the formation water became isotopically considerably lighter; the δ13C/Σcarbonates value decreased from 5.4…9.6 to ?1.4…2.7‰. The additional amount of oil recovered during the trial of both variants of biotechnological treatment was 3819 t.  相似文献   

5.
Microbiological and biogeochemical data on the Kongdian bed (block no. 1) of the Dagang high-temperature oilfield during trials of the biotechnology for enhanced oil recovery are reported. Oil-bearing horizons of block no. 1 are characterized by high temperature (56.9–58.4°C), complex geological conditions, and heavy oil (density 0.966–0.969 g/cm3). The biotechnology implied injecting oxygen as an air-water mixture or H2O2 together with aqueous solution of nitrogen and phosphorus mineral salts through injection wells in order to activate the oilfield microbial community. In the course of trials, an increase in abundance of aerobic and anaerobic microorganisms was revealed, as well as increased methanogenesis rate in formation water. Microbial oxidation of heavy oil resulted in increased concentration of mineral carbonates dissolved in formation water, changes in the stable carbon isotopic composition δ13C/Σ(CO2 + HCO3 - + CO3 2-), formation of biosurfactants, and decreased interfacial tension of formation water. Application of the biotechnology at the Kongdian bed (block no. 1) resulted in additional recovery of 6331 t oil. Oil viscosity in the zone of production wells located at the North block of the Kongdian bed decreased by 11%. A total of 46152 t additional oil was recovered at three experimental sites of the Dagang oilfield (North block and block no. 1 of the Kongdian bed and the Gangxi bed), which is an indication of high efficiency of the technology for activation of the oilfield microflora for heavy oil replacement from high-temperature oilfields.  相似文献   

6.
The number of microorganisms of major metabolic groups and the rates of sulfate reduction and methanogenesis processes in the formation waters of the high-temperature horizons of Dagang oil field have been determined. Using cultural methods, it was shown that the microbial community contained aerobic bacteria oxidizing crude oil, anaerobic fermentative bacteria, sulfate-reducing bacteria, and methanogens. Using cultural methods, the possibility of methane production from a mixture of hydrogen and carbon dioxide (H2 + CO2) and from acetate was established, and this result was confirmed by radioisotope methods involving NaH14CO3 and 14CH3COONa. Analysis of enrichment cultures 16S rDNA of methanogens demonstrated that these microorganisms belong to Methanothermobacter sp. (M. thermautotrophicus), which consumes hydrogen and carbon dioxide as basic substrates. The genes of acetate-utilizing bacteria were not revealed. Phylotypes of the representatives of Thermococcus spp. were found among archaeal 16S rDNA. 16S rRNA genes of bacterial clones belong to the orders Thermoanaerobacteriales (Thermoanaerobacter, Thermovenabulum, Thermacetogenium, and Coprothermobacter spp.), Thermotogales, Nitrospirales (Thermodesulfovibrio sp.) and Planctomycetales. 16S rDNA of a bacterium capable of oxidizing acetate in the course of syntrophic growth with H2-utilizing methanogens was found in high-temperature petroleum reservoirs for the first time. These results provide further insight into the composition of microbial communities of high-temperature petroleum reservoirs, indicating that syntrophic processes play an important part in acetate degradation accompanied by methane production.  相似文献   

7.
Pimenov  N. V.  Savvichev  A. S.  Rusanov  I. I.  Lein  A. Yu.  Ivanov  M. V. 《Microbiology》2000,69(6):709-720
Functioning of microbial communities in surface sediments of the Haakon Mosby underwater mud volcano (lat. 72°N) and in gas seepage fields of the Vestnesa Ridge was investigated using Mir-1 and Mir-2 deep-sea submersibles during the 40th voyage of the research vessel Academician Mstislav Keldysh. Large areas of sedimentary deposits of the Haakon Mosby mud volcano (HMMV) and pockmarks of the Vestnesa Ridge (VR) are covered with bacterial mats 0.1 to 0.5 cm thick. The microbial community making up bacterial mats of the HMMV was dominated by large filamentous bacteria with filaments measuring up to 100 m in length and 2 to 8 m in width. The occurrence of rosettes allowed the observed filamentous bacteria to be referred to the morphologically similar genera Leucothrix or Thiothrix. Three morphological types of filamentous bacteria were identified in bacterial mats covering VR pockmarks. Filaments of type one are morphologically similar with representatives of the genera Thioploca or Desmanthos. Type two filaments had numerous inclusions of sulfur and resembled representatives of the genus Thiothrix. The third morphological type was constituted by single filaments made up of tightly connected disk-like cells and can be assigned to the genus Beggiatoa. The rates of methane oxidation (up to 1570 l C/(dm3 day)) and sulfate reduction (up to 17 mg S/(dm3day)) measured in the surface sediments of HMMV and VR were close to the maximum rates of these processes observed in heavily polluted regions of the northwestern shelf of the Black Sea. High rates of microbiological processes correlated with the high number of bacteria. The rate of methane production in sediments studied was notably lower and ranged from 0.1 to 3.5 CH4/(dm3 day). Large areas of the HMMV caldera were populated by pogonophoras, represented by the two species Sclerolinum sp. and Oligobrachia sp. The mass development of Sclerolinum sp. in the HMMV caldera was by the activity of aerobic methane-oxidizing bacteria localized inside the cells of these animals. Bacterial cells were also found in the trophosome tissue of Oligobrachia sp., but in cells of these bacteria, we did not observe the membrane structures typical of methanotrophs. The localization pattern of pogonophoras on the surface of reduced sediments suggests that the predominant bacteria in Oligobrachia tissues are sulfur-oxidizing endosymbionts.  相似文献   

8.
Bacillus licheniformis produced a water‐insoluble levan which has potential application as a selective plugging agent in microbial enhanced oil recovery (MEOR). The microorganism grew on sucrose, glucose, and fructose but produced levan only on sucrose. Plugging may thus be selectively controlled in the reservoir by substrate manipulation. B. licheniformis and a crude preparation of its extracellular enzymes were evaluated for their ability to produce levan under reservoir conditions. Oil reservoirs which have a temperature of less than 55°C, a pH between 6 and 9, a pressure less than 500 atm, and a salt concentration of 4% or less are potentially suitable. Examples of such reservoir conditions are found in Lloydminster on the Alberta‐Saskatchewan border, one of the largest Canadian oil reserves.  相似文献   

9.
A field experiment was performed to monitor changes in exogenous bacteria and to investigate the diversity of indigenous bacteria during a field trial of microbial enhanced oil recovery (MEOR). Two wells (26-195 and 27-221) were injected with three exogenous strains and then closed to allow for microbial growth and metabolism. After a waiting period, the pumps were restarted and the samples were collected. The bacterial populations of these samples were analyzed by denaturing gradient gel electrophoresis (DGGE) with PCR-amplified 16S rRNA fragments. DGGE profiles indicated that the exogenous strains were retrieved in the production water samples and indigenous strains could also be detected. After the pumps were restarted, average oil yield increased to 1.58 and 4.52 tons per day in wells 26-195 and 27-221, respectively, compared with almost no oil output before the injection of exogenous bacteria. Exogenous bacteria and indigenous bacteria contributed together to the increased oil output. Sequence analysis of the DGGE bands revealed that Proteobacteria were a major component of the predominant bacteria in both wells. Changes in the bacteria population in the reservoirs during MEOR process were monitored by molecular analysis of the 16S rRNA gene sequence. DGGE analysis was a successful approach to investigate the changes in microorganisms used for enhancing oil recovery. The feasibility of MEOR technology in the petroleum industry was also demonstrated.  相似文献   

10.
Comprehensive microbiological and biogeochemical investigation of a pockmark within one of the sites of gas-saturated sediments in the Gdansk depression, Baltic Sea was carried out during the 87th voyage of the Professor Shtokman research vessel. Methane content in the near-bottom water and in the underlying sediments indicates stable methane flow from the sediment into the water. In the 10-m water layer above the pockmark, apart from methane anomalies, elevated numbers of microorganisms and enhanced rates of dark CO2 fixation (up to 1.15 µmol C/(l day)) and methane oxidation (up to 2.14 nmol CH4/(l day)) were revealed. Lightened isotopic composition of suspended organic matter also indicates high activity of the near-bottom microbial community. Compared to the background stations, methane content in pockmark sediments increased sharply from the surface to 40–60 ml/dm3 in the 20–30 cm horizon. High rates of bacterial sulfate reduction (SR) were detected throughout the core (0–40 cm); the maximum of 74 µmol S/(dm3 day) was located in subsurface horizons (15–20 cm). The highest rates of anaerobic methane oxidation (AMO), up to 80 µmol/dm3 day), were detected in the same horizon. Good coincidence of the AMO and SR profiles with stoichiometry close to 1: 1 is evidence in favor of a close relation between these processes performed by a consortium of methanotrophic archaea and sulfate-reducing bacteria. Methane isotopic composition in subsurface sediments of the pockmark (from ?53.0 to ?56.5‰) does not rule out the presence of methane other than the biogenic methane from the deep horizons of the sedimentary cover.  相似文献   

11.
Members of Epsilonproteobacteria and Deferribacteres have been implied in nitrate-induced souring control in high-temperature oil production facilities. Here we report on their diversity and abundance in the injection and production part of a nitrate-treated, off-shore oil facility (Halfdan, Denmark) and aimed to assess their potential in souring control. Nitrate addition to deoxygenated seawater shifted the low-biomass seawater community dominated by Gammaproteobacteria closely affiliated with the genus Colwellia to a high-biomass community with significantly higher species richness. Epsilonproteobacteria accounted for less than 1% of the total bacterial community in the nitrate-amended injection water and were most likely outcompeted by putative nitrate-reducing, methylotrophic Gammaproteobacteria of the genus Methylophaga. Reservoir passage and recovery of the oil resulted in a significant change in the bacterial community. Members of the thermophilic Deferribacteres were the second major fraction of the bacterial community in the production water (~30% of the total bacterial community). They were not found in the injection water and were therefore assumed to be indigenous to the reservoir. Additional diversity analysis and targeted quantification of periplasmic nitrate reductase (napA) genes indicated that most resident Deferribacteres possessed the functional potential to contribute to nitrate reduction in the system. In sum, the dominance of nitrate-reducing Deferribacteres and the low relative abundance of Epsilonproteobacteria throughout the production facility suggested that the Deferribacteres play a major role in nitrate-induced souring control at high temperatures.  相似文献   

12.
This paper provides the details of the Coupled Biological and Chemical (CBC) model for representing in situ bioremediation of BTEX. The CBC model contains novel features that allow it to comprehensively track the footprints of BTEX bioremediation, even when the fate of those footprints is confounded by abiotic reactions and complex interactions among different kinds of microorganisms. To achieve this comprehensive tracking of all the footprints, the CBC model contains important new biological features and key abiotic reactions. The biological module of the CBC-model includes these important new aspects: (1) it separates BTEX fermentation from methanogenesis, (2) it explicitly includes biomass as a sink for electrons and carbon, (3) it has different growth rates for each biomass type, and (4) it includes inhibition of the different reactions by other electron acceptors and by sulfide toxicants. The chemical module of the CBC-model includes abiotic reactions that affect the footprints of the biological reactions. In particular, the chemical module describes the precipitation/dissolution of CaCO3, Fe2O3, FeS, FeS2, and S degrees. The kinetics for the precipitation/dissolution reactions follow the critical review in Maurer & Rittmann (2004).  相似文献   

13.
The potentials for sequential reduction of inorganic electron acceptors and production of methane have been examined in sixteen rice soils obtained from China, the Philippines, and Italy. Methane, CO2, Fe(II), NO 3 - , SO 4 2 , pH, Eh, H2 and acetate were monitored during anaerobic incubation at 30 °C for 120 days. Based on the accumulation patterns of CO2 and CH4, the reduction process was divided into three distinct phases: (1) an initial reduction phase during which most of the inorganic electron acceptors were depleted and CO2 production was at its maximum, (2) a methanogenic phase during which CH4 production was initiated and reached its highest rate, and (3) a steady state phase with constant production rates of CH4 and CO2. The reduction phases lasted for 19 to 75 days with maximum CO2 production of 2.3 to 10.9 mol d-1 g-1 dry soil. Methane production started after 2 to 87 days and became constant after about 38--68 days (one soil >120 days). The maximum CH4 production rates ranged between 0.01 and 3.08 mol d-1 g-1. During steady state the constant CH4 and CO2 production rates varied from 0.07 to 0.30 mol d-1 g-1 and 0.02 and 0.28 mol d-1 g-1, respectively. Within the 120 d of anaerobic incubation only 6--17% of the total soil organic carbon was released into the gas phase. The gaseous carbon released consisted of 61--100% CO2, <0.1--35% CH4, and <5% nonmethane hydrocarbons. Associated with the reduction of available Fe(III) most of the CO2 was produced during the reduction phase. The electron transfer was balanced between total CO2 produced and both CH4 formed and Fe(III), sulfate and nitrate reduced. Maximum CH4 production rate (r = 0.891) and total CH4 produced (r = 0.775) correlated best with the ratio of soil nitrogen to electron acceptors. Total nitrogen content was a better indicator for available organic substrates than the total organic carbon content. The redox potential was not a good predictor of potential CH4 production. These observations indicate that the availability of degradable organic substrates mainly controls the CH4 production in the absence of inorganic electron acceptors.  相似文献   

14.
15.
Castor (Ricinus communis L.) is an important oilseed crop worldwide whose inedible oil is widely used in the industrial, pharmaceutical, and agricultural sectors. Castor plants show high conversion potential for use as biorefining feedstocks. The present study was conducted to investigate the effects of two nitrogen fertilization levels (0 and 120 kg N ha−1) on seed and oil yield. From a biorefinery perspective, the residual biomass of seed processing was analyzed in terms of fiber composition and biomethane production carrying out a biological pretreatment using two white-rot fungi (Pleurotus ostreatus and Irpex lacteus). Nitrogen fertilization resulted in an increase in seed and oil yields and a difference in capsule husk composition. Fungal pretreatment of capsule husks showed promising effects on anaerobic digestion, increasing the biomethane yield compared to untreated biomass. The highest lignin degradation and the lowest cellulose loss during pretreatment were obtained with I. lacteus, and this fungal pretreatment resulted in the highest biomethane yield (103.2 NmL g−1 volatile solids) for the fertilized biomass.  相似文献   

16.
The physicochemical conditions, composition of microbial communities, and the rates of anaerobic processes in the deep sand horizons used as a repository for liquid radioactive wastes (LRW) at the Siberian Chemical Combine (Seversk, Tomsk oblast), were studied. Formation waters from the observation wells drilled into the horizons used for the radioactive waste disposal were found to be inhabited by microorganisms of different physiological groups, including aerobic organotrophs, anaerobic fermentative, denitrifying, sulfate-reducing, and methanogenic bacteria. The density of microbial population, as determined by cultural methods, was low and usually did not exceed 104 cells/ml. Enrichment cultures of microorganisms producing gases (hydrogen, methane, carbon dioxide, and hydrogen sulfide) and capable of participation in the precipitation of metal sulfides were obtained from the waters of the disposal site. The contemporary processes of sulfate reduction and methanogenesis were assayed; the rates of these terminal processes of organic matter destruction were found to be low. The denitrifying bacteria from the deep repository were capable of reducing the nitrates contained in the wastes, provided sources of energy and biogenic elements were available. Biosorption of radionuclides by the biomass of aerobic bacteria isolated from groundwater was demonstrated. The results obtained give us insight into the functional structure of the microbial community inhabiting the waters of repository horizons. This study indicates that the numbers and activity of microbial cells are low both inside and outside the zone of radioactive waste dispersion, in spite of the long period of waste discharge.  相似文献   

17.
【背景】海上油田见聚后产出水硫化物超标,影响到注聚水的配聚黏度,采用生物脱硫时,由于常规除硫菌难以适应除油后产出液的高温,使得脱硫效果不佳。【目的】分析海上采出液水处理过程的菌群结构,明确生物处理各节点的菌群构成变化;开展耐高温脱硫菌驯化筛选,获得耐高温的高效脱硫菌。【方法】采集来自胜利油田海三站的水样,以16S rRNA基因高通量测序技术分析样本菌群结构,并分别在不同温度(55、60和65℃)下的无机富集培养基中进行多轮转接驯化,结合常压室温等离子体(atmospheric and room temperature plasma, ARTP)诱变技术筛选获得耐高温的脱硫菌群,采用宏基因组测序技术分析富集菌群的组成,并测定其脱硫能力。【结果】处理前的采出液水样含有较多的嗜热菌和硫酸盐还原菌,如Thermodesulfovibrio、Pseudothermotoga、Thermolithobacter、Fervidobacterium、Thermovenabulales和Pseudomonas;以厌氧气浮除油工艺处理的出水中,嗜氢菌属(Hydrogenophilus)成为最主要的优势菌,...  相似文献   

18.
19.
Direct utilization of palm oil for the simultaneous production of polyhydroxyalkanoates (PHAs) and rhamnolipids was demonstrated using Pseudomonas aeruginosa IFO3924. By secreted lipase, palm oil was hydrolyzed into glycerol and fatty acids. Fatty acids became favorable carbon sources for cell growth and PHA production via β-oxidation and glycerol for rhamnolipid production via de novo fatty acid synthesis. Both PHA and rhamnolipid syntheses started after the nitrogen source was exhausted and cell growth ceased. PHA synthesis continued until all fatty acids were exhausted, and at that time, PHA content in the cells reached a maximum, but stopped despite the remaining glycerol (<2g/l). In contrast, rhamnolipid synthesis continued until glycerol was exhausted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号