首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
One of the experimental processes of functional proteomics is the analysis of protein interaction. Here, we review a new analytical platform, BIA–MS, for protein interaction analysis. BIA–MS is an integration of a surface plasmon resonance biosensor for real-time interaction analysis and mass spectrometry for the subsequent identification of interacting molecules.  相似文献   

2.
《Trends in biotechnology》2001,19(10):S28-S33
One of the experimental processes of functional proteomics is the analysis of protein interaction. Here, we review a new analytical platform, BIA–MS, for protein interaction analysis. BIA–MS is an integration of a surface plasmon resonance biosensor for real-time interaction analysis and mass spectrometry for the subsequent identification of interacting molecules.  相似文献   

3.
l-Homoarginine (hArg) has recently emerged as a novel cardiovascular risk factor and to herald a poor prognosis in heart failure patients. Here, we report on the development and thorough validation of gas chromatography–mass spectrometry (GC–MS) and gas chromatography–tandem mass spectrometry (GC–MS/MS) methods for the quantitative determination of hArg in biological samples, including human plasma, urine and sputum. For plasma and serum samples, ultrafiltrate (10 µL; cutoff, 10 kDa) was used. For urine samples, native urine (10 µL) was used. For sputum, protein precipitation by acetone was performed. hArg is derivatized to its methyl ester tri(N-pentafluoropropionyl) derivative; de novo synthesized trideutero-methyl ester hArg is used as the internal standard (IS). Alternatively, [guanidino-15N2]-arginine can be used as an IS. Quantitative analyses were performed after electron-capture negative-ion chemical ionization by selected-ion monitoring in GC–MS and selected-reaction monitoring in GC–MS/MS. We obtained very similar hArg concentrations by GC–MS and GC–MS/MS, suggesting that GC–MS suffices for accurate and precise quantification of hArg in biological samples. In plasma and serum samples of the same subjects very close hArg concentrations were measured. The plasma-to-serum hArg concentration ratio was determined to be 1.12 ± 0.21 (RSD, 19 %), suggesting that blood anticoagulation is not a major preanalytical concern in hArg analysis. In healthy subjects, the creatinine-corrected urinary excretion of hArg varies considerably (0.18 ± 0.22 µmol/mmol, mean ± SD, n = 19) unlike asymmetric dimethylarginine (ADMA, 2.89 ± 0.89 µmol/mmol). In urine, hArg correlated with ADMA (r = 0.475, P = 0.040); in average, subjects excreted in the urine about 17.5 times more ADMA than hArg. In plasma of healthy humans, the concentration of hArg is of the order of 2 µM. hArg may be a low-abundance constituent of human plasma proteins. The GC–MS and GC-MS/MS methods we report in this article are useful to study the physiology and pathology of hArg in experimental and clinical settings.  相似文献   

4.
Lifespan mutants of the nematode Caenorhabditis elegans are a much studied aging model, however, aging-related changes at the metabolome level remain largely unexplored. To identify metabolic features connected to mitochondrial dysfunction, a hallmark of aging and age-related disease, we analyzed a short-lived mitochondrial mutant (mev-1(kn1)), a long-lived mutant with enhanced cellular maintenance (ife-2(ok306)) and the novel double mutant ife-2(ok306);mev-1(kn1) which is normal-lived, possibly through attenuation of the metabolic mev-1 phenotype. Metabolomic analysis involved coupled gas chromatography–mass spectrometry with electron ionization (GC–EI–MS) and, in addition, recently introduced GC with soft atmospheric pressure chemical ionization coupled to time-of-flight mass spectrometry (GC–APCI–TOF–MS) to yield complementary mass spectrometric information for enhanced metabolite annotation. Multivariate analysis allowed distinction of mev-1 and ife-2 mutants from the wild type, while suggesting still another, distinct metabolic phenotype for the ife-2;mev-1 double mutant. In mev-1(kn1), disturbed energy metabolism was indicated by upset TCA cycle homeostasis, elevated glycolytic substrate and lactic acid levels as well as depletion of free amino acids pools. Surprisingly, these mitochondrially related changes were retained in the ife-2;mev-1 mutant, as were highly elevated levels of the dipeptide glycylproline indicative of increased collagen catabolism. However, the double mutant reverted mev-1(kn1) changes in uric acid and long-chain fatty alcohol metabolism, two pathways connected to the peroxisomal compartment. Our results are in line with recent evidence for a critical role of this organelle in aging and demonstrate the usefulness of non-targeted metabolomics approaches for detecting complex metabolic changes in the study of mitochondrial dysfunction.  相似文献   

5.
Urinary amino acid analysis is typically done by cation-exchange chromatography followed by post-column derivatization with ninhydrin and UV detection. This method lacks throughput and specificity. Two recently introduced stable isotope ratio mass spectrometric methods promise to overcome those shortcomings. Using two blinded sets of urine replicates and a certified amino acid standard, we compared the precision and accuracy of gas chromatography/mass spectrometry (GC–MS) and liquid chromatography–tandem mass spectrometry (LC–MS/MS) of propyl chloroformate and iTRAQ® derivatized amino acids, respectively, to conventional amino acid analysis. The GC–MS method builds on the direct derivatization of amino acids in diluted urine with propyl chloroformate, GC separation and mass spectrometric quantification of derivatives using stable isotope labeled standards. The LC–MS/MS method requires prior urinary protein precipitation followed by labeling of urinary and standard amino acids with iTRAQ® tags containing different cleavable reporter ions distinguishable by MS/MS fragmentation. Means and standard deviations of percent technical error (%TE) computed for 20 amino acids determined by amino acid analyzer, GC–MS, and iTRAQ®–LC–MS/MS analyses of 33 duplicate and triplicate urine specimens were 7.27 ± 5.22, 21.18 ± 10.94, and 18.34 ± 14.67, respectively. Corresponding values for 13 amino acids determined in a second batch of 144 urine specimens measured in duplicate or triplicate were 8.39 ± 5.35, 6.23 ± 3.84, and 35.37 ± 29.42. Both GC–MS and iTRAQ®–LC–MS/MS are suited for high-throughput amino acid analysis, with the former offering at present higher reproducibility and completely automated sample pretreatment, while the latter covers more amino acids and related amines.  相似文献   

6.
Recent studies from the author’s laboratory indicated that camel urine possesses antiplatelet activity and anti-cancer activity which is not present in bovine urine. The objective of this study is to compare the volatile and elemental components of bovine and camel urine using GC–MS and ICP–MS analysis. We are interested to know the component that performs these biological activities. The freeze dried urine was dissolved in dichloromethane and then derivatization process followed by using BSTFA for GC–MS analysis. Thirty different compounds were analyzed by the derivatization process in full scan mode. For ICP–MS analysis twenty eight important elements were analyzed in both bovine and camel urine. The results of GC–MS and ICP–MS analysis showed marked difference in the urinary metabolites. GC–MS evaluation of camel urine finds a lot of products of metabolism like benzene propanoic acid derivatives, fatty acid derivatives, amino acid derivatives, sugars, prostaglandins and canavanine. Several research reports reveal the metabolomics studies on camel urine but none of them completely reported the pharmacology related metabolomics. The present data of GC–MS suggest and support the previous studies and activities related to camel urine.  相似文献   

7.
Reversed phase and hydrophilic interaction chromatography (HILIC) were successfully coupled for the on-line extraction and quantitative analysis of peptides by ESI–LC–MS/MS. A total of 11 peptides were utilized to determine the conditions for proper focusing and separation on both dimensions. Minor modifications to the initial organic composition of the first reversed-phase dimension provided options between a comprehensive (generic) or more selective approach for peptide transfer to the second HILIC dimension. Ion-pairing with trifluoroacetic acid (TFA) provided adequate chromatographic retention and peak symmetry for the selected peptides on both C18 and HILIC. The resulting signal suppression from TFA was partially recovered by a post-column “TFA fix” using acetic acid yielding improvements in sensitivity. Minimal sample preparation aligned with standard on-line extraction procedures provided highly reproducible and robust results for over 300 sequential matrix injections. Final optimized conditions were successfully employed for the quantitation of peptide PTHrP (1–36) in rat K3EDTA plasma from 25.0 to 10,000 ng/mL using PTHrP (1–34) as the analog internal standard. This highly orthogonal two-dimensional configuration was found to provide the unique selectivity required to overcome issues with interfering endogenous components and minimize electrospray ionization effects in biological samples.  相似文献   

8.
9.
The present study describes the use of short columns to speed up LC–MS quantification in MS binding assays. The concept of MS binding assays follows closely the principle of traditional radioligand binding but uses MS for the quantification of bound marker thus eliminating the need for a radiolabelled ligand. The general strategy of increasing the throughput of this type of binding assay by the use of short columns is exemplified for NO 711 binding addressing GAT1, the most prevalent GABA transporter in the CNS. Employing short RP-18 columns with the dimension of 20 mm × 2 mm and 10 mm × 2 mm at flow rates up to 1000 μL/min in an isocratic mode retention times of 8–9 s and chromatographic cycle times of 18 s could be achieved. Based on the internal standard [2H10]NO 711 fast chromatography methods were developed for four different columns that enabled quantification of NO 711 in a range from 50 pM up to 5 nM directly out of reconstituted matrix samples without further sample preparation. A validation of the established methods with respect to linearity, intra- and inter-batch accuracy and precision showed that the requirements according to the FDA guideline for bioanalytical methods are met. Furthermore the established short column methods were applied to the quantification of NO 711 in saturation experiments. The results obtained (i.e., Kd- and Bmax-values) were almost identical as compared to those determined employing standard column dimension (55 mm × 2 mm).  相似文献   

10.
The proteome of rumen epithelial tissue was analysed by SDS-PAGE coupled with LC–MS/MS. 813 non-redundant proteins were identified of which 7.4 % featured membrane-spanning domains and 15.4 % harboured a signal peptide. According to the gene ontology annotation, the most abundant proteins exhibited binding activities related to their molecular functions, were proteins of cellular components or belonged to various metabolic processes. A predominant group of canonical pathways in the rumen epithelial tissue was identified using the IPA software. The GeLC–MS/MS approach was used to characterise the entire protein expression repertoire in rumen tissue, providing a more detailed understanding of the important biological processes in the rumen.  相似文献   

11.
Metabolomics has emerged as a key technique of modern life sciences in recent years. Two major techniques for metabolomics in the last 10 years are gas chromatography coupled to mass spectrometry (GC–MS) and liquid chromatography coupled to mass spectrometry (LC–MS). Each platform has a specific performance detecting subsets of metabolites. GC–MS in combination with derivatisation has a preference for small polar metabolites covering primary metabolism. In contrast, reversed phase LC–MS covers large hydrophobic metabolites predominant in secondary metabolism. Here, we present an integrative metabolomics platform providing a mean to reveal the interaction of primary and secondary metabolism in plants and other organisms. The strategy combines GC–MS and LC–MS analysis of the same sample, a novel alignment tool MetMAX and a statistical toolbox COVAIN for data integration and linkage of Granger Causality with metabolic modelling. For metabolic modelling we have implemented the combined GC–LC–MS metabolomics data covariance matrix and a stoichiometric matrix of the underlying biochemical reaction network. The changes in biochemical regulation are expressed as differential Jacobian matrices. Applying the Granger causality, a subset of secondary metabolites was detected with significant correlations to primary metabolites such as sugars and amino acids. These metabolic subsets were compiled into a stoichiometric matrix N. Using N the inverse calculation of a differential Jacobian J from metabolomics data was possible. Key points of regulation at the interface of primary and secondary metabolism were identified.  相似文献   

12.
Using an in solution based approach with a sub-proteomic fraction enriched in cardiac sarcomeric proteins; we identified protein abundance in ischemic and non-ischemic regions of rat hearts stressed by acute myocardial ischemia by ligating the left-anterior descending coronary artery in vivo for 1 h without reperfusion. Sub-cellular fractionation permitted more in depth analysis of the proteome by reducing the sample complexity. A series of differential centrifugations produced nuclear, mitochondrial, cytoplasmic, microsomal, and sarcomeric enriched fractions of ischemic and non-ischemic tissues. The sarcomeric enriched fractions were labeled with isobaric tags for relative quantitation (iTRAQ), and then fractionated with an Agilent 3100 OFFGEL fractionator. The OFFGEL fractions were run on a Dionex U-3000 nano LC coupled to a ThermoFinnigan LTQ running in PQD (pulsed Q dissociation) mode. The peptides were analyzed using two search engines MASCOT (MatrixScience), and MassMatrix with false discovery rate of < 5%. Compared to no fractionation prior to LC–MS/MS, fractionation with OFFGEL improved the identification of proteins approximately four-fold. We found that approximately 22 unique proteins in the sarcomeric enriched fraction had changed at least 20%. Our workflow provides an approach for discovery of unique biomarkers or changes in the protein profile of tissue in disorders of the heart.  相似文献   

13.
In order to exploit human blood as a source of protein disease biomarkers, robust analytical methods are needed to overcome the inherent molecular complexity of this bio-fluid. We present the coupling of label-free SAX chromatography and IMAC to a data-independent nanoLC–MS/MS (nanoLC–MSE) platform for analysis of blood plasma and serum proteins. The methods were evaluated using protein standards added at different concentrations to two groups of samples. The results demonstrate that both techniques enable accurate protein quantitation using low sample volumes and a minimal number of fractions. Combining both methods, 883 unique proteins were identified, of which 423 proteins showed high reproducibility. The two approaches resulted in identification of unique molecular signatures with an overlap of approximately 30%, thus providing complimentary information on sub-proteomes. These methods are potentially useful for systems biology, biomarker discovery, and investigation of phosphoproteins in blood.  相似文献   

14.
Molecular and Cellular Biochemistry - Aberrant structural formations of Cu/Zn superoxide dismutase enzyme (SOD1) are the probable mechanism by which circumscribed mutations in the SOD1 gene cause...  相似文献   

15.
Chemical synthesis of the deuterium isotope desmosine-d4 has been achieved. This isotopic compound possesses all four deuterium atoms at the alkanyl carbons of the alkyl amino acid substitution in the desmosine molecule and is stable toward acid hydrolysis; this is required in the measurement of two crosslinking molecules, desmosine and isodesmosine, as biomarkers of elastic tissue degradation. The degradation of elastin occurs in several widely prevalent diseases. The synthesized desmosine-d4 is used as the internal standard to develop an accurate and sensitive isotope-dilution liquid chromatography–tandem mass spectrometry analysis, which can serve as a generalized method for an accurate analysis of desmosine and isodesmosine as biomarkers in many types of biological tissues involving elastin degradation.  相似文献   

16.
Metabolite profiling is commonly performed by GC–MS of methoximated trimethylsilyl derivatives. The popularity of this technique owes much to the robust, library searchable spectra produced by electron ionization (EI). However, due to extensive fragmentation, EI spectra of trimethylsilyl derivatives are commonly dominated by trimethylsilyl fragments (e.g. m/z 73 and 147) and higher m/z fragment ions with structural information are at low abundance. Consequently different metabolites can have similar EI spectra, and this presents problems for identification of “unknowns” and the detection and deconvolution of overlapping peaks. The aim of this work is to explore use of positive chemical ionization (CI) as an adjunct to EI for GC–MS metabolite profiling. Two reagent gases differing in proton affinity (CH4 and NH3) were used to analyse 111 metabolite standards and extracts from plant samples. NH3-CI mass spectra were simple and generally dominated by [MH]+ and/or the adduct [M+NH4]+. For the 111 metabolite standards, m/z 73 and 147 were less than 3% of basepeak in NH3-CI and less than 30% of basepeak in CH4-CI. With CH4-CI, [MH]+ was generally present but at lower relative abundance than for NH3-CI. CH4-CI spectra were commonly dominated by losses of CH4 [M+1-16]+, 1–3 TMSOH [M+1-nx90]+, and combinations of CH4 and TMSOH losses [M+1-nx90-16]+. CH4-CI and NH3-CI mass spectra are presented for 111 common metabolites, and CI is used with real samples to help identify overlapping peaks and aid identification via determination of the pseudomolecular ion with NH3-CI and structural information with CH4-CI.  相似文献   

17.
18.
Measurement of imatinib plasma concentration can be useful to evaluate patient adherence to daily oral therapy, potential drug–drug interaction, treatment efficacy, and severe drug-related adverse events. The aim of this study was to correlate the two different blood level test methods, HPLC–UV and LC–MS/MS. We analyzed 162 plasma samples from patients treated with imatinib. We estimated the correlation between the two analytical methods on total data set and on five sets of patients grouped into different categories based on the drug-dose therapy. Finally, imatinib quantification was correlated with genetic data on the molecular response in monitoring follow-up of CML patients.  相似文献   

19.

Metabolite profiling is commonly performed by GC–MS of methoximated trimethylsilyl derivatives. The popularity of this technique owes much to the robust, library searchable spectra produced by electron ionization (EI). However, due to extensive fragmentation, EI spectra of trimethylsilyl derivatives are commonly dominated by trimethylsilyl fragments (e.g. m/z 73 and 147) and higher m/z fragment ions with structural information are at low abundance. Consequently different metabolites can have similar EI spectra, and this presents problems for identification of “unknowns” and the detection and deconvolution of overlapping peaks. The aim of this work is to explore use of positive chemical ionization (CI) as an adjunct to EI for GC–MS metabolite profiling. Two reagent gases differing in proton affinity (CH4 and NH3) were used to analyse 111 metabolite standards and extracts from plant samples. NH3-CI mass spectra were simple and generally dominated by [MH]+ and/or the adduct [M+NH4]+. For the 111 metabolite standards, m/z 73 and 147 were less than 3% of basepeak in NH3-CI and less than 30% of basepeak in CH4-CI. With CH4-CI, [MH]+ was generally present but at lower relative abundance than for NH3-CI. CH4-CI spectra were commonly dominated by losses of CH4 [M+1-16]+, 1–3 TMSOH [M+1-nx90]+, and combinations of CH4 and TMSOH losses [M+1-nx90-16]+. CH4-CI and NH3-CI mass spectra are presented for 111 common metabolites, and CI is used with real samples to help identify overlapping peaks and aid identification via determination of the pseudomolecular ion with NH3-CI and structural information with CH4-CI.

  相似文献   

20.
A highly sensitive and rapid method for the analysis of isradipine in human plasma using liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS) was developed. The procedure involves a simple liquid–liquid extraction of isradipine and amlodipine (IS, internal standard) with methyl-t-butyl ether after alkaline treatment and separation by RP-HPLC. Detection was performed by positive ion electrospray ionization (ESI) in multiple reaction monitoring (MRM) mode, monitoring the transitions m/z 372.1  m/z 312.2 and m/z 408.8  m/z 237.9, for quantification of isradipine and IS, respectively. The standard calibration curves showed good linearity within the range of 10 to 5000 pg/mL (r2  0.9998). The lower limit of quantitation (LLOQ) was 10 pg/mL. The retention times of isradipine (0.81 min) and IS (0.65 min) suggested the potential for high throughput of the proposed method. In addition, no significant metabolic compounds were found to interfere with the analysis. This method offered good precision and accuracy and was successfully applied for the pharmacokinetic and bioequivalence studies of 5 mg of sustained-release isradipine in 24 healthy Korean volunteers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号