共查询到20条相似文献,搜索用时 0 毫秒
1.
Appendino G Cascio MG Bacchiega S Moriello AS Minassi A Thomas A Ross R Pertwee R De Petrocellis L Di Marzo V 《FEBS letters》2006,580(2):568-574
12-Phenylacetyl-ricinoleoyl-vanillamide (phenylacetylrinvanil, PhAR, IDN5890), is an ultra-potent agonist of human vanilloid TRPV1 receptors also endowed with moderate affinity for human cannabinoid CB(2) receptors. To improve its CB(2) affinity and temper its potency at TRPV1, the modification of the polar headgroup and the lipophilic 12-acylgroup of PhAR was pursued. Replacement of the vanillyl headgroup of PhAR with various aromatic or alkyl amino groups decreased activity at TRPV1 receptors, although the dopamine, cyclopropylamine, 1'-(R)- and 1'-(S)-methyl-ethanolamine, and ethanolamine derivatives retained significant potency (EC(50) 31-126 nM). Within these compounds, the 12-phenylacetylricinoleyl cyclopropylamide and ethanolamide were the strongest ligands at CB(2) receptors, with K(i) of 22 and 44 nM, and 14- and >20-fold selectivity over cannabinoid CB(1) receptors, respectively. The propyl- and allyl-derivatives also exhibited high affinity at CB(2) receptors (K(i)=40 and 22 nM, with 40 and >80-fold selectivity over CB(1) receptors, respectively), but no activity at TRPV1 receptors. The cyclopropyl- and allyl-derivatives behaved as CB(2) inverse agonists in the GTP-gamma-S binding assay. Addition of para-methoxy, -tert-butyl or -chlorine groups to the 12-phenylacetyl moiety of PhAR produced compounds that retained full potency at TRPV1 receptors, but with improved selectivity over CB(2) or CB(1) receptors. Thus, the manipulation of PhAR led to the development of the first CB(2)/TRPV1 dual ligands and of an entirely new class of inverse agonists at CB(2) receptors. Both types of compounds might find application in the treatment of inflammation, and represent new molecular probes to investigate the endocannabinoid-endovanilloid signalling system. 相似文献
2.
《Bioorganic & medicinal chemistry letters》2020,30(22):127501
A series of N-benzyl-7-azaindolequinuclidinone (7-AIQD) analogs have been synthesized and evaluated for affinity toward CB1 and CB2 cannabinoid receptors and identified as a novel class of cannabinoid receptor ligands. Structure–activity relationship (SAR) studies indicate that 7-AIQD analogs are dual CB1/CB2 receptor ligands exhibiting high potency with somewhat greater selectivity towards CB2 receptors compared to the previously reported indolequinuclidinone (IQD) analogs. Initial binding assays showed that 7-AIQD analogs 8b, 8d, 8f, 8g and 9b (1 μM) produced more that 50% displacement of the CB1/CB2 non-selective agonist CP-55,940 (0.1 nM). Furthermore, Ki values determined from full competition binding curves showed that analogs 8a, 8b and 8g exhibit high affinity (110, 115 and 23.7 nM, respectively) and moderate selectivity (26.3, 6.1 and 9.2-fold, respectively) for CB2 relative to CB1 receptors. Functional studies examining modulation of G-protein activity demonstrated that 8a acts as a neutral antagonist at CB1 and CB2 receptors, while 8b exhibits inverse agonist activity at these receptors. Analogs 8f and 8g exhibit different intrinsic activities, depending on the receptor examined. Molecular docking and binding free energy calculations for the most active compounds (8a, 8b, 8f, and 8g) were performed to better understand the CB2 receptor-selective mechanism at the atomic level. Compound 8g exhibited the highest predicted binding affinity at both CB1 and CB2 receptors, and all four compounds were shown to have higher predicted binding affinities with the CB2 receptor compared to their corresponding binding affinities with the CB1 receptor. Further structural optimization of 7-AIQD analogs may lead to the identification of potential clinical agents. 相似文献
3.
Biarylcarboxybenzamide derivatives as potent vanilloid receptor (VR1) antagonistic ligands 总被引:1,自引:0,他引:1
Park HG Choi JY Kim MH Choi SH Park MK Lee J Suh YG Cho H Oh U Kim HD Joo YH Shin SS Kim JK Jeong YS Koh HJ Park YH Jew SS 《Bioorganic & medicinal chemistry letters》2005,15(3):631-634
Seventeen biarylcarboxybenzamide derivatives were prepared for the study of their agonistic/antagonistic activities to the vanilloid receptor (VR1) in rat DRG neurons. The replacement of the piperazine moiety of the lead compound 1 with phenyl ring showed quite enhanced antagonistic activity. Among the prepared derivatives, N-(4-tert-butylphenyl)-4-pyridine-2-yl-benzamide (2, IC(50)=31 nM) and N-(4-tert-butylphenyl)-4-(3-methylpyridine-2-yl)benzamide (3g, IC(50)=31 nM), showed 5-fold higher antagonistic activity than 1 in (45)Ca(2+)-influx assay. 相似文献
4.
Worm K Zhou QJ Saeui CT Green RC Cassel JA Stabley GJ DeHaven RN Conway-James N LaBuda CJ Koblish M Little PJ Dolle RE 《Bioorganic & medicinal chemistry letters》2008,18(9):2830-2835
Sulfamoyl benzamides were identified as a novel series of cannabinoid receptor ligands. Starting from a screening hit 8 that had modest affinity for the cannabinoid CB2 receptor, a parallel synthesis approach and initial SAR are described, leading to compound 27 with 120-fold functional selectivity for the CB2 receptor. This compound produced robust antiallodynic activity in rodent models of postoperative pain and neuropathic pain without traditional cannabinergic side effects. 相似文献
5.
Urbani P Cascio MG Ramunno A Bisogno T Saturnino C Di Marzo V 《Bioorganic & medicinal chemistry》2008,16(15):7510-7515
In the present study, 11 novel N-(3,3-diphenyl)propyl-2,2-diphenylacetamide derivatives (4a-d and 9a-g) and six triphenylacetamides (10a-c and 11a-c) were synthesized and tested as ligands of cannabinoid CB(1) and CB(2) receptors. All compounds exhibited affinity for CB(1) and CB(2) receptors. Four compounds (4b, 9a, 9b, and 11a) showed selectivity for CB(1) versus CB(2) receptors, although only the N-(3,3-diphenyl)propyl-2,2-diphenylacetamide (4b) can be considered a potent CB(1) ligand (K(i)=58 nM). It was 140-fold selective over CB(2) receptors (K(i)=7800 nM) and behaved as an inverse agonist by stimulating forskolin-induced cAMP formation in mouse N18TG2 neuroblastoma cells. This compound is the first of a novel class of tetraphenyl CB(1) ligands that, in view of its easy synthesis and high affinity for CB(1) receptors and despite its sterical hindrance, will be useful for the design of new blockers of this therapeutically exploitable receptor type. 相似文献
6.
Himanshu Bhattacharjee Steven N. Gurley Bob M. Moore 《Bioorganic & medicinal chemistry letters》2009,19(6):1691-1693
A novel series of cannabinoid ligands with a structurally unique tri-aryl core has been designed, synthesized and assayed. Receptor binding assays show that these compounds possess CB2 receptor sub-type selectivity with binding affinities ranging from 1.07 (±0.05) for 7 to 4.77 (±0.57) nM for 6. The selectivity of the compounds was enhanced 9–600-fold for the CB2 receptor over the CB1 receptor. The results of our present study identify a novel, highly selective cannabinoid scaffold with a non-classical core. 相似文献
7.
Suk Ho Lee Hee Jeong Seo Min Ju Kim Suk Youn Kang Sung-Han Lee Kwangwoo Ahn MinWoo Lee Ho-Kyun Han Jeongmin Kim Jinhwa Lee 《Bioorganic & medicinal chemistry letters》2009,19(23):6632-6636
Cannabinoid CB-1 receptors have been the focus of extensive studies since the first clinical results of rimonabant (SR141716) for the treatment of obesity and obesity-related metabolic disorders were reported in 2001. To further evaluate the properties of CB receptors, we have designed and efficiently prepared a series of pentacycle derivatives. Five of the new compounds which displayed high in vitro rCB1 binding affinities were assayed for binding to hCB2 receptor. Noticeably, 2-(5-(4-bromophenyl)-1-(2,4-dichlorophenyl)-4-(5-methyl-1,3,4-thiadiazol-2-yl)-1H-pyrazol-3-yl)-5-(1-(trifluoromethyl)cyclopropyl)-1,3,4-oxadiazole (16l) demonstrated good binding affinity and decent selectivity for rCB1 receptor (IC50 = 1.72 nM, hCB2/rCB1 = 142). 相似文献
8.
Min Ju Kim Jong Yup Kim Hee Jeong Seo Junwon Lee Sung-Han Lee Mi-Soon Kim Jahyo Kang Jeongmin Kim Jinhwa Lee 《Bioorganic & medicinal chemistry letters》2009,19(16):4692-4697
Cannabinoid CB1 receptors have been the avenue of extensive studies since the first clinical results of rimonabant (SR141716) for the treatment of obesity and obesity-related metabolic disorders were reported in 2001. To further evaluate the properties of CB receptors, we have designed and efficiently prepared a series of substituted pyrimidines based on chemical structure of Merck’s taranabant, a cannabinoid CB1 receptor inverse agonist. Noticeably, N4-((2S,3S)-3-(3-bromophenyl)-4-(4-chlorophenyl)butan-2-yl)-N6-butylpyrimidine-4,6-diamine (13b) demonstrated good binding affinity and decent selectivity for CB1 receptor (IC50 = 16.3 nM, CB2/CB1 = 181.6). 相似文献
9.
D Melck T Bisogno L De Petrocellis H Chuang D Julius M Bifulco V Di Marzo 《Biochemical and biophysical research communications》1999,262(1):275-284
We investigated the effect of changing the length and degree of unsaturation of the fatty acyl chain of N-(3-methoxy-4-hydroxy)-benzyl-cis-9-octadecenoamide (olvanil), a ligand of vanilloid receptors, on its capability to: (i) inhibit anandamide-facilitated transport into cells and enzymatic hydrolysis, (ii) bind to CB1 and CB2 cannabinoid receptors, and (iii) activate the VR1 vanilloid receptor. Potent inhibition of [(14)C]anandamide accumulation into cells was achieved with C20:4 n-6, C18:3 n-6 and n-3, and C18:2 n-6 N-acyl-vanillyl-amides (N-AVAMs). The saturated analogues and Delta(9)-trans-olvanil were inactive. Activity in CB1 binding assays increased when increasing the number of cis-double bonds in a n-6 fatty acyl chain and, in saturated N-AVAMs, was not greatly sensitive to decreasing the chain length. The C20:4 n-6 analogue (arvanil) was a potent inhibitor of anandamide accumulation (IC(50) = 3.6 microM) and was 4-fold more potent than anandamide on CB1 receptors (Ki = 0.25-0.52 microM), whereas the C18:3 n-3 N-AVAM was more selective than arvanil for the uptake (IC(50) = 8.0 microM) vs CB1 receptors (Ki = 3.4 microM). None of the compounds efficiently inhibited [(14)C]anandamide hydrolysis or bound to CB2 receptors. All N-AVAMs activated the cation currents coupled to VR1 receptors overexpressed in Xenopus oocytes. In a simple, intact cell model of both vanilloid- and anandamide-like activity, i.e., the inhibition of human breast cancer cell (HBCC) proliferation, arvanil was shown to behave as a "hybrid" activator of cannabinoid and vanilloid receptors. 相似文献
10.
Suk Ho Lee Hee Jeong Seo Min Ju Kim Suk Youn Kang Kwang-Seop Song Sung-Han Lee Myung Eun Jung Jeongmin Kim Jinhwa Lee 《Bioorganic & medicinal chemistry letters》2009,19(7):1899-1902
Cannabinoid CB-1 receptors have been the focus of extensive studies since the first clinical results of rimonabant (SR141716) for the treatment of obesity and obesity-related metabolic disorders were reported in 2001. To further evaluate the properties of CB receptors, we have designed and efficiently prepared a series of oxadiazole-diarylpyrazole 4-carboxamides. Six of the new compounds which displayed high in vitro CB1 binding affinities were assayed for binding to CB2 receptor. Noticeably, 5-(4-bromophenyl)-3-(5-tert-butyl-1,3,4-oxadiazol-2-yl)-1-(2,4-dichlorophenyl)-N-phenyl-1H-pyrazole-4-carboxamide (12q) and 5-(4-bromophenyl)-3-(5-tert-butyl-1,3,4-oxadiazol-2-yl)-1-(2,4-dichlorophenyl)-N-(pyridin-2-yl)-1H-pyrazole-4-carboxamide (12r) demonstrated good binding affinity and decent selectivity for CB1 receptor (IC50 = 1.35 nM, CB2/CB1 = 286 for 12q; IC50 = 1.46 nM, CB2/CB1 = 256 for 12r). 相似文献
11.
Cowley PM Baker J Barn DR Buchanan KI Carlyle I Clark JK Clarkson TR Deehan M Edwards D Goodwin RR Jaap D Kiyoi Y Mort C Palin R Prosser A Walker G Ward N Wishart G Young T 《Bioorganic & medicinal chemistry letters》2011,21(1):497-501
The discovery and structure-activity relationship of a novel series of indole-2-carboxamide antagonists of the cannabinoid CB(1) receptor is disclosed. Compound 26i was found to be a high potency, selective cannabinoid CB(1) antagonist. 相似文献
12.
The purpose of the current study was to investigate the ability of the third-generation selective estrogen receptor modulators (SERMs) bazedoxifene and lasofoxifene to bind and act on CB2 cannabinoid receptor. We have identified, for the first time, that CB2 is a novel target for bazedoxifene and lasofoxifene. Our results showed that bazedoxifene and lasofoxifene were able to compete for specific [3H]CP-55,940 binding to CB2 in a concentration-dependent manner. Our data also demonstrated that by acting on CB2, bazedoxifene and lasofoxifene concentration-dependently enhanced forskolin-stimulated cAMP accumulation. Furthermore, bazedoxifene and lasofoxifene caused parallel, rightward shifts of the CP-55,940, HU-210, and WIN55,212-2 concentration–response curves without altering the efficacy of these cannabinoid agonists on CB2, which indicates that bazedoxifene- and lasofoxifene-induced CB2 antagonism is most likely competitive in nature. Our discovery that CB2 is a novel target for bazedoxifene and lasofoxifene suggests that these third-generation SERMs can potentially be repurposed for novel therapeutic indications for which CB2 is a target. In addition, identifying bazedoxifene and lasofoxifene as CB2 inverse agonists also provides important novel mechanisms of actions to explain the known therapeutic effects of these SERMs. 相似文献
13.
Song KS Lee SH Chun HJ Kim JY Jung ME Ahn K Kim SU Kim J Lee J 《Bioorganic & medicinal chemistry》2008,16(7):4035-4051
After the CB1 receptor antagonist SR141716 (rimonabant) was previously reported to modulate food intake, CB1 antagonism has been considered as a new therapeutic target for the treatment of obesity. Several series of urea, carbamate, amide, sulfonamide and oxalamide derivatives based on 1-benzhydrylpiperazine scaffold were synthesized and tested for CB1 receptor binding affinity. The SAR studies to optimize the CB1 binding affinity led to the potent urea derivatives. After the additional SAR studies to optimize the substituents of diphenyl rings, the combination of 2-chlorophenyl and 4-chlorophenyl turned out to be the most potent scaffold. The CB2 binding affinity assay as well as functional assay was also conducted on these compounds. Herein we wish to introduce several novel CB1 antagonists with IC(50) values less than 100 nM for the CB1 receptor binding. 相似文献
14.
The vanilloid receptor type 1 (VR1) is a heat-activated ionophore preferentially expressed in nociceptive neurons of trigeminal and dorsal root ganglia (DRG). VR1, which binds and is activated by capsaicin and other vanilloid compounds, was noted to interact with the endocannabinoid anandamide (ANA) and certain inflammatory metabolites of arachidonic acid in a pH-dependent manner. At pH < or = 6.5 ANA induced (45)Ca(2+) uptake either in primary cultures of DRG neurons or cells ectopically expressing C-terminally tagged recombinant forms of VR1 with an EC(50) = approximately 10 microm at pH 5.5. Capsazepine, a potent antagonist of vanilloids, inhibited ANA-induced Ca(2+) transport in both cell systems. Vanilloids displaced [(3)H]ANA in VR1-expressing cells, suggesting competition for binding to VR1. Ratiometric determination of intracellular free calcium and confocal imaging of the VR1-green fluorescent fusion protein revealed that, at low pH (< or =6.5), ANA could induce an elevation of intracellular free Ca(2+) and consequent intracellular membrane changes in DRG neurons or transfected cells expressing VR1. These actions of ANA were similar to the effects determined previously for vanilloids. The ligand-induced changes in Ca(2+) at pH < or = 6.5 are consistent with the idea that ANA and other eicosanoids act as endogenous ligands of VR1 in a conditional fashion in vivo. The pH dependence suggests that tissue acidification in inflammation, ischemia, or traumatic injury can sensitize VR1 to eicosanoids and transduce pain from the periphery. 相似文献
15.
Q.-R. Liu C.-H. Pan A. Hishimoto C.-Y. Li Z.-X. Xi A. Llorente-Berzal M.-P. Viveros H. Ishiguro T. Arinami E. S. Onaivi G. R. Uhl 《Genes, Brain & Behavior》2009,8(5):519-530
Cannabinoids, endocannabinoids and marijuana activate two well-characterized cannabinoid receptors (CB-Rs), CB1-Rs and CB2-Rs. The expression of CB1-Rs in the brain and periphery has been well studied, but neuronal CB2-Rs have received much less attention than CB1-Rs. Many studies have now identified and characterized functional glial and neuronal CB2-Rs in the central nervous system. However, many features of CB2-R gene structure, regulation and variation remain poorly characterized in comparison with the CB1-R. In this study, we report on the discovery of a novel human CB2 gene promoter transcribing testis (CB2A) isoform with starting exon located ca 45 kb upstream from the previously identified promoter transcribing the spleen isoform (CB2B). The 5' exons of both CB2 isoforms are untranslated 5'UTRs and alternatively spliced to the major protein coding exon of the CB2 gene. CB2A is expressed higher in testis and brain than CB2B that is expressed higher in other peripheral tissues than CB2A. Species comparison found that the CB2 gene of human, rat and mouse genomes deviated in their gene structures and isoform expression patterns. mCB2A expression was increased significantly in the cerebellum of mice treated with the CB-R mixed agonist, WIN55212-2. These results provide much improved information about CB2 gene structure and its human and rodent variants that should be considered in developing CB2-R-based therapeutic agents. 相似文献
16.
Ohta H Ishizaka T Tatsuzuki M Yoshinaga M Iida I Tomishima Y Toda Y Saito S 《Bioorganic & medicinal chemistry letters》2007,17(22):6299-6304
A novel series of N-alkylidenearylcarboxamides 4, a CB(2) receptor agonist, were synthesized and evaluated for activity against the human CB(2) receptor. In a previous paper, we reported that sulfonamide derivative 1 acted as a potent CB(2) receptor agonist (IC(50)=65 nM, EC(50)=19 nM, E(max)=90%). However, compound 1 also exhibited poor metabolic stability in human liver microsomes. During the structural modification of 1, we found that a novel series of N-alkylidenearylcarboxamide, 4-1, had a moderate affinity for the CB(2) receptor (IC(50)=260 nM, EC(50)=86 nM, E(max)=100%) and good metabolic stability in human liver microsomes. We explored its analogues to discover compounds with a high affinity for the CB(2) receptor and with good oral bioavailability. Among them, compounds 4-9 and 4-27 had high affinities for the human CB(2) receptor (CB(2) IC(50)=13 nM and 1.2 nM) and a high selectivity for CB(2) (CB(1) IC(50)/CB(2) IC(50)=270 and 1600); furthermore, significant plasma levels were observed following oral administration in rats (C(max)=233 ng/mL and 148 ng/mL, respectively, after a dose of 10 mg/kg). Furthermore, compound 4-9 had good oral bioavailability (F=52%, 3mg/kg). 相似文献
17.
Fulp A Bortoff K Zhang Y Seltzman H Snyder R Maitra R 《Bioorganic & medicinal chemistry letters》2011,21(19):5711-5714
CB1 receptor antagonists that are peripherally restricted were targeted. Compounds with permanent charge as well as compounds that have increased polar surface area were made and tested against CB1 for binding and activity. Sulfonamide and sulfamide with high polar surface area and good activity at CB1 were rationally designed and pharmacologically tested. Further optimization of these compounds and testing could lead to the development of a new class of therapeutics to treat disorders where the CB1 receptor system has been implicated. 相似文献
18.
Jos H.M. Lange Amos Attali Martina A.W. van der Neut Henri C. Wals Arie Mulder Hicham Zilaout Ate Duursma Hans H.M. van Aken Bernard J. van Vliet 《Bioorganic & medicinal chemistry letters》2010,20(17):4992-4998
The synthesis and SAR of 3-alkyl-4-aryl-4,5-dihydropyrazole-1-carboxamides 1–23 and 1-alkyl-5-aryl-4,5-dihydropyrazole-3-carboxamides 24–27 as two novel cannabinoid CB1 receptor agonist classes were described. The target compounds elicited high affinities to the CB1 as well as the CB2 receptor and were found to act as CB1 receptor agonists. The key compound 19 elicited potent CB1 agonistic and CB2 inverse agonistic properties in vitro and showed in vivo activity in a rodent model for multiple sclerosis after oral administration. 相似文献
19.
Nicolas Foloppe Karen Benwell Teresa D. Brooks Guy Kennett Antony R. Knight Anil Misra Nathaniel J.T. Monck 《Bioorganic & medicinal chemistry letters》2009,19(15):4183-4190
Ligand-based virtual screening with a 3D pharmacophore led to the discovery of 30 novel, diverse and drug-like ligands of the human cannabinoid receptor 1 (hCB1). The pharmacophore was validated with a hit rate of 16%, binding selectivity versus hCB2, and expected functional profiles. The discovered compounds provide new tools for exploring cannabinoid pharmacology. 相似文献
20.
Huffman JW Zengin G Wu MJ Lu J Hynd G Bushell K Thompson AL Bushell S Tartal C Hurst DP Reggio PH Selley DE Cassidy MP Wiley JL Martin BR 《Bioorganic & medicinal chemistry》2005,13(1):89-112
In an effort to improve indole-based CB(2) cannabinoid receptor ligands and also to develop SAR for both the CB(1) and CB(2) receptors, 47 indole derivatives were prepared and their CB(1) and CB(2) receptor affinities were determined. The indole derivatives include 1-propyl- and 1-pentyl-3-(1-naphthoyl)indoles both with and without a 2-methyl substituent. Naphthoyl substituents include 4- and 7-alkyl groups as well as 2-, 4-, 6-, 7-methoxy and 4-ethoxy groups. The effects of these substituents on receptor affinities are discussed and structure-activity relationships are presented. In the course of this work three new highly selective CB(2) receptor agonists were identified, 1-propyl-3-(4-methyl-1-naphthoylindole (JWH-120), 1-propyl-2-methyl-3-(6-methoxy-1-naphthoylindole (JWH-151), and 1-pentyl-3-(2-methoxy-1-naphthoylindole (JWH-267). GTPgammaS assays indicated that JWH-151 is a full agonist at CB(2), while JWH-120 and JWH-267 are partial agonists. Molecular modeling and receptor docking studies were carried out on a set of 3-(4-propyl-1-naphthoyl)indoles, a set of 3-(6-methoxy-1-naphthoyl)indoles and the pair of N-pentyl-3-(2-methoxy-1-naphthoyl)indoles. Docking studies indicated that the CB(1) receptor affinities of these compounds were consistent with their aromatic stacking interactions in the aromatic microdomain of the CB(1) receptor. 相似文献