首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Francois JA  Kumaran S  Jez JM 《The Plant cell》2006,18(12):3647-3655
In plants, association of O-acetylserine sulfhydrylase (OASS) and Ser acetyltransferase (SAT) into the Cys synthase complex plays a regulatory role in sulfur assimilation and Cys biosynthesis. We determined the crystal structure of Arabidopsis thaliana OASS (At-OASS) bound with a peptide corresponding to the C-terminal 10 residues of Arabidopsis SAT (C10 peptide) at 2.9-A resolution. Hydrogen bonding interactions with key active site residues (Thr-74, Ser-75, and Gln-147) lock the C10 peptide in the binding site. C10 peptide binding blocks access to OASS catalytic residues, explaining how complex formation downregulates OASS activity. Comparison with bacterial OASS suggests that structural plasticity in the active site allows binding of SAT C termini with dissimilar sequences at structurally similar OASS active sites. Calorimetric analysis of the effect of active site mutations (T74S, S75A, S75T, and Q147A) demonstrates that these residues are important for C10 peptide binding and that changes at these positions disrupt communication between active sites in the homodimeric enzyme. We also demonstrate that the C-terminal Ile of the C10 peptide is required for molecular recognition by At-OASS. These results provide new insights into the molecular mechanism underlying formation of the Cys synthase complex and provide a structural basis for the biochemical regulation of Cys biosynthesis in plants.  相似文献   

2.
The biosynthesis of cysteine in bacteria and plants is carried out by a two-step pathway, catalyzed by serine acetyltransferase (SAT) and O-acetylserine sulfhydrylase (OASS; O-acetylserine [thiol] lyase). The aerobic form of OASS forms a tight bienzyme complex with SAT in vivo, termed cysteine synthase. We have determined the crystal structure of OASS in complex with a C-terminal peptide of SAT required for bienzyme complex formation. The binding site of the peptide is at the active site of OASS, and its C-terminal carboxyl group occupies the same anion binding pocket as the alpha-carboxylate of the O-acetylserine substrate of OASS. These results explain the partial inhibition of OASS by SAT on complex formation as well as the competitive dissociation of the complex by O-acetylserine.  相似文献   

3.
Kumaran S  Jez JM 《Biochemistry》2007,46(18):5586-5594
Cysteine biosynthesis in plants is partly regulated by the physical association of O-acetylserine sulfhydrylase (OASS) and serine acetyltransferase (SAT). Interaction of OASS and SAT requires only the 10 C-terminal residues of SAT. Here we analyze the thermodynamics of formation of a complex of Arabidopsis thaliana OASS (AtOASS) and the C-terminal ligand of AtSAT (C10 peptide) as a function of temperature and salt concentration using fluorescence spectroscopy and isothermal titration calorimetry (ITC). Our results suggest that the C-terminus of AtSAT provides the major contribution to the total binding energy in the plant cysteine synthase complex. The C10 peptide binds to the AtOASS homodimer in a 2:1 complex. Interaction between AtOASS and the C10 peptide is tight (Kd = 5-100 nM) over a range of temperatures (10-35 degrees C) and NaCl concentrations (0.02-1.3 M). AtOASS binding of the C10 peptide displays negative cooperativity at higher temperatures. ITC studies reveal compensating changes in the enthalpy and entropy of binding that also depend on temperature. The enthalpy of interaction has a significant temperature dependence (DeltaCp = -401 cal mol-1 K-1). The heat capacity change and salt dependence studies suggest that hydrophobic interactions drive formation of the AtOASS.C10 peptide complex. The potential regulatory effect of temperature on the plant cysteine synthase complex is discussed.  相似文献   

4.
Cysteine plays a major role in the antioxidative defense mechanisms of the human parasite Entameoba histolytica. The major route of cysteine biosynthesis in this parasite is the condensation of O-acetylserine with sulfide by the de novo cysteine biosynthetic pathway involving two key enzymes O-acetyl-L-serine sulfhydrylase (OASS) and serine acetyl transferase (SAT). The crystal structure of native OASS from Entameoba histolytica (EhOASS) has been determined at 1.86 A resolution and in complex with its product cysteine at 2.4 A resolution. In comparison with other known OASS structures, insertion in the N-terminal region and C-terminal helix reveal critical differences, which may influence the protein-protein interactions. In spite of lacking chloride binding site at the dimeric interface, the N-terminal extension compared with other known cysteine synthases, participates in dimeric interactions in an interesting domain swapping manner, enabling it to form a stronger dimer. Sulfate is bound in the active site of the native structure, which is replaced by cysteine in the cysteine bound form causing reorientation of the small N-terminal domain and thus closure of the active site. Ligand binding constants of OAS, Cys, and Met with EhOASS are comparable with other known OASS indicating similar active site arrangement and dynamics. The cysteine complexed structure represents the snapshot of the enzyme just before releasing the final product with a closed active site. The C-terminal helix positioning in the EhOASS may effect its interactions with EhSAT and thus influencing the formation of the cysteine synthase complex in this organism.  相似文献   

5.
Yi H  Juergens M  Jez JM 《The Plant cell》2012,24(6):2696-2706
Plants produce cyanide (CN-) during ethylene biosynthesis in the mitochondria and require β-cyanoalanine synthase (CAS) for CN- detoxification. Recent studies show that CAS is a member of the β-substituted alanine synthase (BSAS) family, which also includes the Cys biosynthesis enzyme O-acetylserine sulfhydrylase (OASS), but how the BSAS evolved distinct metabolic functions is not understood. Here we show that soybean (Glycine max) CAS and OASS form α-aminoacrylate reaction intermediates from Cys and O-acetylserine, respectively. To understand the molecular evolution of CAS and OASS in the BSAS enzyme family, the crystal structures of Gm-CAS and the Gm-CAS K95A mutant with a linked pyridoxal phosphate (PLP)-Cys molecule in the active site were determined. These structures establish a common fold for the plant BSAS family and reveal a substrate-induced conformational change that encloses the active site for catalysis. Comparison of CAS and OASS identified residues that covary in the PLP binding site. The Gm-OASS T81M, S181M, and T185S mutants altered the ratio of OASS:CAS activity but did not convert substrate preference to that of a CAS. Generation of a triple mutant Gm-OASS successfully switched reaction chemistry to that of a CAS. This study provides new molecular insight into the evolution of diverse enzyme functions across the BSAS family in plants.  相似文献   

6.
O-acetylserine sulfhydrylase (OASS) catalyzes the final step of cysteine biosynthesis from O-acetylserine (OAS) and inorganic sulfide in plants and bacteria. Bioinformatics analyses combined with activity assays enabled us to annotate the two putative genes of Microcystis aeruginosa PCC 7806 to CysK1 and CysK2, which encode the two 75% sequence-identical OASS paralogs. Moreover, we solved the crystal structures of CysK1 at 2.30 ? and cystine-complexed CysK2 at 1.91 ?, revealing a quite similar overall structure that belongs to the family of fold-type II PLP-dependent enzymes. Structural comparison indicated a significant induced fit upon binding to the cystine, which occupies the binding site for the substrate OAS and blocks the product release tunnel. Subsequent enzymatic assays further confirmed that cystine is a competitive inhibitor of the substrate OAS. Moreover, multiple-sequence alignment revealed that the cystine-binding residues are highly conserved in all OASS proteins, suggesting that this auto-inhibition of cystine might be a universal mechanism of cysteine biosynthesis pathway.  相似文献   

7.
Cysteine biosynthetic genes are up-regulated in the persistent phase of Mycobacterium tuberculosis, and the corresponding enzymes are therefore of interest as potential targets for novel antibacterial agents. cysK1 is one of these genes and has been annotated as coding for an O-acetylserine sulfhydrylase. Recombinant CysK1 is a pyridoxal phosphate (PLP)-dependent enzyme that catalyzes the conversion of O-acetylserine to cysteine. The crystal structure of the enzyme was determined to 1.8A resolution. CysK1 belongs to the family of fold type II PLP enzymes and is similar in structure to other O-acetylserine sulfhydrylases. We were able to trap the alpha-aminoacrylate reaction intermediate and determine its structure by cryocrystallography. Formation of the aminoacrylate complex is accompanied by a domain rotation resulting in active site closure. The aminoacrylate moiety is bound in the active site via the covalent linkage to the PLP cofactor and by hydrogen bonds of its carboxyl group to several enzyme residues. The catalytic lysine residue is positioned such that it can protonate the Calpha-carbon atom of the aminoacrylate only from the si-face, resulting in the formation of L-cysteine. CysK1 is competitively inhibited by a four-residue peptide derived from the C-terminal of serine acetyl transferase. The crystallographic analysis reveals that the peptide binds to the enzyme active site, suggesting that CysK1 forms an bi-enzyme complex with serine acetyl transferase, in a similar manner to other bacterial and plant O-acetylserine sulfhydrylases. The structure of the enzyme-peptide complex provides a framework for the design of strong binding inhibitors.  相似文献   

8.
Jurgenson CT  Burns KE  Begley TP  Ealick SE 《Biochemistry》2008,47(39):10354-10364
The structure of the protein complex CysM-CysO from a new cysteine biosynthetic pathway found in the H37Rv strain of Mycobacterium tuberculosis has been determined at 1.53 A resolution. CysM (Rv1336) is a PLP-containing beta-replacement enzyme and CysO (Rv1335) is a sulfur carrier protein with a ubiquitin-like fold. CysM catalyzes the replacement of the acetyl group of O-acetylserine by CysO thiocarboxylate to generate a protein-bound cysteine that is released in a subsequent proteolysis reaction. The protein complex in the crystal structure is asymmetric with one CysO protomer binding to one end of a CysM dimer. Additionally, the structures of CysM and CysO were determined individually at 2.8 and 2.7 A resolution, respectively. Sequence alignments with homologues and structural comparisons with CysK, a cysteine synthase that does not utilize a sulfur carrier protein, revealed high conservation of active site residues; however, residues in CysM responsible for CysO binding are not conserved. Comparison of the CysM-CysO binding interface with other sulfur carrier protein complexes revealed a similarity in secondary structural elements that contribute to complex formation in the ThiF-ThiS and MoeB-MoaD systems, despite major differences in overall folds. Comparison of CysM with and without bound CysO revealed conformational changes associated with CysO binding.  相似文献   

9.
A new crystal structure of O-acetylserine sulfhydrylase (OASS) has been solved with chloride bound at an allosteric site and sulfate bound at the active site. The bound anions result in a new "inhibited" conformation, that differs from the "open" native or "closed" external aldimine conformations. The allosteric site is located at the OASS dimer interface. The new inhibited structure involves a change in the position of the "moveable domain" (residues 87-131) to a location that differs from that in the open or closed forms. Formation of the external aldimine with substrate is stabilized by interaction of the alpha-carboxyl group of the substrate with a substrate-binding loop that is part of the moveable domain. The inhibited conformation prevents the substrate-binding loop from interacting with the alpha-carboxyl group, and hinders formation of the external Schiff base and thus subsequent chemistry. Chloride may be an analog of sulfide, the physiological inhibitor. Finally, these results suggest that OASS represents a new class of PLP-dependent enzymes that is regulated by small anions.  相似文献   

10.
O‐acetylserine sulfhydrylase (OASS) and cystathionine β‐synthase (CBS) are members of the PLP‐II family, and involved in L‐cysteine production. OASS produces L‐cysteine via a de novo pathway while CBS participates in the reverse transsulfuration pathway. O‐acetylserine‐dependent CBS (OCBS) was previously identified as a new member of the PLP‐II family, which are predominantly seen in bacteria. The bacterium Helicobacter pylori possess only one OASS (hp0107) gene and we showed that the protein coded by this gene actually functions as an OCBS and utilizes L‐homocysteine and O‐acetylserine (OAS) to produce cystathionine. HpOCBS did not show CBS activity with the substrate L‐serine and required OAS exclusively. The HpOCBS structure in complex with methionine showed a closed cleft state, explaining the initial mode of substrate binding. Sequence and structural analyses showed differences between the active sites of OCBS and CBS, and explain their different substrate preferences. We identified three hydrophobic residues near the active site of OCBS, corresponding to one serine and two tyrosine residues in CBSs. Mutational studies were performed on HpOCBS and Saccharomyces cerevisiae CBS. A ScCBS double mutant (Y158F/Y226V) did not display activity with L‐serine, indicating indispensability of these polar residues for selecting substrate L‐serine, however, did show activity with OAS.  相似文献   

11.

Background

O-acetyl serine sulfhydrylase (OASS) is a pyridoxal phosphate (PLP) dependent enzyme catalyzing the last step of the cysteine biosynthetic pathway. Here we analyze and investigate the factors responsible for recognition and different conformational changes accompanying the binding of various ligands to OASS.

Methods

X ray crystallography was used to determine the structures of OASS from Entamoeba histolytica in complex with methionine (substrate analog), isoleucine (inhibitor) and an inhibitory tetra-peptide to 2.00 Å, 2.03 Å and 1.87 Å resolutions, respectively. Molecular dynamics simulations were used to investigate the reasons responsible for the extent of domain movement and cleft closure of the enzyme in presence of different ligands.

Results

Here we report for the first time an OASS-methionine structure with an unmutated catalytic lysine at the active site. This is also the first OASS structure with a closed active site lacking external aldimine formation. The OASS-isoleucine structure shows the active site cleft in open state. Molecular dynamics studies indicate that cofactor PLP, N88 and G192 form a triad of energy contributors to close the active site upon ligand binding and orientation of the Schiff base forming nitrogen of the ligand is critical for this interaction.

Conclusions

Methionine proves to be a better binder to OASS than isoleucine. The β branching of isoleucine does not allow it to reorient itself in suitable conformation near PLP to cause active site closure.

General significance

Our findings have important implications in designing better inhibitors against OASS across all pathogenic microbial species.  相似文献   

12.
The crystal structure of cystathionine gamma-lyase (CGL) from yeast has been solved by molecular replacement at a resolution of 2.6 A. The molecule consists of 393 amino acid residues and one PLP moiety and is arranged in the crystal as a tetramer with D2 symmetry as in other related enzymes of the Cys-Met-metabolism PLP-dependent family like cystathionine beta-lyase (CBL). A structure comparison with other family members revealed surprising insights into the tuning of enzymatic specificity between the different family members. CGLs from yeast or human are virtually identical at their active sites to cystathionine gamma-synthase (CGS) from E. coli. Both CGLs and bacterial CGSs exhibit gamma-synthase and gamma-lyase activities depending on their position in the metabolic pathway and the available substrates. This group of enzymes has a glutamate (E333 in yeast CGL) which binds to the distal group of cystathionine (CTT) or the amino group of cysteine. Plant CGSs use homoserine phosphate instead of O-succinyl-homoserine as one substrate. This is reflected by a partially different active site structure in plant CGSs. In CGL and CBL the pseudosymmetric substrate must dock at the active site in different orientations, with S in gamma-position (CBL) or in delta-position (CGL). The conserved glutamate steers the substrate as seen in other CGLs. In CBLs this position is occupied by either tyrosine or hydrophobic residues directing binding of CTT such that S is in the in gamma-position. In methionine gamma-lyase a hydrophic patch operates as recognition site for the methyl group of the methionine substrate.  相似文献   

13.
The three-dimensional crystal structure of recombinant annexin Gh1 from Gossypium hirsutum (cotton fibre) has been determined and refined to the final R-factor of 0.219 at the resolution of 2.1 A. This plant annexin consists of the typical 'annexin fold' and is similar to the previously solved bell pepper annexin Anx24(Ca32), but significant differences are seen when compared to the structure of nonplant annexins. A comparison with the structure of the mammalian annexin AnxA5 indicates that canonical calcium binding is geometrically possible within the membrane loops in domains I and II of Anx(Gh1) in their present conformation. All plant annexins possess a conserved tryptophan residue in the AB loop of the first domain; this residue was found to adopt both a loop-in and a loop-out conformation in the bell pepper annexin Anx24(Ca32). In Anx(Gh1), the conserved tryptophan residue is in a surface-exposed position, half way between both conformations observed in Anx24(Ca32). The present structure reveals an unusual sulfur cluster formed by two cysteines and a methionine in domains II and III, respectively. While both cysteines adopt the reduced thiolate forms and are separated by a distance of about 5.5 A, the sulfur atom of the methionine residue is in their close vicinity and apparently interacts with both cysteine sulfur atoms. While the cysteine residues are conserved in at least five plant annexins and in several mammalian members of the annexin family of proteins, the methionine residue is conserved only in three plant proteins. Several of these annexins carrying the conserved residues have been implicated in oxidative stress response. We therefore hypothesize that the cysteine motif found in the present structure, or possibly even the entire sulfur cluster, forms the molecular basis for annexin function in oxidative stress response.  相似文献   

14.
O-acetylserine sulfhydrylase (OASS) is a key enzyme involved in the pathway of the cysteine biosynthesis. The gene of OASS from Acidithiobacillus ferrooxidans ATCC 23270 was cloned and expressed in E. coli, the soluble protein was purified by one-step affinity chromatography to apparent homogeneity. Colors and UV–vis scanning results of the recombinant protein confirmed that it was a pyridoxal 5′-phosphate (PLP)-containing protein. Sequence alignment and site-directed mutation of the enzyme revealed that the cofactor PLP is covalently bound in Schiff base linkage with K30, as well as the two residues H150 and H168 were the crucial residues for PLP binding and stabilization.  相似文献   

15.
BACKGROUND: Peptide methionine sulphoxide reductases catalyze the reduction of oxidized methionine residues in proteins. They are implicated in the defense of organisms against oxidative stress and in the regulation of processes involving peptide methionine oxidation/reduction. These enzymes are found in numerous organisms, from bacteria to mammals and plants. Their primary structure shows no significant similarity to any other known protein. RESULTS: The X-ray structure of the peptide methionine sulphoxide reductase from Escherichia coli was determined at 3 A resolution by the multiple wavelength anomalous dispersion method for the selenomethionine-substituted enzyme, and it was refined to 1.9 A resolution for the native enzyme. The 23 kDa protein is folded into an alpha/beta roll and contains a large proportion of coils. Among the three cysteine residues involved in the catalytic mechanism, Cys-51 is positioned at the N terminus of an alpha helix, in a solvent-exposed area composed of highly conserved amino acids. The two others, Cys-198 and Cys-206, are located in the C-terminal coil. CONCLUSIONS: Sequence alignments show that the overall fold of the peptide methionine sulphoxide reductase from E. coli is likely to be conserved in many species. The characteristics observed in the Cys-51 environment are in agreement with the expected accessibility of the active site of an enzyme that reduces methionine sulphoxides in various proteins. Cys-51 could be activated by the influence of an alpha helix dipole. The involvement of the two other cysteine residues in the catalytic mechanism requires a movement of the C-terminal coil. Several conserved amino acids and water molecules are discussed as potential participants in the reaction.  相似文献   

16.
IscS catalyzes the fragmentation of l-cysteine to l-alanine and sulfane sulfur in the form of a cysteine persulfide in the active site of the enzyme. In Escherichia coli IscS, the active site cysteine Cys(328) resides in a flexible loop that potentially influences both the formation and stability of the cysteine persulfide as well as the specificity of sulfur transfer to protein substrates. Alanine-scanning substitution of this 14 amino acid region surrounding Cys(328) identified additional residues important for IscS function in vivo. Two mutations, S326A and L333A, resulted in strains that were severely impaired in Fe-S cluster synthesis in vivo. The mutant strains were deficient in Fe-S cluster-dependent tRNA thionucleosides (s(2)C and ms(2)i(6)A) yet showed wild type levels of Fe-S-independent thionucleosides (s(4)U and mnm(5)s(2)U) that require persulfide formation and transfer. In vitro, the mutant proteins were similar to wild type in both cysteine desulfurase activity and sulfur transfer to IscU. These results indicate that residues in the active site loop can selectively affect Fe-S cluster biosynthesis in vivo without detectably affecting persulfide delivery and suggest that additional assays may be necessary to fully represent the functions of IscS in Fe-S cluster formation.  相似文献   

17.
Cysteine biosynthesis, achieved by the sequential reaction of two enzymes, serine acetyltransferase and O-acetylserine (thiol) lyase (OASTL), represents the final step of sulfur assimilation pathway in plants and bacteria. The two enzymes form a bi-enzymatic cysteine synthase complex through specific protein-protein interactions. To identify the amino acids important for cysteine synthase complex formation, several mutations in bacterial OASTL were designed. Effects of mutagenesis were verified in a yeast two-hybrid model that allowed monitoring both, protein-protein interactions and the enzymatic activity of OASTL.  相似文献   

18.
Escherichia coli CsdB is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes both cysteine desulfuration and selenocysteine deselenation. The enzyme has a high specific activity for L-selenocysteine relative to L-cysteine. On the other hand, its paralog, IscS, exhibits higher activity for L-cysteine, which acts as a sulfur donor during the biosynthesis of the iron-sulfur cluster and 4-thiouridine. The structure of CsdB complexed with L-propargylglycine was determined by X-ray crystallography at 2.8 A resolution. The overall polypeptide fold of the complex is similar to that of the uncomplexed enzyme, indicating that no significant structural change occurs upon formation of the complex. In the complex, propargylglycine forms a Schiff base with PLP, providing the features of the external aldimine formed in the active site. The Cys364 residue, which is essential for the activity of CsdB toward L-cysteine but not toward L-selenocysteine, is clearly visible on a loop of the extended lobe (Thr362-Arg375) in all enzyme forms studied, in contrast to the corresponding disordered loop (Ser321-Arg332) of the Thermotoga maritima NifS-like protein, which is closely related to IscS. The extended lobe of CsdB has an 11-residue deletion compared with that of the NifS-like protein. These facts suggest that the restricted flexibility of the Cys364-anchoring extended lobe in CsdB may be responsible for the ability of the enzyme to discriminate between selenium and sulfur.  相似文献   

19.
The O-acetylserine sulfhydrylase (OASS) from Salmonella typhimurium catalyzes a beta-replacement reaction in which the beta-acetoxy group of O-acetyl-L-serine (OAS) is replaced by bisulfide to give L-cysteine and acetate. The kinetic mechanism of OASS is ping-pong with a stable alpha-aminoacrylate intermediate. The enzyme is a homodimer with one pyridoxal 5'-phosphate (PLP) bound per subunit deep within the protein in a cleft between the N- and C-terminal domains of each of the monomers. All of the active site residues are contributed by a single subunit. The enzyme cycles through open and closed conformations as it catalyzes its reaction with structural changes largely limited to a subdomain of the N-terminal domain. The elimination of acetic acid from OAS is thought to proceed via an anti-E2 mechanism, and the only catalytic group identified to date is lysine 41, which originally participates in Schiff base linkage to PLP. The transition state for the elimination of acetic acid is thought to be asynchronous and earlier for Cbeta-O bond cleavage than for Calpha-H bond cleavage.  相似文献   

20.
Ornithine decarboxylase (ODC) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the rate-determining step in the biosynthesis of polyamines. ODC is a proven drug target to treat African sleeping sickness. The x-ray crystal structure of Trypanosoma brucei ODC in complex with d-ornithine (d-Orn), a substrate analog, and G418 (Geneticin), a weak non-competitive inhibitor, was determined to 2.5-A resolution. d-Orn forms a Schiff base with PLP, and the side chain is in a similar position to that observed for putrescine and alpha-difluoromethylornithine in previous T. brucei ODC structures. The d-Orn carboxylate is positioned on the solvent-exposed side of the active site (si face of PLP), and Gly-199, Gly-362, and His-197 are the only residues within 4.2 A of this moiety. This structure confirms predictions that the carboxylate of d-Orn binds on the si face of PLP, and it supports a model in which the carboxyl group of the substrate l-Orn would be buried on the re face of the cofactor in a pocket that includes Phe-397, Tyr-389, Lys-69 (methylene carbons), and Asp-361. Electron density for G418 was observed at the boundary between the two domains within each ODC monomer. A ten-amino acid loop region (392-401) near the 2-fold axis of the dimer interface, which contributes several residues that form the active site, is disordered in this structure. The disordering of residues in the active site provides a potential mechanism for inhibition by G418 and suggests that allosteric inhibition from this site is feasible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号