首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Near-UV circular dichroic (CD) spectra of three colchicine analogues that differ at the C-10 position have been obtained in the presence and absence of tubulin. All three colchicine analogues show dramatic alterations in the low-energy near-UV CD band upon tubulin binding that cannot be mimicked by solvent, but in no event does the rotational strength of the CD band decrease to nearly zero as in the case of colchicine [Detrich, H. W., III, Williams, R. C., Jr., Macdonald, T. L., & Puett, D. (1981) Biochemistry 20, 5999-6005]. The effect of self-association of colchicine and one of the C-10 analogues, thiocolchicine, on the near-UV CD band was also investigated. A qualitative similarity was seen between the near-UV CD spectra of colchicine and thiocolchicine dimers and the spectra of these molecules bound to tubulin. These observations support the previous suggestion that ligands bound to the colchicine site on tubulin may be interacting with an aromatic amino acid in the colchicine binding site [Hastie, S. B., & Rava, R. P. (1989) J. Am. Chem. Soc. 110, 6993-7001].  相似文献   

2.
Two colchicine analogs with modifications only in the C ring are better inhibitors than colchicine of cell growth and tubulin polymerization. Radiolabeled thiocolchicine (with a thiomethyl instead of a methoxy group at position C-10) and N-acetylcolchinol O-methyl ether (NCME) (with a methoxy-substituted benzenoid instead of the methoxy-substituted tropone C ring) were prepared for comparison with colchicine. Scatchard analysis indicated a single binding site with KD values of 1.0-2.3 microM. Thiocolchicine was bound 2-4 times as rapidly as colchicine, but the activation energies of the reactions were nearly identical (18 kcal/mol for colchicine, 20 kcal/mol for thiocolchicine). NCME bound to tubulin in a biphasic reaction. The faster phase was 60 times as fast as colchicine binding at 37 degrees C, and a substantial reaction occurred at 0 degrees C. The rate of the faster phase of NCME binding changed relatively little as a function of temperature, so the activation energy was only 7.0 kcal/mol. Dissociation reactions were also evaluated, and at 37 degrees C the half-lives of the tubulin-drug complexes were 11 min for NCME, 24 h for thiocolchicine, and 27 h for colchicine. Relative dissociation rates as a function of temperature varied little among the drug complexes. Activation energies for the dissociation reactions were 30 kcal/mol for thiocolchicine, 27 kcal/mol for NCME, and 24 kcal/mol for colchicine. Comparison of the activation energies of association and dissociation yielded free energies for the binding reactions of -20 kcal/mol for NCME, -10 kcal/mol for thiocolchicine, and -6 kcal/mol for colchicine. The greater effectiveness of NCME and thiocolchicine as compared with colchicine in biological assays probably derives from their more rapid binding to tubulin and the lower free energies of their binding reactions.  相似文献   

3.
The interactions of tubulin with colchicine analogues in which the tropolone methyl ether ring had been transformed into a p-carbomethoxybenzene have been characterized. The analogues were allocolchicine (ALLO) and 2,3,4-trimethoxy-4'-carbomethoxy-1,1'-biphenyl (TCB), the first being transformed colchicine and the second transformed colchicine with ring B eliminated. The binding of both analogues has been shown to be specific for the colchicine binding site on tubulin by competition with colchicine and podophyllotoxin. Both analogues bind reversibly to tubulin with the generation of ligand fluorescence. The binding of ALLO is slow, the fluorescence reaching a steady state in the same time span as colchicine; that of TCB is rapid. The displacement of ALLO by podophyllotoxin proceeds with a half-life of ca. 40 min. Binding isotherms generated from gel filtration and fluorescence measurements have shown that both analogues bind to tubulin with a stoichiometry of 1 mol of analogue/mol of alpha-beta tubulin. The equilibrium binding constants at 25 degrees C have been found to be (9.2 +/- 2.5) x 10(5) M-1 for ALLO and (1.0 +/- 0.2) X 10(5) M-1 for TCB. Binding of both analogues was accompanied by quenching of protein fluorescence, perturbation of the far-ultraviolet circular dichroism of tubulin, and induction of the tubulin GTPase activity, similarly to colchicine binding. Both inhibited microtubule assembly in vitro, ALLO substoichiometrically, and both induced the abnormal cooperative polymerization of tubulin, which is characteristic of the tubulin-colchicine complex. Analysis in terms of the simple bifunctional ligand binding mechanism developed for colchicine [Andreu, J.M., & Timasheff, S.N. (1982) Biochemistry 21, 534-543] and comparison with the binding of the colchicine two-ring analogue, 2-methoxy-5-(2,3,4-trimethoxyphenyl)-2,4,6-cycloheptatrien-1-one [Andreu, J. M., Gorbunoff, M. J., Lee, J. C., & Timasheff, S. N. (1984) Biochemistry 23, 1742-1752], have shown that transformation of the tropolone methyl ether part of colchicine into p-carbomethoxybenzene weakens the standard free energy of binding to tubulin by 1.4 +/- 0.1 kcal/mol, while elimination of ring B weakens it by 1.0 +/- 0.1 kcal/mol. The roles of rings C and B of colchicine in the thermodynamic and kinetic mechanisms of binding to tubulin were analyzed in terms of these findings.  相似文献   

4.
Thermodynamics of podophyllotoxin binding to tubulin and its multiple points of attachment with tubulin has been studied in detail using isothermal titration calorimetry. The calorimetric enthalpy of the association of podophyllotoxin with tubulin is negative and occurs with a negative heat capacity change (DeltaC(p) = -2.47 kJ mol(-)(1) K(-)(1)). The binding is unique with a simultaneous participation of both hydrophobic and hydrogen-bonding forces with unfavorable negative entropic contribution at higher temperature, favored with an enthalpy-entropy compensation. Interestingly, the binding of 2-methoxy-5-(2',3',4'-trimethoxyphenyl)tropone (AC, a colchicine analogue without the B ring) with tubulin is enthalpy-favored. However, the podophyllotoxin-tubulin association depending upon the temperature of the reaction has a favorable entropic and enthalpic component, which resembles both B- and C-ring properties of colchicine. On the basis of the crystal structure of the podophyllotoxin-tubulin complex, distance calculations have indicated a possible interaction between threonine 179 of alpha-tubulin and the hydroxy group on the D ring of podophyllotoxin. To confirm the involvement of the oxalone moiety as well as the lactone ring of podophyllotoxin in tubulin binding, analogues of podophyllotoxin are synthesized with methoxy substitution at the 4' position of ring D along with its isomer and another analogue epimerized at ring E. From these results, involvement of oxalone as well as the lactone ring of the drug in a specific orientation inclusive of ring A is indicated for podophyllotoxin-tubulin binding. Therefore, podophyllotoxin, like colchicine, behaves as a bifunctional ligand having properties of both the B and C rings of colchicine by making more than one point of attachment with the protein tubulin.  相似文献   

5.
Thiocolchicine, a colchicine analog in which the C-10 methoxy is replaced with a thiomethyl moiety, was shown to bind with high affinity to the colchicine site on tubulin (Ka = 1.07 +/- 0.14 x 10(6) M-1 at 23 degrees C). Like colchicine, the association kinetics were biphasic, and the rate constants of both phases were temperature dependent. The rate constant of the fast phase of the association was 4 times greater than the rate constant for colchicine binding, and the activation energy was lower (19.1 +/- 1.8 kcal/mol). X-ray crystallographic analysis shows that thiocolchicine displays greater puckering of the tropone C ring than colchicine (Koerntgen, C. and Margulis, T. N. (1977) J. Pharm. Sci. 66, 1127-1131.). These results indicate that the conformation of the C ring may have little effect on the energetics of colchicinoids binding to tubulin.  相似文献   

6.
The limits of structural variation of the substituent in position 4' of ring C' of biphenyl colchicine analogues (ring C in colchicine) were probed by the synthesis of a number of analogues and the examination of their binding to tubulin and its consequences. Binding was found to require the location in three-dimensional space of the oxygen in the 4'-substituent at a locus not far distant from those of the colchicine ring C oxygens. All those analogues that bind to the colchicine site of tubulin induced the GTPase activity and inhibited microtubule assembly, those containing a carbonyl group substoichiometrically and the others stoichiometrically. A similar relation was found for the induction of the abnormal polymerization of the colchicine analogue-tubulin complex, with methoxy-containing compounds requiring a higher temperature to induce the polymerization. A concerted analysis of the binding thermodynamics of colchicine and its various analogues has shown full consistency with the previously proposed two-step binding pathway that involves two nonidentical binding moieties in the ligand [Andreu, J. M., & Timasheff, S. N. (1982) Biochemistry 21, 534-543]. Comparison of the binding parameters of colchicine, its des(ring B) analogue (MTC), and ring A and C compounds individually with the thermodynamic parameters deduced for the first steps of the bindings of colchicine and MTC [Engelborghs, Y., & Fitzgerald, T. J. (1987) J. Biol. Chem. 262, 5204-5209] have led to the conclusion that binding can occur by two pathways leading to the identical product. In the first pathway, ring A binds first; this is followed by a rate-determining thermodynamically indifferent reaction (protein conformation change), and finally a rapid binding of ring C. In the second pathway, the events are the same except that the order of binding of the rings is reversed. Colchicine, due to the steric hindrance of ring B, can follow only the second pathway. For MTC, both kinetic pathways are open and binding may be initiated by random first contact of either ring A or ring C.  相似文献   

7.
The roles of the oxygens in ring C of colchicine in its binding to tubulin were probed by a study of the interactions of two allocolchicine biphenyl analogues, 2,3,4,4'-tetramethoxy-1,1'-biphenyl (TMB) and 2,3,4-trimethoxy-4'-acetyl-1,1'-biphenyl (TKB), the first one containing a methoxy group in position 4', the second a keto group. Both analogues were found to bind specifically to the colchicine-binding site on tubulin in a rapidly reversible equilibrium. The standard free energies of binding at 25 degrees C were delta G zero (TKB) = 7.19 +/- 0.11 kcal mol-1 and delta G zero (TMB) = -6.76 +/- 0.22 kcal mol-1. The binding of TKB induced the same perturbation in protein circular dichroism at 220 nm as colchicine and allocolchicine, as well as quenching of protein tryptophan fluorescence. Binding of TMB did not affect the protein CD spectrum within experimental error and induced only a marginal quenching of protein fluorescence. Comparison with the binding properties of allocolchicine and its des(ring B) analogue 2,3,4-trimethoxy-4'-carbomethoxy-1,1'-biphenyl (TCB) [Medrano et al. (1989) Biochemistry 28, 5589-5599] has shown that the binding properties of the 4'-keto analogue (TKB) were closer to those of allocolchicine, even though the substituent in the 4'-position of TCB is identical with that of allocolchicine. It has been proposed that binding in the ring C subsite on tubulin, which is stabilized thermodynamically by stacking interactions, can be modulated in a nonidentical fashion by the carbonyl and the ether oxygens in the para position of ring C.  相似文献   

8.
The binding of [3H]podophyllotoxin to tubulin, measured by a DEAE-cellulose filter paper method, occurs with an affinity constant of 1.8 X 10(6) M-1 (37 degrees at pH 6.7). Like colchicine, approximately 0.8 mol of podophyllotixin are bound per mol of tubulin dimer, and the reaction is entropy-driven (43 cal deg-1 mol-1). At 37 degrees the association rate constant for podophyllotoxin binding is 3.8 X 10(6) M-1 h-1, approximtaely 10 times higher than for colchicine; this is reflected in the activation energies for binding which are 14.7 kcal/mol for podophyllotoxin and 20.3 kcal/mol for colchicine. The dissociation rate constant for the tubulin-podophyllotoxin complex is 1.9 h-1, and the affinity constant calculated from the ratio of the rates is close to that obtained by equilibrium measurements. Podophyllotxin and colchicine are mutually competitive inhibitors. This can be ascribed to the fact that both compounds have a trimethoxyphenyl ring and analogues of either compound with bulky substituents in their trimethoxyphenyl moiety are unable to inhibit the the binding of either of the two ligands. Tropolone, which inhibits colchicine binding competitively, has no effect on the podophyllotoxin/tubulin reaction. Conversely, podophyllotoxin does not influence tropolone binding. Moreover, the tropolone binding site of tubulin does not show the temperature and pH lability of the colchicine and podophyllotoxin domains, hence this lability can be ascribed to the trimethoxyphenyl binding region of tubulin. Since podophyllotoxin analogues with a modified B ring do not bind, it is concluded that both podophyllotoxin and colchicine each have at least two points of attachment to tubulin and that they share one of them, the binding region of the trimethoxyphenyl moiety.  相似文献   

9.
Structure-activity relationship studies have established that the A and C rings of colchicine comprise the minimum structural feature necessary for high affinity drug-tubulin binding. Thus, colchicine acts as a bifunctional ligand by making two points of attachment to the protein. Furthermore, analogues belonging to the iso series of colchicine are virtually inactive in binding to tubulin and inhibiting microtubule assembly. In the present study, we found that the substitution of a hydrophobic dansyl group on the B-ring side chain (C7 position) of isocolchicine reverses the structural alterations at the C ring and the newly synthesized -NH-dansyl isocolchicine restores the lost biological activity of the compound. It inhibits microtubule assembly efficiently with an IC(50) value of 10 microM and competes with [(3)H]colchicine for binding to tubulin. Moreover, although -NH-dansyl colchicine binding to tubulin involves two steps, the -NH-dansyl isocolchicine-tubulin interaction has been found to occur via a one-step process. Also, the affinity constant of the -NH-dansyl isocolchicine-tubulin interaction is roughly only 3 times lower than that of the -NH-dansyl colchicine-tubulin interaction. These results suggest that the enhanced microtubule inhibitory ability of -NH-dansyl isocolchicine is therefore related to the affinity of the drug-tubulin interaction and not to any conformational changes upon binding tubulin. We also observed that the competition of -NH-dansyl isocolchicine with [(3)H]colchicine for binding to tubulin was dependent on the tubulin concentration. In conclusion, this paper for the first time indicates that a biologically active bifuntional colchicine analogue can be designed where the drug binds tubulin through its A and B rings, while the C ring remains inactive.  相似文献   

10.
Tubulin is able to switch between a straight microtubule-like structure and a curved structure in complex with the stathmin-like domain of the RB3 protein (T2RB3). GTP hydrolysis following microtubule assembly induces protofilament curvature and disassembly. The conformation of the labile tubulin heterodimers is unknown. One important question is whether free GDP-tubulin dimers are straightened by GTP binding or if GTP-tubulin is also curved and switches into a straight conformation upon assembly. We have obtained insight into the bending flexibility of tubulin by analyzing the interplay of tubulin-stathmin association with the binding of several small molecule inhibitors to the colchicine domain at the tubulin intradimer interface, combining structural and biochemical approaches. The crystal structures of T2RB3 complexes with the chiral R and S isomers of ethyl-5-amino-2-methyl-1,2-dihydro-3-phenylpyrido[3,4-b]pyrazin-7-yl-carbamate, show that their binding site overlaps with colchicine ring A and that both complexes have the same curvature as unliganded T2RB3. The binding of these ligands is incompatible with a straight tubulin structure in microtubules. Analytical ultracentrifugation and binding measurements show that tubulin-stathmin associations (T2RB3, T2Stath) and binding of ligands (R, S, TN-16, or the colchicine analogue MTC) are thermodynamically independent from one another, irrespective of tubulin being bound to GTP or GDP. The fact that the interfacial ligands bind equally well to tubulin dimers or stathmin complexes supports a bent conformation of the free tubulin dimers. It is tempting to speculate that stathmin evolved to recognize curved structures in unassembled and disassembling tubulin, thus regulating microtubule assembly.  相似文献   

11.
J Wolff  J Hwang  D L Sackett  L Knipling 《Biochemistry》1992,31(16):3935-3940
Pure rat brain tubulin can be cross-linked by ultraviolet irradiation of tubulin-colchicine complexes at the high-wavelength maximum of colchicine to form covalent dimers greater than trimers greater than tetramers. With colchicine concentrations approximately 3 x 10(-4) M (mole ratio to tubulin 3-12) and irradiation for 5-10 min at 95-109 mW/cm2, the yield of dimers is 11-17% and of trimers is 4-6% of the total tubulin. The oligomers show polydispersity and anomalously high apparent molecular masses that converge toward expected values in low-density gels. Maximal dimer yields are obtained with MTC and the decreasing photosensitizing potency is MTC greater than colchicine greater than colchicide greater than isocolchicine greater than thiocolchicine. Single-ring troponoids also promote dimerization. Evidence is presented suggesting that the initial, low-affinity, binding step of colchicine and its analogues is sufficient to photosensitize tubulin dimerization.  相似文献   

12.
Isocolcemid, a colcemid analogue in which the positions of the C-ring methoxy and carbonyl are exchanged, is virtually inactive in binding to tubulin and inhibiting the formation of microtubule assembly. We have found that the substitution of a NBD group in the side chain of the B-ring of isocolcemid can reverse the effect of these structural alterations (at the C-ring) and the newly synthesized NBD-isocolcemid restores the lost biological activity. It inhibits microtubule assembly with an IC(50) of 12 microM and competes efficiently with [(3)H]colchicine, for binding to tubulin. NBD-isocolcemid has two binding sites on tubulin; one is characterized by fast binding, whereas the binding to the other site is slow. These two sites are independent and unrelated to each other. Colchicine and its analogues compete with NBD-isocolcemid for the slow site. Association and dissociation rate constants for the fast site, obtained from the stopped-flow measurements, are (7.37 +/- 0. 70) x 10(5) M(-1) s(-1) and 7.82 +/- 2.74 s(-1), respectively. While the interaction of colchicine and its analogues with tubulin involves two steps, NBD-isocolcemid binding to tubulin at the slow site has been found to be a one-step reaction. This is evident from the linear dependence of the observed rate constant (k(obs)) with both NBD-isocolcemid and tubulin concentrations. The interaction of NBD-isocolcemid with tubulin does not involve the conformational change of NBD-isocolcemid, as is evident from the unchanged CD spectra of the drug. The absence of enhanced GTPase activity of tubulin and the native-like protease cleavage pattern of the NBD-isocolcemid-tubulin complex suggest an unaltered conformation of tubulin upon NBD-isocolcemid binding to it as well. Implications of this on the mechanism of polymerization inhibition have been discussed.  相似文献   

13.
The interaction of tubulin with simple analogues of colchicine that contain both its tropolone and trimethoxyphenyl rings has been characterized, and the results were analyzed in terms of the simple bifunctional ligand model developed for the binding of colchicine [ Andreu , J. M., & Timasheff , S. N. (1982) Biochemistry 21, 534-543] on the basis of interactions of tubulin with single-ring analogues. The compound 2-methoxy-5-(2,3,4-trimethoxyphenyl)-2,4,6- cycloheptatrien -1-one has been found to bind reversibly to 0.86 +/- 0.06 site of purified calf brain tubulin with an equilibrium constant of (4.9 +/- 0.3) X 10(5) M-1 (25 degrees C), delta H degrees app = -1.6 +/- 0.7 kcal mol-1, and delta S degrees app = 20.5 +/- 2.5 eu. The binding appears specific for the colchicine site. The closely related compound 2-methoxy-5-[[3-(3,4,5-trimethoxyphenyl)-propionyl]amino] -2,4,6- cycloheptatrien -1-one interacts weakly with tubulin. Binding of the first analogue is accompanied by ligand fluorescence appearance, quenching of protein fluorescence, perturbation of the far-ultraviolet circular dichroism of tubulin, and induction of the tubulin GTPase activity, similarly to colchicine binding. Substoichiometric concentrations of the analogue inhibit microtubule assembly in vitro. Excess analogue concentration under microtubule-promoting conditions induces an abnormal cooperative polymerization of tubulin, similar to that of the tubulin-colchicine complex.  相似文献   

14.
We synthesized two chemically reactive A ring modified analogs of colchicine, 2-chloroacetyl-2-demethylthiocolchicine (2-CTC) and 3-chloroacetyl-3-demethylthiocolchicine (3-CTC). Both are similar to colchicine as inhibitors of tubulin polymerization and act as competitive inhibitors of colchicine binding (apparent Ki values, 3 microM). [14C]-labeled 2-CTC and 3-CTC bound to tubulin at 37 degrees C but not at 0 degree C, and bound drug formed covalent bond(s) with tubulin. The binding and covalent reactions were inhibited by podophyllotoxin. About 60% of the bound 3-CTC rapidly formed a covalent bond with tubulin. With 2-CTC the covalent reaction was slower than the binding reaction, and only one-third of the bound 2-CTC reacted covalently with tubulin. The ratio of radiolabel in beta-tubulin to that in alpha-tubulin was about 4:1 with both 2-CTC and 3-CTC.  相似文献   

15.
Isocolchicine is a structurally related isomer of colchicine altered in the methoxytropone C ring. In spite of virtual structural homology of colchicine and isocolchicine, isocolchicine is commonly believed to be inactive in binding to tubulin and inhibiting microtubule assembly. We have found that isocolchicine does indeed bind to the colchicine site on tubulin, as demonstrated by its ability to competitively inhibit [3H]colchicine binding to tubulin with a KI approximately 400 microM. Isocolchicine inhibits tubulin assembly into microtubules with an I50 of about 1 mM, but the affinity of isocolchicine for the colchicine receptor site, 5.5 +/- 0.9 x 10(3) M-1 at 23 degrees C, is much less (approximately 500-fold) than that of colchicine. Unlike colchicine, isocolchicine binds rapidly, and the absorption and fluorescence properties of the complex are only modestly altered compared to free ligand. It is proposed that the binding of isocolchicine to tubulin may be rationalized either in terms of conformational states of colchicinoids when liganded to tubulin or by the structural requirements for C-10 substituents for high affinity binding to the colchicine receptor.  相似文献   

16.
Membrane-bound tubulin in brain and thyroid tissue.   总被引:26,自引:0,他引:26  
Brain and thyroid tissue contain membrane-bound colchicine-binding activity that is not due to contamination by loosely bound cytoplasmic tubulin. This activity can be solubilized to the extent of 80 to 90% by treatment with 0.2% Nonidet P-40 with retention of colchicine binding. Extracts so obtained contain a prominent protein band in disc gel electrophoresis that co-migrates with tubulin. Membranes, and the solubilized protein therefrom, exhibit ligand binding properties like tubulin; for colchicine the KA is approximately 1 X 10(6) M-1 in brain and approximately 0.6 X 10(6) M-1 in thyroid; for vinblastine the KA is approximately 8 X 10(6) M-1 for both tissues; and for podophyllotoxin the Ki is approximately 2 X 10(-6) M for both tissues. Displacement by analogues of colchicine is of the same order as for soluble tubulin. Although membrane-bound colchicine-binding activity shows greater thermal stability and a higher optimum binding temperature (54 degrees versus 37 degrees) than soluble tubulin, this appears to be the result of the membrane environment since the solubilized binding activity behaves like the soluble tubulin. Antibody against soluble brain tubulin reacts with membranes and solubulized colchicine-binding activity from both brain and thyroid gland. We conclude that brain and thyroid membrane preparations contain firmly bound tubulin or a very similar protein.  相似文献   

17.
A new photoaffinity analogue of colchicine, (2-nitro-4-azidophenyl)deacetylcolchicine (NAPDAC), bound to two classes of sites on bovine renal tubulin and photolabeled both the alpha- and beta-subunits. The apparent Ki for the photoaffinity analogue was 1.40 +/- 0.17 microM (mean +/- SD, n = 3) as measured by competition with [3H] colchicine. Values of the apparent KdS for the two sites, as measured by the direct binding of the [3H]NAPDAC to tubulin, were 0.48 +/- 0.11 microM and 11.6 +/- 3.5 microM (mean +/- SD, n = 6), and the corresponding stoichiometries of binding of the two sites were 0.25 +/- 0.06 and 1.3 +/- 0.4 mol/mol of tubulin (mean +/- SD, n = 6). NAPDAC was a potent inhibitor of microtubule formation as detected by electron microscopy. When tubulin was photolabeled with NAPDAC at 25 degrees C, 15 +/- 3 mol % (mean +/- SD, n = 6) of the [3H]NAPDAC was covalently bound to the alpha-subunit, and 67 +/- 9 mol % (mean +/- SD, n = 6) was covalently bound to the beta-subunit. Since NAPDAC is a mixture of two interconvertible diastereomers, the photoincorporation of each was also examined. One diastereomer photolabeled both alpha- and beta-tubulin; however, the other did not significantly photolabel either subunit. Tubulin photolabeled with NAPDAC (1:1 mole ratio) exhibited a 23% decrease in colchicine binding. Preblocking and prephotolysis experiments with colchicine, NAPDAC, or ANPAH-CLC [Williams et al. (1985) J. Biol. Chem. 260, 13794-13802] provided evidence for conformational changes in tubulin upon colchicine binding. Peptide maps of [3H]NAPDAC-labeled alpha- and beta-tubulin, using Staphylococcus aureus V8 protease, demonstrated the presence of NAPDAC in one peptide of the alpha-subunit and in five peptides of the beta-subunit as detected by autoradiography. NAPDAC provides the first direct evidence for two colchicine binding sites on tubulin.  相似文献   

18.
Anion-induced increases in the affinity of colcemid binding to tubulin   总被引:1,自引:0,他引:1  
Colcemid binds tubulin rapidly and reversibly in contrast to colchicine which binds tubulin relatively slowly and essentially irreversibly. At 37 degrees C the association rate constant for colcemid binding is 1.88 X 10(6) M-1 h-1, about 10 times higher than that for colchicine; this is reflected in the activation energies for binding which are 51.4 kJ/mol for colcemid and 84.8 kJ/mol for colchicine. Scatchard analysis indicates two binding sites on tubulin having different affinities for colcemid. The high-affinity site (Ka = 0.7 X 10(5) M-1 at 37 degrees C) is sensitive to temperature and binds both colchicine and colcemid and hence they are mutually competitive inhibitors. The low-affinity site (Kb = 1.2 X 10(4) M-1) is rather insensitive to temperature and binds only colcemid. Like colchicine, 0.6 mol of colcemid are bound/mol of tubulin dimer (at the high-affinity site) and the reaction is entropy driven (163 J K-1 mol-1). Similar to colchicine, colcemid binding to tubulin is stimulated by certain anions (viz. sulfate and tartrate) but by a different mechanism. Colcemid binding affinity at the lower-affinity site of tubulin is increased in the presence of ammonium sulfate. Interestingly, the lower-affinity site on tubulin for colcemid, even when converted to higher affinity in presence of ammonium sulfate, is not recognized by colchicine. We conclude that tubulin possesses two binding sites, one of which specifically recognized the groups present on the B-ring of colchicine molecule and is effected by the ammonium sulfate, whereas the higher-affinity site, which could accommodate both colchicine and colcemid, possibly recognized the A and C ring of colchicine.  相似文献   

19.
The bicyclic colchicine analogue 2-methoxy-5-(2',3',4'-trimethoxyphenyl)-2,4,6-cycloheptatrien-1-on e (MTC) has been used to study the thermodynamics of specific ligand binding to the colchicine site of tubulin, employing isothermal reaction microcalorimetry. The binding of MTC to purified calf brain tubulin, in 10 mM sodium phosphate buffer, pH 7.0, is characterized by delta H degree = -19 +/- 1 kJ.mol-1, delta G degree = -31.8 +/- 0.6 kJ.mol-1, and delta S degree = 43 +/- 5 J.mol-1.K-1 at 298 K, with a slight variation in the temperature range from 283 to 308 K. The binding thermodynamics of colchicine and allocolchicine are similar to MTC under the conditions examined, suggesting related molecular interactions of the three ligands with the protein binding site. The standard enthalpy changes of binding of colchicine and MTC at 308 K coincide within experimental error. Therefore the more favorable free energy change of binding of colchicine must come from a larger binding entropy change (by about 20 J.mol-1.K-1). This difference could be attributed to the presence of the middle ring of colchicine, which is absent in MTC. Consistently, a similar entropy change is observed by the comparison of allocolchicine to MTC binding at several temperatures. In addition, allocolchicine binding is about 6 kJ.mol-1 less exothermic than MTC binding, which could be attributed to the presence in allocolchicine of a substituted phenyl ring instead of the colchicine-MTC tropolone ring. The present results and analysis are fully compatible with the previously proposed bifunctional binding of colchicine and MTC (through their trimethoxybenzene and tropolone moieties) to a bifocal protein binding site, and also with a partial immobilization of intramolecular rotation of MTC upon binding, which in colchicine is already constrained by its middle ring (Andreu, J. M., Gorbunoff, M. J., Lee, J. C., and Timasheff, S. (1984) Biochemistry 23, 1742-1752).  相似文献   

20.
We have previously found (Ludue?a, R. F., and Roach, M. C. (1981b) Biochemistry 20, 4444-4450) that colchicine and podophyllotoxin inhibit the alkylation of tubulin by iodo[14C]acetamide and the formation of an intrachain cross-link in the beta-tubulin subunit by N,N'-ethylenebis(iodoacetamide) (EBI). It was not clear whether these effects were due to conformational changes in tubulin induced by drugs or to direct steric blockage of the sulfhydryl groups involved. In an effort to characterize further these phenomena, we have examined the effects of single-ring and bicyclic analogues of colchicine on the reaction of tubulin with iodo[14C]acetamide and EBI. We have found that neither the A-ring analogues, 3,4,5-trimethoxybenzyl alcohol, 3,4,5-trimethoxybenzaldehyde, 2,3,4-trimethoxybenzaldehyde, and benzaldehyde, nor the C-ring analogues, tropolone and tropolone methyl ether, inhibited alkylation. In contrast, colchicine, podophyllotoxin, and nocodazole and the bicyclic analogues, 5-(2',3',4'-trimethoxyphenyl)-2-methoxytropone and combretastatin, inhibited tubulin alkylation. Since the presence of a bond joining the A and C rings seems to be the determining factor in the suppression of alkylation, it is likely that inhibition by colchicine of the reaction with iodo[14C] acetamide is due largely to a conformational change induced by colchicine. A different pattern was obtained when the effects on cross-link formation by EBI were examined. Here, all the A-ring analogues, the bicyclic analogues, and colchicine, podophyllotoxin, and nocodazole all inhibited formation of the cross-link, whereas the C-ring analogue tropolone methyl ether did not inhibit cross-link formation. Since compounds whose effect on alkylation is markedly different have the same effect on cross-link formation, it is possible that this effect is a steric one and that perhaps the A-ring of colchicine binds to tubulin very close to one of the sulfhydryls involved in the intrachain cross-link formed by EBI in beta-tubulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号