首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of studies of Saccharomyces cerevisiae have revealed RAD51-independent recombination events. These include spontaneous and double-strand break-induced recombination between repeated sequences, and capture of a chromosome arm by break-induced replication. Although recombination between inverted repeats is considered to be a conservative intramolecular event, the lack of requirement for RAD51 suggests that repair can also occur by a nonconservative mechanism. We propose a model for RAD51-independent recombination by one-ended strand invasion coupled to DNA synthesis, followed by single-strand annealing. The Rad1/Rad10 endonuclease is required to trim intermediates formed during single-strand annealing and thus was expected to be required for RAD51-independent events by this model. Double-strand break repair between plasmid-borne inverted repeats was less efficient in rad1 rad51 double mutants than in rad1 and rad51 strains. In addition, repair events were delayed and frequently associated with plasmid loss. Furthermore, the repair products recovered from the rad1 rad51 strain were primarily in the crossover configuration, inconsistent with conservative models for mitotic double-strand break repair.  相似文献   

2.
An ectopic recombination system using ura3 heteroalleles varying in size from 80 to 960 bp has been used to examine the effect of substrate length on spontaneous mitotic recombination. The ura3 heteroalleles were positioned either on nonhomologous chromosomes (heterochromosomal repeats) or as direct or inverted repeats on the same chromosome (intrachromosomal repeats). While the intrachromosomal events occur at rates at least 2 orders of magnitude greater than the corresponding heterochromosomal events, the recombination rate for each type of repeat considered separately exhibits a linear dependence on substrate length. The linear relationships allow estimation of the corresponding minimal efficient processing segments, which are approximately 250 bp regardless of the relative positions of the repeats in the yeast genome. An examination of the distribution of recombination events into simple gene conversion versus crossover events indicates that reciprocal exchange is more sensitive to substrate size than is gene conversion.  相似文献   

3.
F. Prado  A. Aguilera 《Genetics》1995,139(1):109-123
We have constructed novel DNA substrates (one inverted and three direct repeats) based on the same 0.6-kb repeat sequence to study deletions and inversions in Saccharomyces cerevisiae. Spontaneous deletions occur six to eight times more frequently than inversions, irrespective of the distance between the repeats. This difference can be explained by the observation that deletion events can be mediated by a recombination mechanism that can initiate within the intervening sequence of the repeats. Spontaneous and double-strand break (DSB) -induced deletions occur as RAD52-dependent and RAD52-independent events. Those deletion events initiated through a DSB in the unique intervening sequence require the Rad1/Rad10 endonuclease only if the break is distantly located from the flanking DNA repeats. We propose that deletions can occur as three types of recombination events: the conservative RAD52-dependent reciprocal exchange and the nonconservative events, one-ended invasion crossover, and single-strand annealing (SSA). We suggest that one-ended invasion is RAD52 dependent, whereas SSA is RAD52 independent. Whereas deletions, like inversions, occur through reciprocal exchange, deletions can also occur through SSA or one-ended invasion. We propose that the contribution of reciprocal exchange and one-ended invasion crossover vs. SSA events to overall spontaneous deletions is a feature specific for each repeat system, determined by the initiation event and the availability of the Rad52 protein. We discuss the role of the Rad1/Rad10 endonuclease on the initial steps of one-ended invasion crossover and SSA as a function of the location of the initiation event relative to the repeats. We also show that the frequency of recombination between repeats is the same independent of their location (whether on circular plasmids, linear minichromosomes, or natural chromosomes) and have similar RAD52 dependence.  相似文献   

4.
An intrachromosomal recombination assay that monitors events between alleles of the ade2 gene oriented as inverted repeats was developed. Recombination to adenine prototrophy occurred at a rate of 9.3 X 10(-5)/cell/generation. Of the total recombinants, 50% occurred by gene conversion without crossing over, 35% by crossover and 15% by crossover associated with conversion. The rate of recombination was reduced 3,000-fold in a rad52 mutant, but the distribution of residual recombination events remained similar to that seen in the wild type strain. In rad51 mutants the rate of recombination was reduced only 4-fold. In this case, gene conversion events unassociated with a crossover were reduced 18-fold, whereas crossover events were reduced only 2.5-fold. A rad51 rad52 double mutant strain showed the same reduction in the rate of recombination as the rad52 mutant, but the distribution of events resembled that seen in rad51. From these observations it is concluded that (i) RAD52 is required for high levels of both gene conversions and reciprocal crossovers, (ii) that RAD51 is not required for intrachromosomal crossovers, and (iii) that RAD51 and RAD52 have different functions, or that RAD52 had functions in addition to those of the Rad51/Rad52 protein complex.  相似文献   

5.
R. J. Bollag  R. M. Liskay 《Genetics》1988,119(1):161-169
Recombination in mammalian cells is thought to involve both reciprocal and nonreciprocal modes of exchange, although rigorous proof is lacking due to the inability to recover all products of an exchange. To investigate further the relationship between these modes of exchange, we have analyzed intrachromosomal recombination between duplicated herpes simplex virus thymidine kinase (HSV tk) mutant alleles arranged as inverted repeats in cultured mouse L cells. In crosses between inverted repeats, a single intrachromatid reciprocal exchange leads to inversion of the sequence between the crossover sites and recovery of both genes involved in the event. The majority of recombinant products do not display such inversion and are thus consistent with a nonreciprocal mode of recombination (gene conversion). The remaining products display the sequence inversion predicted for intrachromatid reciprocal exchange. In light of the fact that intrachromatid exchanges occur, the rarity of intrachromatid double reciprocal exchanges strengthens the interpretation that the majority of events in this and previous investigations involve gene conversion. Furthermore, in accord with prediction, one-third of the reciprocal recombinants (inversions) display associated gene conversion. This association suggests that reciprocal and nonreciprocal modes of exchange are mechanistically related in mammalian cells. Finally, the occurrence of inversion recombinants suggests that intrachromosomal recombination can be a conservative (nondestructive) process.  相似文献   

6.
Inverted DNA repeats: a source of eukaryotic genomic instability.   总被引:17,自引:5,他引:12       下载免费PDF全文
While inverted DNA repeats are generally acknowledged to be an important source of genetic instability in prokaryotes, relatively little is known about their effects in eukaryotes. Using bacterial transposon Tn5 and its derivatives, we demonstrate that long inverted repeats also cause genetic instability leading to deletion in the yeast Saccharomyces cerevisiae. Furthermore, they induce homologous recombination. Replication plays a major role in the deletion formation. Deletions are stimulated by a mutation in the DNA polymerase delta gene (pol3). The majority of deletions result from imprecise excision between small (4- to 6-bp) repeats in a polar fashion, and they often generate quasipalindrome structures that subsequently may be highly unstable. Breakpoints are clustered near the ends of the long inverted repeats (< 150 bp). The repeats have both intra- and interchromosomal effects in that they also create hot spots for mitotic interchromosomal recombination. Intragenic recombination is 4 to 18 times more frequent for heteroalleles in which one of the two mutations is due to the insertion of a long inverted repeat, compared with other pairs of heteroalleles in which neither mutation has a long repeat. We propose that both deletion and recombination are the result of altered replication at the basal part of the stem formed by the inverted repeats.  相似文献   

7.
Tn4430 is a distinctive transposon of the Tn3 family that encodes a tyrosine recombinase (TnpI) to resolve replicative transposition intermediates. The internal resolution site of Tn4430 (IRS, 116 bp) contains two inverted repeats (IR1 and IR2) at the crossover core site, and two additional TnpI binding motifs (DR1 and DR2) adjacent to the core. Deletion analysis demonstrated that DR1 and DR2 are not required for recombination in vivo and in vitro. Their function is to provide resolution selectivity to the reaction by stimulating recombination between directly oriented sites on a same DNA molecule. In the absence of DR1 and/or DR2, TnpI-mediated recombination of supercoiled DNA substrates gives a mixture of topologically variable products, while deletion between two wild-type IRSs exclusively produces two-noded catenanes. This demonstrates that TnpI binding to the accessory motifs DR1 and DR2 contributes to the formation of a specific synaptic complex in which catalytically inert recombinase subunits act as architectural elements to control recombination sites pairing and strand exchange. A model for the organization of TnpI/IRS recombination complex is presented.  相似文献   

8.
Illegitimate (nonhomologous) recombination requires little or no sequence homology between recombining DNAs and has been regarded as being a process distinct from homologous recombination, which requires a long stretch of homology between recombining DNAs. Under special conditions in Escherichia coli, we have found a new type of illegitimate recombination that requires an interaction between homologous DNA sequences. It was detected when a plasmid that carried 2-kb-long inverted repeats was subjected to type II restriction in vitro and type I (EcoKI) restriction in vivo within a delta rac recBC recG ruvC strain. Removal of one of the repeats or its replacement with heterologous DNA resulted in a reduction in the level of recombination. The recombining sites themselves shared, at most, a few base pairs of homology. Many of the recombination events joined a site in one of the repeats with a site in another repeat. In two of the products, one of the recombining sites was at the end of one of the repeats. Removal of one of the EcoKI sites resulted in decreased recombination. We discuss the possibility that some structure made by homologous interaction between the long repeats is used by the EcoKI restriction enzyme to promote illegitimate recombination. The possible roles and consequences of this type of homologous interaction are discussed.  相似文献   

9.
Intrachromosomal gene conversion has not shown a strong association with reciprocal exchanges. However, reciprocal exchanges do occur between intrachromosomal repeats. To understand the relationship between reciprocal exchange and gene conversion in repeated sequences the recombination behavior of an inverted repeat was studied. We have found that in one orientation a single copy of the kanr gene of the bacterial transposon Tn903 flanked by part of the inverted repeats IS903 does not give G418 resistance in Saccharomyces cerevisiae. A reciprocal exchange in the IS903 repeats inverts the kanr gene, which then gives G418 resistance in a single copy. Using this as a selection for intrachromosomal reciprocal exchange we have introduced multiple restriction site heterologies into the IS903 repeats and examined the crossover products for associated gene conversions. Approximately 50% of crossovers, both in mitosis and meiosis, were associated with a gene conversion. This suggests that these crossovers result from an intermediate that gives a gene conversion in 50% of the events, that is, both reciprocal exchange and gene conversion between repeated sequences have a common origin. The data are most consistent with a heteroduplex mismatch repair mechanism.  相似文献   

10.
A plasmid containing inverted repeats is constructed in Bacillus subtilis. Insertion of DNA fragments into the plasmid inverted repeats results either in the precise excision of the insert or in its duplication in the opposite inverted repeat. These rearrangements are due to the presence of inverted repeats only. Two recombination events are possibly responsible for these phenomena. During the first step of the recombination two plasmid monomers form a dimer molecule. During the second step the intramolecular recombination between the direct repeats in the dimer structure leads to the formation of two rearranged plasmid monomers devoid of insertion or containing two DNA inserts. Proposed dimeric intermediate is unstable in B. subtilis. However, it is isolated from Escherichia coli recA, cells. Plasmids containing the inverted repeats can serve as a model to study plasmid recombination in B. subtilis cells.  相似文献   

11.
M. J. Mahan  J. R. Roth 《Genetics》1989,121(3):433-443
The role of recBC functions has been tested for three types of chromosomal recombination events: (1) recombination between direct repeats to generate a deletion, (2) recombination between a small circular fragment and the chromosome, and (3) recombination between inversely oriented repeats to form an inversion. Deletion formation by recombination between direct repeats, which does not require a fully reciprocal exchange, is independent of recBC function. Circle integration and inversion formation are both stimulated by the recBC function; these events require full reciprocality. The results suggest that half-reciprocal exchanges can occur without recBC, but recBC functions greatly stimulate completion of a fully reciprocal exchange. We propose that chromosomal recombination is a two-step process, and recBC functions are primarily required for the second step.  相似文献   

12.
Homologous intrachromosomal recombination between linked genes can involve interactions that are either intramolecular (intrachromatid) or intermolecular (sister chromatid). To assess the relative proportions of chromatid interactions, we report studies of intrachromosomal recombination in mouse L cells containing herpes simplex virus thymidine kinase genes in two alternative configurations of direct repeats. By comparing products of reciprocal exchanges between these two configurations, we conclude that the majority of interactions that give rise to crossover products involve unequally paired sister chromatids after DNA replication. Analyses of an additional class of crossover products that involve discontinuous associated gene conversion suggest that these recombination events involve a heteroduplex DNA intermediate.  相似文献   

13.
Relative orientation of recombination substrates, neo gene, strongly influenced homologous recombination events in a bovine papillomavirus shuttle vector. Between direct repeats, recombination occurred at a high frequency while between inverted repeats, it was rare. Double strand break near the mutation site increased the recombination frequency between inverted repeats but not between direct repeats. Formation of long heteroduplex as a recombination intermediate may explain this apparently paradoxical phenomenon.  相似文献   

14.
Preferred crossover sites on polyomavirus DNA.   总被引:5,自引:3,他引:2       下载免费PDF全文
RmI is a hybrid replicon consisting of polyomavirus (Py) and mouse sequences that yields unit-length polyomavirus DNA via recombination between two directly repeated viral sequences of 182 base pairs (S repeats). To define the contribution of the S repeats in this intramolecular recombination, we derived from RmI a series of replicons containing the original S repeats as well as additional direct viral repeats which were 1 to 2 kilobases in length (L repeats). After mouse 3T6 cells were transfected with these constructs, recombination products that displayed the physical properties of homologous recombinants were detected. The structures of these recombinants indicated that whereas repeat length influences the likelihood of recombination, crossover occurs preferentially near the S repeats, provided that one of them is proximal to the viral origin of replication. This finding suggests that recombination near the S repeats depends on a process initiated near the viral origin of replication.  相似文献   

15.
A. R. Godwin  R. M. Liskay 《Genetics》1994,136(2):607-617
We examined the effects of insertion mutations on intrachromosomal recombination. A series of mouse L cell lines carrying mutant herpes simplex virus thymidine kinase (tk) heteroalleles was generated; these lines differed in the nature of their insertion mutations. In direct repeat lines with different large insertions in each gene, there was a 20-fold drop in gene conversion rate and only a five-fold drop in crossover rate relative to the analogous rates in lines with small insertions in each gene. Surprisingly, in direct repeat lines carrying the same large insertion in each gene, there was a larger drop in both types of recombination. When intrachromosomal recombination between inverted repeat tk genes with different large insertions was examined, we found that the rate of gene conversion dropped five-fold relative to small insertions, while the rate of crossing over was unaffected. The differential effects on conversion and crossing over imply that gene conversion is more sensitive to insertion mutation size. Finally, the fraction of gene conversions associated with a crossover increased from 2% for inverted repeats with small insertions to 18% for inverted repeats with large insertions. One interpretation of this finding is that during intrachromosomal recombination in mouse cells long conversion tracts are more often associated with crossing over.  相似文献   

16.
Inverted repeats are important genetic elements for genome instability. In the current study we have investigated the role of inverted repeats in a DNA rearrangement reaction using a linear DNA substrate. We show that linear DNA substrates with terminal inverted repeats can efficiently transform Escherichia coli. The transformation products contain circular inverted dimers in which the DNA sequences between terminal inverted repeats are duplicated. In contrast to the recombination/rearrangement product of circular DNA substrates, which is exclusively one particular form of the inverted dimer, the rearrangement products of the linear DNA substrate consist of two isomeric forms of the inverted dimer. Escherichia coli mutants defective in RecBCD exhibit much reduced transformation efficiency, suggesting a role for RecBCD in the protection rather than destruction of these linear DNA substrates. These results suggest a model in which inverted repeats near the ends of a double-strand break can be processed by a helicase/exonuclease to form hairpin caps. Processing of hairpin capped DNA intermediates can then yield inverted duplications. Linear DNA substrates containing terminal inverted repeats can also be converted into inverted dimers in COS cells, suggesting conservation of this type of genome instability from bacteria to mammalian cells.  相似文献   

17.
Gene conversions and crossovers are related products of the repair of double-stranded DNA breaks by homologous recombination. Most previous studies of mitotic gene conversion events have been restricted to measuring conversion tracts that are <5 kb. Using a genetic assay in which the lengths of very long gene conversion tracts can be measured, we detected two types of conversions: those with a median size of ∼6 kb and those with a median size of >50 kb. The unusually long tracts are initiated at a naturally occurring recombination hotspot formed by two inverted Ty elements. We suggest that these long gene conversion events may be generated by a mechanism (break-induced replication or repair of a double-stranded DNA gap) different from the short conversion tracts that likely reflect heteroduplex formation followed by DNA mismatch repair. Both the short and long mitotic conversion tracts are considerably longer than those observed in meiosis. Since mitotic crossovers in a diploid can result in a heterozygous recessive deleterious mutation becoming homozygous, it has been suggested that the repair of DNA breaks by mitotic recombination involves gene conversion events that are unassociated with crossing over. In contrast to this prediction, we found that ∼40% of the conversion tracts are associated with crossovers. Spontaneous mitotic crossover events in yeast are frequent enough to be an important factor in genome evolution.  相似文献   

18.
Achaz G  Coissac E  Netter P  Rocha EP 《Genetics》2003,164(4):1279-1289
The stability of the structure of bacterial genomes is challenged by recombination events. Since major rearrangements (i.e., inversions) are thought to frequently operate by homologous recombination between inverted repeats, we analyzed the presence and distribution of such repeats in bacterial genomes and their relation to the conservation of chromosomal structure. First, we show that there is a strong under-representation of inverted repeats, relative to direct repeats, in most chromosomes, especially among the ones regarded as most stable. Second, we show that the avoidance of repeats is frequently associated with the stability of the genomes. Closely related genomes reported to differ in terms of stability are also found to differ in the number of inverted repeats. Third, when using replication strand bias as a proxy for genome stability, we find a significant negative correlation between this strand bias and the abundance of inverted repeats. Fourth, when measuring the recombining potential of inverted repeats and their eventual impact on different features of the chromosomal structure, we observe a tendency of repeats to be located in the chromosome in such a way that rearrangements produce a smaller strand switch and smaller asymmetries than expected by chance. Finally, we discuss the limitations of our analysis and the influence of factors such as the nature of repeats, e.g., transposases, or the differences in the recombination machinery among bacteria. These results shed light on the challenges imposed on the genome structure by the presence of inverted repeats.  相似文献   

19.
Homologous recombination has been extensively studied in bacteria, yeast, and more recently in animal cells, but little is known about this process in plants. We present here an analysis of meiotic and somatic chromosomal recombination between closely linked inverted duplications located on a single chromosomal region in tobacco. Transgenic tobacco lines were constructed by Agrobacterium transformation with plasmid vectors containing a functional hygromycin phosphotransferase (hyg) selectable marker flanked by a pair of defective neomycin phosphotransferase (neo) genes positioned as inverted repeats. As each neo gene is mutated in a different site, recombination between the two defective genes can be detected following selection for kanamycin-resistant plant cells. The recombination substrates were designed to allow investigation into the nature of molecular events underlying homologous recombination by restriction endonuclease analysis. Chromosomal recombination was studied in mitotically dividing cells (cultured leaf mesophyll cells) and after meiosis (germinated seedlings). Spontaneous somatic recombinants were recovered at frequencies between ~3 x 10-5 to 10-6 events per cell. Low dose [gamma] irradiation of somatic cells resulted in a threefold maximum increase in the recovery of recombinants. Recombinants were also detected at low frequency when transgenic T3 seeds were germinated under kanamycin selection. DNA gel blot analyses demonstrated that homologous recombination occurred mainly as gene conversion unassociated with reciprocal exchange, although a variety of other events including gene coconversion were also observed.  相似文献   

20.
Summary Bovine papillomavirus (BPV) shuttle vectors replicate as a circular plasmid in mouse cell nuclei without impairing host cell viability. We used these vectors to analyze homologous recombination in mammalian cells. When several BPV-based plasmids carrying direct repeats were introduced into C127 cells, we detected many recombinant plasmid molecules that have lost the sequence between the repeats. Many recombinant type molecules as well as parental type molecules were detected in all the cell clones isolated for analysis. Sequencing after rescue of the plasmid inEscherichia coli showed that most of the recombinants were from accurate homologous recombination. When the repeats on the plasmid were in inverted orientation, no crossing-over type products were detected. We discuss possible mechanisms that explain these features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号