首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To make the gold nanorod (AuNR) a better photoluminescence (PL) probe for cell imaging under two-photon excitation (TPE), the effect of the aspect ratio of AuNRs was studied. The AuNRs with the aspect ratios of 2.7, 3.2, 4.1, and 4.5 and correlated longitudinal surface plasmon resonance (LSPR) bands of 710, 760, 820, and 870 nm were compared. The approach of two-photon excited PL was used to measure the two-photon absorption cross section (TPACS) of these AuNRs in aqueous solutions. Under TPE of an 800-nm femtosecond laser, the TPACS of AuNRs with an aspect ratio of 3.2 was found to be the highest (about 3?×?109 GM), and that of AuNRs (aspect ratio of 2.7) was only 1.5?×?109 GM. The probe function of these two AuNRs was further compared in cell imaging studies using the human liver cancer cell (QGY) as the cell model. Both TPE PL image and confocal reflectance image of AuNR-loaded cells were acquired comparatively in measurements. The brightness and contrast of confocal reflectance images for these two AuNRs in cells are similar. In contrast, the PL images of cellular AuNRs (2.7) under TPE of 800 nm are weak but that of cellular AuNRs (3.2) is much better. These results show that when the LSPR band of AuNRs is coincided with the excitation wavelength, the TPACS of these AuNRs will be enhanced ensuring a good quality of cell imaging under TPE. The LSPR band is correlated to the aspect ratio of AuNRs. Therefore, in cell imaging studies with TPE, the aspect ratio effect of AuNRs should be taken into consideration.  相似文献   

2.
In this work, we present a simple and effective method to fabricate distance-controllable, Au nanorod (AuNR) chips thorough electrostatic assembly. Cetyltrimethylammonium bromide (CTAB)-capped AuNRs were immobilized on a hydroxyl-functionalized glass substrate by immersion of the glass into AuNR-suspension. The electrostatic surfacial assembly of AuNRs offers significant advantages over conventional thiol-induced chemistry, i.e., direct control of self-assembly of AuNRs, easy fabrication in ambient environment and most importantly, broad range of tunable inter-particle distance, ranging from 0.25 to 10 μm. The mechanism of time-dependant deposition process of AuNRs was described via competitive bindings of AuNRs and free CTAB molecules in AuNR-suspension. In addition, the electrostatically anchored AuNRs on a glass substrate provide sufficient stability under harsh experimental conditions with flow of basic/acidic solutions and organic solvents with different polarity. The feasibility of the AuNR-chips fabricated by the proposed method for single-nanoparticle plasmonic biosensors was demonstrated by the plasmonic measurement of aptamer-thrombin binding event. The corresponding limit of detection of thrombin molecule was found to be ~278 pM based on the signal to noise ratio of 4.  相似文献   

3.
Plasmon‐enhanced gold nanorod (AuNR) with high photothermal conversion efficiency is a promising light‐controllable nanodrug delivery system for cancer therapy. Understanding the mechanism for the light‐controllable drug release of AuNR delivery systems is important for the development of nanomedicine. In this study, the rhodamine B (RB) released from AuNR‐RB nanodelivery system was quantitated and visualized by using two‐photon luminescence (TPL) imaging combined with correlation spectroscopy. The photofragmentation of AuNR induced by femtosecond pulsed laser was revealed by TPL correlation spectroscopy when the laser energy was above the thermal damage threshold of AuNR, and the RB released from this nanodrug delivery system was visualized by TPL imaging. Furthermore, the photofragmentation‐induced release of RB from AuNR‐RB nanodelivery system was visualized in living MCF‐7 breast cancer cells by TPL imaging combined with correlation spectroscopy. These results provided a novel optical approach to quantify the release of drugs from gold nanocarriers in complex biological media.  相似文献   

4.
Aqueous mixtures of reaction centers of Rhodopseudomonas sphaeroides and gelatin were dried to form thin films. Following hydration, these films were stretched as much as two to three times their original length. Polarized absorption spectra showing linear dichroism were obtained for both unstretched and stretched films, with the planes and stretching axes of the films mounted in various geometries relative to the electric vector of the measuring beam. These data were analyzed in terms of the following model: Reaction centers possess an axis of symmetry that is fixed in relation to the reaction center structure. In unstretched films this axis is confined to the film plane and oriented at random within the plane. In stretched films the symmetry axis is aligned with the direction of stretching. In both preparations reaction centers are distributed randomly with respect to rotation about the axis of symmetry. The data are consistent with this model when the analysis acknowledges less than perfect orientation. For perfect orientation in a stretched film the model predicts uniaxial symmetry about the axis of stretching. The approach to this condition was examined with films stretched to different extents. Extrapolation yielded dichroic ratios for the ideal case of perfect orientation, and allowed calculation of the angles between the axis of symmetry and the various optical transition dipoles in the reaction center. This treatment included the two absorption bands of the bacteriochlorophyll ‘special pair’ (photochemical electron donor) in the Qx region, at 600 and 630 nm, which we were able to resolve in light minus dark difference spectra.  相似文献   

5.
DNA stretching on functionalized gold surfaces.   总被引:2,自引:2,他引:2       下载免费PDF全文
We describe a method for anchoring bacteriophage lambda DNA by one end to gold by Au-biotin-streptavidin-biotin-DNA bonds. DNA anchored to a microfabricated Au line could be aligned and stretched in flow and electric fields. The anchor was shown to resist a force of at least 11 pN, a linkage strong enough to allow DNA molecules of chromosome size to be stretched and aligned.  相似文献   

6.
Using absorption and fluorescence spectroscopy methods we obtained the results demonstrating alterations in spectral characteristics in supramolecular system composed of gold nanorods (AuNR) (10 × 38 nm) and complexes of human serum albumin (HSA) and 5,10,15,20-tetraphenylporphyrin (TPP). TPP fluorescence (λmax = 636 and 658 nm) was found to enhance. The dependence of fluorescence enhancing in time was of nonlinear nature. Maximum TPP fluorescence enhancing value was as high as 16% and it was achieved in 7 min after mixing the components. Simultaneously with TPP fluorescence enhancing we observed a decrease in HSA own fluorescence (λmax = 340 nm) and optical density reduction in maximum of longitudinal localized plasmon band of AuNR (λmax = 752 nm).  相似文献   

7.
Super-resolved cryogenic correlative light and electron tomography is an emerging method that provides both the single-molecule sensitivity and specificity of fluorescence imaging, and the molecular scale resolution and detailed cellular context of tomography, all in vitrified cells preserved in their native hydrated state. Technical hurdles that limit these correlative experiments need to be overcome for the full potential of this approach to be realized. Chief among these is sample heating due to optical excitation which leads to devitrification, a phase transition from amorphous to crystalline ice. Here we show that much of this heating is due to the material properties of the support film of the electron microscopy grid, specifically the absorptivity and thermal conductivity. We demonstrate through experiment and simulation that the properties of the standard holey carbon electron microscopy grid lead to substantial heating under optical excitation. In order to avoid devitrification, optical excitation intensities must be kept orders of magnitude lower than the intensities commonly employed in room temperature super-resolution experiments. We further show that the use of metallic films, either holey gold grids, or custom made holey silver grids, alleviate much of this heating. For example, the holey silver grids permit 20× the optical intensities used on the standard holey carbon grids. Super-resolution correlative experiments conducted on holey silver grids under these increased optical excitation intensities have a corresponding increase in the rate of single-molecule fluorescence localizations. This results in an increased density of localizations and improved correlative imaging without deleterious effects from sample heating.  相似文献   

8.
Abstract

Rod-shaped gold nanoparticles (‘nanorods’) have recently attracted widespread attention due to their unique optical properties and facile synthesis. In particular, they can support a longitudinal surface plasmon, which results in suspensions of them having a strong extinction peak in the upper visible or near-infrared parts of the spectrum. The position of this peak can be readily tuned by controlling the shape of the rods. In addition, the surface of the nanorods can be functionalized by a very wide variety of molecules. This has led to interest in their use as selective biomarkers in biodiagnostics or for selective targeting in photothermal thearapeutics. Here, we review the recent advances in the use of gold nanorods in these applications. Additionally, the information available regarding their biocompatibility is discussed.  相似文献   

9.
Zhang W  Ji Y  Meng J  Wu X  Xu H 《PloS one》2012,7(2):e31957
In this work, behaviors of positively-charged AuNRs in a highly metastatic tumor cell line MDA-MB-231 are examined based on UV-vis-NIR absorption spectroscopy in combination with inductively coupled plasma mass spectrometry (ICP-MS), transmission electron microscopy (TEM) and dark-field microscopic observation. It is found that characteristic surface plasmon resonance (SPR) peaks of AuNRs can be detected using spectroscopic method within living cells that have taken up AuNRs. The peak area of transverse SPR band is shown to be proportionally related to the amount of AuNRs in the cells determined with ICP-MS, which suggests a facile and real time quantification method for AuNRs in living cells. The shape of longitudinal SPR band in UV-vis-NIR spectrum reflects the aggregation state of AuNRs in the cells during the incubation period, which is proved by TEM and microscopic observations. Experimental results reveal that AuNRs are internalized by the cells rapidly; the accumulation, distribution and aggregation of AuNRs in the cells compartments are time and dose dependent. The established spectroscopic analysis method can not only monitor the behaviors of AuNRs in living cells but may also be helpful in choosing the optimum laser stimulation wavelength for anti-tumor thermotherapy.  相似文献   

10.
Cai  Zheng-jie  Liu  Gui-qiang  Liu  Zheng-qi  Liu  Xiao-shan  Pan  Ping-ping  Huang  Shan  Wang  Yan  Liu  Mu-lin  Gao  Huogui 《Plasmonics (Norwell, Mass.)》2016,11(2):683-688

The optical properties of a novel nanostructure consisting of a hexagonal array of aligned vertically three-layered metal-dielectric-metal nanodisks on a silver film are theoretically studied through the finite-difference time-domain method. The novel nanostructure exhibits three obvious optical transmission bands due to the excitation of subradiant plasmon modes, superradiant plasmon modes, and Fano resonances. Surface plasmon polaritons of the underlying Ag film also play a significant role on these three optical transmission bands via coupling with localized surface plasmons of nanodisk pairs. Moreover, the nanostructure also exhibits a good tunability of optical response by modifying the sizes of cylinders, the thickness of underlying metal film, and the dielectric constant of middle layer. These results demonstrate the nanostructure with great advantages in optical sensors and filters.

  相似文献   

11.
A low-cost and effective surface-enhanced Raman scattering (SERS) substrate consisting of aligned gold nanorods is obtained by stretching the poly(vinyl alcohol) nanorods composite film doped with the probe molecule. The SERS intensity of characteristic vibrational band of the probe is observed obviously dependent on the angle (θ) between incident polarization and major axis of nanorod. The relationship between them manifests a cos2 θ dependence. The result is illustrated from both the localized field enhancement and optical antenna effect of gold nanorod. The finite element method calculation is also performed to further confirm the conclusion.  相似文献   

12.
A novel biocomposite film (MWCNTs-PNDGAChi), which contains multiwalled carbon nanotubes (MWCNTs) along with the incorporation of poly(nordihydroguaiaretic acid) and chitosan copolymer (PNDGAChi), has been synthesized on gold electrode by potentiostatic methods. The presence of MWCNTs in the biocomposite film enhances PNDGAChi’s surface coverage concentration (Γ) on the electrode and decreases degradation of PNDGAChi during cycling. The biocomposite film also exhibits promising enhanced electrocatalytic activity toward the oxidation of biochemical compounds such as epinephrine (EP) and norepinephrine (NEP). Cyclic voltammetry was used for the measurement of electroanalytical properties of analytes by means of MWCNTs-PNDGAChi biocomposite film modified gold electrode. The sensitivity values of MWCNTs-PNDGAChi biocomposite film modified gold electrode are higher than the values obtained for PNDGAChi film modified gold electrode. Electrochemical quartz crystal microbalance studies reveal the enhancements in the functional properties of MWCNTs and PNDGAChi present in MWCNTs-PNDGAChi biocomposite film. Surface morphology of the biocomposite films was studied using scanning electron microscopy, atomic force microscopy, and scanning tunneling microscopy. The surface morphology results reveal that PNDGAChi incorporated on MWCNTs. Finally, flow injection analysis was used for the amperometric detection of EP and NEP at MWCNTs-PNDGAChi film modified screen printed carbon electrode.  相似文献   

13.
Aqueous mixtures of reaction centers of Rhodopseudomonas sphaeroides and gelatin were dried to form thin films. Following hydration, these films were stretched as much as two to three times their original length. Polarized absorption spectra showing linear dichroism were obtained for both unstretched and stretched films, with the planes and stretching axes of the films mounted in various geometries relative to the electric vector of the measuring beam. These data were analyzed in terms of the following model: Reaction centers possess an axis of symmetry that is fixed in relation to the reaction center structure. In unstretched films this axis is confined to the film plane and oriented at random within the plane. In stretched films the symmetry axis is aligned with the direction of stretching. In both preparations reaction centers are distributed randomly with respect to rotation about the axis of symmetry. The data are consistent with this model when the analysis acknowledges less than perfect orientation. For perfect orientation in a stretched film the model predicts uniaxial symmetry about the axis of stretching. The approach to this condition was examined with films stretched to different extents. Extrapolation yielded dichroic ratios for the ideal case of perfect orientation, and allowed calculation of the angles between the axis of symmetry and the various optical transition dipoles in the reaction center. This treatment included the two absorption bands of the bacteriochlorophyll 'special pair' (photochemical electron donor) in the Qx region, at 600 and 630 nm, which we were able to resolve in light minus dark difference spectra.  相似文献   

14.
Photothermal cancer therapy, as a prospective approach for local cancer treatment, is attracting increasing interests. In this paper, gold nanorods were conjugated with folate (folate/AuNRs), and their photothermal effects on hepatocellular carcinoma cell line (HepG2) using MTT assay, flow cytometry, as well as on the cellular morphology, cytoskeleton, cell surface adhesion, and stiffness detected at subcellular level by an atomic force microscope (AFM) were investigated. The results indicated that near-infrared laser-induced hyperthermia of folate/AuNRs could break the cell membrane integrity and homeostasis and then lead to the depolymerization of cytoskeleton and influx of intracellular Ca(2+). Thus, folate/AuNRs can be as effective and promising nanomaterials for photothermal therapy of folate receptor bearing tumor.  相似文献   

15.
Nanogold is a tiny gold probe, freely diffusible in cells and tissues, and is suitable for pre-embedding immunohistochemistry. However, it is necessary to develop Nanogold to a larger size so that it can be observed by conventional transmission electron microscopy. Silver enhancement is usually used for visualizing Nanogold, but the silver shell produced is unstable in OsO(4) and often becomes invisible after OsO(4) postfixation, which is necessary for good visualization of ultrastructure. We used silver enhancement with silver acetate, followed by gold toning with chloroauric acid, to replace the silver shell with a more stable gold in order to observe Nanogold after osmium fixation and Epon embedding. This technique is applicable to various intra- and extracellular antigens. For correlative observation of immunolabled specimens by light and electron microscopy, specimens adhered to slideglasses were embedded in Epon under non-adhesive plastic film. By heating the Epon sheets after polymerization, these supports were removed without difficulty and provided easy correlative observation.  相似文献   

16.

Thin films with tunable optical properties from yellow to metallic were prepared from a monolayer coating of silver nanoparticles (AgNP) onto a polyelectrolyte multilayer (PEM) thin film. The AgNP were synthesized using various concentrations of stabilizing polyelectrolytes leading to a competitive adsorption concept in which AgNP compete with excess polyelectrolytes to coat the cationic PEM top layer. The AgNP were synthesized by chemical reduction of Ag salts using poly(styrene 4-sulfonic acid-co-maleic acid) (PSS-co-MA) as stabilizing agent to produce nanoparticles coated with both a strong acid (sulfonic) and a weak acid (carboxylic) moiety. Although all the nanoparticle solutions displayed a characteristic bright yellow due to the localized surface plasmon band around 420 nm, the monolayer films of nanoparticles obtained after dipping displayed striking different optical properties. When using a high PSS-co-MA content in the solution, a pale-yellow film was obtained which color shifted to orange and metallic when the capping concentration was decreased from 0.25 to 0.001 mM. The optical properties of the AgNP film could be further changed by galvanic replacement of the Ag with gold ions to produce a gold monolayer. These results are interesting to produce surface with tunable catalytic properties, tunable optical properties, or to be used as primer for the metallization of polymeric surfaces.

  相似文献   

17.
A novel label-free colorimetric strategy was developed for ultrasensitive detection of heparin by using the super color quenching capacity of graphene oxide (GO). Hexadecyltrimethylammonium bromide (CTAB)-stabilized gold nanorods (AuNRs) could easily self-assembly onto the surface of GO through electrostatic interaction, resulting in decrease of the surface plasmon resonance (SPR) absorption and consequent color quenching change of the AuNRs from deep to light. Polycationic protamine was used as a medium for disturbing the electrostatic interaction between AuNRs and GO. The AuNRs were prevented from being adsorbed onto the surface of GO because of the stronger interaction between protamine and GO, showing a native color of the AuNRs. On the contrary, in the presence of heparin, which was more easily to combine with protamine, the AuNRs could self-assembly onto the surface of GO, resulting in the native color disappearing of AuNRs. As the concentration of heparin increased, the color of AuNRs would gradually fade until almost colorless. The amounts of self-assembly AuNRs were proportional to the concentration of heparin, and thereby the changes in the SPR absorption and color had been used to monitor heparin levels. Under optimized conditions, good linearity was obtained in a range of 0.02-0.28 μg/mL (R=0.9957), and a limit of detection was 5 ng/mL. The simultaneous possession of high sensitivity and selectivity, simplicity, rapidity, and visualization enabled this sensor to be potentially applicable for ultrasensitive and rapid on-site detection toward trace heparin.  相似文献   

18.
Modeling of optical properties of spherical core–shell gold–silver and silver–gold nanoparticles (NPs) was carried out based on extended Mie theory for radiation wavelengths in the range 300?≤?λ?≤?650 nm. Efficiency factors of absorption, scattering, and extinction of radiation by core–shell NPs in the range of the radii 5–100 nm and in the range of shell thicknesses 0–40 nm were calculated. Results show the nonlinear dependences of optical properties of core–shell gold–silver and silver–gold nanoparticles on radiation wavelengths, core radii, and shell thicknesses. These results can be applied for photonic technologies of nanoparticles.  相似文献   

19.
F. Livolant 《Chromosoma》1978,68(1):45-58
By using the optical properties of birefringence of DNA, the arrangement of these molecules has been studied in Dinoflagellate chromosomes and Dipteran polytene chromosomes. These latter are used, here, as a reference material. These observations have been made under a polarizing microscope on intact and stretched chromosomes. — Intact Dinoflagellate chromosomes show a positive birefringence, in contrast with polytene chromosomes bands which are negatively birefringent. From these observations one can deduce the preferential orientation of DNA filaments, in Dinoflagellates, normal to the chromosome axis, and in polytene chromosomes parallel to the same axis. — After stretching, these two kinds of chromosomes are negatively birefringent. In both cases, DNA molecules have been aligned along the stretch axis. — In Dinoflagellate chromosomes the passage from a positive to a negative birefringence is realized without any isotropic stage. The intermediary state presents a biaxial structure.  相似文献   

20.
Recent studies have demonstrated that nerves can be stimulated in a variety of ways by the transient heating associated with the absorption of infrared light by water in neuronal tissue. This technique holds great potential for replacing or complementing standard stimulation techniques, due to the potential for increased localization of the stimulus and minimization of mechanical contact with the tissue. However, optical approaches are limited by the inability of visible light to penetrate deep into tissues. Moreover, thermal modelling suggests that cumulative heating effects might be potentially hazardous when multiple stimulus sites or high laser repetition rates are used. The protocol outlined below describes an enhanced approach to the infrared stimulation of neuronal cells. The underlying mechanism is based on the transient heating associated with the optical absorption of gold nanorods, which can cause triggering of neuronal cell differentiation and increased levels of intracellular calcium activity. These results demonstrate that nanoparticle absorbers can enhance and/or replace the process of infrared neural stimulation based on water absorption, with potential for future applications in neural prostheses and cell therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号