首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The intrinsic flexibility of DNA and the difficulty of identifying its interaction surface have long been challenges that prevented the development of efficient protein–DNA docking methods. We have demonstrated the ability our flexible data-driven docking method HADDOCK to deal with these before, by using custom-built DNA structural models. Here we put our method to the test on a set of 47 complexes from the protein–DNA docking benchmark. We show that HADDOCK is able to predict many of the specific DNA conformational changes required to assemble the interface(s). Our DNA analysis and modelling procedure captures the bend and twist motions occurring upon complex formation and uses these to generate custom-built DNA structural models, more closely resembling the bound form, for use in a second docking round. We achieve throughout the benchmark an overall success rate of 94% of one-star solutions or higher (interface root mean square deviation ≤4 Å and fraction of native contacts >10%) according to CAPRI criteria. Our improved protocol successfully predicts even the challenging protein–DNA complexes in the benchmark. Finally, our method is the first to readily dock multiple molecules (N > 2) simultaneously, pushing the limits of what is currently achievable in the field of protein–DNA docking.  相似文献   

2.
3.

Background

Many protein–protein interactions are mediated by a short linear motif. Usually, amino acid sequences of those motifs are known or can be predicted. It is much harder to experimentally characterize or predict their structure in the bound form. In this work, we test a possibility of using flexible docking of a short linear motif to predict the interaction interface of the EphB4-EphrinB2 complex (a system extensively studied for its significance in tumor progression).

Methods

In the modeling, we only use knowledge about the motif sequence and experimental structures of EphB4-EphrinB2 complex partners. The proposed protocol enables efficient modeling of significant conformational changes in the short linear motif fragment during molecular docking simulation. For the docking simulations, we use the CABS-dock method for docking fully flexible peptides to flexible protein receptors (available as a server at http://biocomp.chem.uw.edu.pl/CABSdock/). Based on the docking result, the protein–protein complex is reconstructed and refined.

Results

Using this novel protocol, we obtained an accurate EphB4-EphrinB2 interaction model.

Conclusions

The results show that the CABS-dock method may be useful as the primary docking tool in specific protein–protein docking cases similar to EphB4-EphrinB2 complex—that is, where a short linear motif fragment can be identified.
  相似文献   

4.
5.
6.
7.
8.
A novel method is proposed for predicting protein–protein interactions (PPIs) based on the meta approach, which predicts PPIs using support vector machine that combines results by six independent state-of-the-art predictors. Significant improvement in prediction performance is observed, when performed on Saccharomyces cerevisiae and Helicobacter pylori datasets. In addition, we used the final prediction model trained on the PPIs dataset of S. cerevisiae to predict interactions in other species. The results reveal that our meta model is also capable of performing cross-species predictions. The source code and the datasets are available at  相似文献   

9.
The Klotho is known as lifespan enhancing protein involved in antagonizing the effect of Wnt proteins. Wnt proteins are stem cell regulators, and uninterrupted exposure of Wnt proteins to the cell can cause stem and progenitor cell senescence, which may lead to aging. Keeping in mind the importance of Klotho in Wnt signaling, in silico approaches have been applied to study the important interactions between Klotho and Wnt3 and Wnt3a (wingless-type mouse mammary tumor virus (MMTV) integration site family members 3 and 3a). The main aim of the study is to identify important residues of the Klotho that help in designing peptides which can act as Wnt antagonists. For this aim, a protein engineering study is performed for Klotho, Wnt3 and Wnt3a. During the theoretical analysis of homology models, unexpected role of number of disulfide bonds and secondary structure elements has been witnessed in case of Wnt3 and Wnt3a proteins. Different in silico experiments were carried out to observe the effect of correct number of disulfide bonds on 3D protein models. For this aim, total of 10 molecular dynamics (MD) simulations were carried out for each system. Based on the protein–protein docking simulations of selected protein models of Klotho with Wnt3 and Wnt3a, different peptides derived from Klotho have been designed. Wnt3 and Wnt3a proteins have three important domains: Index finger, N-terminal domain and a patch of ~10 residues on the solvent exposed surface of palm domain. Protein–peptide docking of designed peptides of Klotho against three important domains of palmitoylated Wnt3 and Wnt3a yields encouraging results and leads better understanding of the Wnt protein inhibition by proposed Klotho peptides. Further in vitro studies can be carried out to verify effects of novel designed peptides as Wnt antagonists.  相似文献   

10.
11.
12.
13.
14.
In this study, the influences of initial settings, i.e. initial conformations, configurations and docking parameters, on docking results were investigated. The conformations used in the study were generated by the CAMDAS program. After the conformational search calculations, five structures were selected from the conformer groups according to their conformation energies and root mean square deviations against crystal structures; for example, the lowest energy conformer, as well as the closest and farthest conformers to the crystal structure, was retrieved. Several docking parameter settings were used (default, high speed, generating 50 poses). In this study, docking calculations were conducted using the GOLD, eHiTS, AutoDock, AutoDock vina, FRED and DOCK programs. The success rates of GOLD, eHiTS and FRED were better than those of AutoDock, AutoDock vina and DOCK. The docking results using the farthest conformations were worse than those obtained using other conformations, indicating that some conformation search for the ligand molecule should be performed before the docking calculations.  相似文献   

15.
Edwards TA  Wilson AJ 《Amino acids》2011,41(3):743-754
Protein–protein interactions (PPIs) play a central role in virtually all biological processes and have been the focus of intense investigation from structural molecular biology to cell biology for the majority of the last two decades and, more recently, are emerging as important targets for pharmaceutical intervention. A common motif found at the interface of PPIs is the α-helix, suggesting that, in the same way as the “lock and key” model has evolved for competitive inhibition of enzymes, it should be possible to elaborate “rule-based” approaches for inhibition of helix-mediated PPIs. This review will describe the biological function and structural features of a series of representative helix-mediated PPIs and discuss approaches that are being developed to target these interactions with small molecules that employ non-natural amino acids.  相似文献   

16.
The prediction of the complex structure of a small ligand with a protein, the so-called protein–ligand docking problem, is a central part of the rational drug design process. For this purpose, we introduce the docking algorithm PLANTS (Protein–Ligand ANT System), which is based on ant colony optimization, one of the most successful swarm intelligence techniques. We study the effectiveness of PLANTS for several parameter settings and present a direct comparison of PLANTS’s performance to a state-of-the-art program called GOLD, which is based on a genetic algorithm and frequently used in the pharmaceutical industry for this task. Last but not least, we also show that PLANTS can make effective use of protein flexibility giving example results on cross-docking and virtual screening experiments for protein kinase A. This article is based on a paper that won the best paper award at ANTS 2006, the 5th International Workshop on Ant Colony Optimization and Swarm Intelligence held in Brussels, Belgium, 2006. This article includes new types of experiments and also the possibility of considering flexibility of protein side-chains.  相似文献   

17.
In order to enhance the structure determination process of macromolecular assemblies by NMR, we have implemented long-range pseudocontact shift (PCS) restraints into the data-driven protein docking package HADDOCK. We demonstrate the efficiency of the method on a synthetic, yet realistic case based on the lanthanide-labeled N-terminal ε domain of the E. coli DNA polymerase III (ε186) in complex with the HOT domain. Docking from the bound form of the two partners is swiftly executed (interface RMSDs < 1 Å) even with addition of very large amount of noise, while the conformational changes of the free form still present some challenges (interface RMSDs in a 3.1–3.9 Å range for the ten lowest energy complexes). Finally, using exclusively PCS as experimental information, we determine the structure of ε186 in complex with the HOT-homologue θ subunit of the E. coli DNA polymerase III.  相似文献   

18.
Membrane proteins exhibit different affinities for different lipid species, and protein–lipid selectivity regulates the membrane composition in close proximity to the protein, playing an important role in the formation of nanoscale membrane heterogeneities. The sensitivity of Förster resonance energy transfer (FRET) for distances of 10 Å up to 100 Å is particularly useful to retrieve information on the relative distribution of proteins and lipids in the range over which protein–lipid selectivity is expected to influence membrane composition. Several FRET-based methods applied to the quantification of protein–lipid selectivity are described herein, and different formalisms applied to the analysis of FRET data for particular geometries of donor–acceptor distribution are critically assessed.  相似文献   

19.
20.
Reactive oxygen and nitrogen species (ROS and RNS) generated by cold atmospheric-pressure plasma could damage genomic DNA, although the precise types of these DNA damage induced by plasma are poorly characterized. Understanding plasma-induced DNA damage will help to elucidate the biological effect of plasma and guide the application of plasma in ROS-based therapy. In this study, it was shown that ROS and RNS generated by physical plasma could efficiently induce DNA-protein crosslinks (DPCs) in bacteria, yeast, and human cells. An in vitro assay showed that plasma treatment resulted in the formation of covalent DPCs by activating proteins to crosslink with DNA. Mass spectrometry and hydroperoxide analysis detected oxidation products induced by plasma. DPC formation were alleviated by singlet oxygen scavenger, demonstrating the importance of singlet oxygen in this process. These results suggested the roles of DPC formation in DNA damage induced by plasma, which could improve the understanding of the biological effect of plasma and help to develop a new strategy in plasma-based therapy including infection and cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号