共查询到20条相似文献,搜索用时 15 毫秒
1.
Anna Siniscalchi Donata Rodi Stefania Gessi Franca Campi Pier A. Borea 《Neurochemistry international》1999,34(6):729
The effects of brain ischemia on the maximum binding capacity (Bmax) and affinity (Kd) of A1 receptors were studied in the rat cerebral cortex, with an in vitro approach. The results were correlated with changes in 3H-adenosine release, studied under identical experimental conditions. Fifteen minutes of in vitro ‘ischemia’ (hypoxic, glucose-free medium) induced a significant increase in both Bmax (2398±132 fmol/mg protein, 151% of the control, P<0.05) and in Kd (2.43±0.12 nM, 161% of the control, P<0.01). At the same time, an increase in tritium efflux from [3H]-adenosine labeled cerebral cortex slices to 324% of the control was observed. A trend toward normalization was evident 5–15 min after ‘reoxygenation’ (restoring normal medium), but the binding parameters were still altered after 60 min (Bmax 2110±82 fmol/mg protein, Kd 2.26±0.14 nM, P<0.01 vs the corresponding control) as was adenosine release (196% of the control). These findings suggest that the increased availability of adenosine and its receptors may be a defense mechanism against ischemic injury, while the reduced affinity of A1 receptors, possibly due to desensitization, may be a sign of ischemia-induced cellular damage. 相似文献
2.
腺苷在脑缺血过程中的双重作用 总被引:4,自引:0,他引:4
随着内源性腺苷系统具有神经保护作用的提出,派生出新的课题——腺苷及其类似物能否治疗脑卒中等一系列神经系统疾病?随着研究的深入,这一问题已逐渐成为神经药理学研究的热点。大量的工作集中在腺苷及其类似物对脑卒中的治疗作用,但实验结果具有很大的不确定性。传统上认为系统性给予腺苷引起心率减慢、血压降低、脑供血减少,从而限制了腺苷的应用。因此,提出了合用外周腺苷受体拮抗剂、腺苷转运蛋白抑制剂及代谢阻断剂,这既能对抗其心血管副作用,又使得脑缺血区的内源性腺苷维持在较高水平,发挥神经保护作用。然而,在脑缺血的病理条件下,腺苷浓度已显著提升,逾越了其自调节的范围。在此情况下,继续强化腺苷的作用,是否有悖于机体自稳态的恢复?诚然,腺苷具有明显的神经保护作用,但近年的研究又显示腺苷及其某些代谢产物具有神经损伤作用,如何解释这些相互矛盾的现象?又如何评价腺苷在脑缺血过程中的作用?本文主要从作用机制上,综合评述腺苷在脑缺血过程中可能发挥的神经保护及损伤作用,以期为脑卒中的临床治疗和新药开发提供一定的参考。 相似文献
3.
4.
Neuroprotective effect of GMP in hippocampal slices submitted to an in vitro model of ischemia 总被引:2,自引:0,他引:2
1. Guanosine-5-monophosphate (GMP) was evaluated as a neuroprotective agent against the damage observed in rat hippocampal slices submitted to an in vitro model of ischemia with or without the presence of the ionotropic glutamate receptor agonist, Kainic acid (KA).2. Cellular injury was evaluated by MTT reduction, lactate dehydrogenase (LDH) release assay, and measurement of intracellular ATP levels.3. In slices submitted to ischemic conditions, 1 mM GMP partially prevented the decrease in cell viability induced by glucose and oxygen deprivation and the addition of KA.4. KA or N-methyl-D-aspartate (NMDA) receptor antagonists, -D-glutamylamino-methylsulfonate (GAMS) or (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801, 20 M) also prevented toxicity in hippocampal slices under ischemic conditions, respectively.5. The association of GMP with GAMS or MK-801 did not induce additional protection than that observed with GMP or that classical glutamate receptor antagonists alone.6. GMP, probably by interacting with ionotropic glutamate receptors, attenuated the damage caused by glucose and oxygen deprivation in hippocampal slices. This neuroprotective action of GMP in this model of excitotoxicity is of outstanding interest in the search for effective therapies against ischemic injury. 相似文献
5.
6.
Yukio Hattori Akiyoshi Moriwaki Yasushi Hayashi Nadira Islam Yasuo Hori 《Neurochemical research》1993,18(9):1009-1014
Cyclic AMP accumulations elicited by adenosine analogues 2-chloroadenosine (2-CADO),R-N
6-phenylisopropyladenosine (R-PIA), andN
6-cyclohexyladenosine (CHA) were investigated in cortical slices of chronic iron-induced epileptic rats. Cyclic AMP accumulation was elicited 9-to 18-fold by 2-CADO and it was elicited 5-to 7-fold by eitherR-PIA or CHA; 2-CADO was more potent thanR-PIA or CHA in eliciting cyclic AMP accumulation. The adenosine analogues elicited cyclic AMP accumulation in a dose-dependent manner, and the elicitation was inhibited by the adenosine antagonist 8-phenyltheophylline. The 2-CADO-elicited accumulation of cyclic AMP was greatly increased in the cortical region on the primary epileptic side, while theR-PIA-or CHA-elicited accumulation did not change in any cortical region. The deviation detected only in the 2-CADO-elicited accumulation of cyclic AMP may be due to the difference in relative potency for adenosine receptors of the adenosine analogues. The results suggest that adenosine receptormediated generation of cyclic AMP is altered in the primary region of iron-induced epileptic cortex, in which heterogeneous alterations in different adenosine receptor subtypes may occur in the epileptic process. 相似文献
7.
The status of the adenosine A1 receptor/adenylyl cyclase (A1R/AC) transduction pathway in rat brain was analysed at the end of pregnancy using different approaches. Pregnancy at term caused a significant decrease in the Bmax value obtained by saturation binding assays using [3H]DPCPX as radioligand, suggesting a down-regulation of adenosine A1 receptor. Moreover, A1 receptor immunodetection in pregnant rat membranes and the level of mRNA coding A1 receptor were significantly decreased. This loss of A1 receptor was associated with a significant increase in receptor affinity, since the KD value from the [3H]DPCPX saturation curve and Ki for N6-cyclohexyladenosine (CHA) were decreased in pregnant rats. Surprisingly, CHA-mediated inhibition of adenylyl cyclase was increased, reflecting enhanced receptor responsiveness. On the other hand, immunoblotting of different alphaGi-protein isoforms revealed a significant increase in alphaGi3 level in membranes from pregnant rats. Pre-incubation of membranes with anti-alphaGi3 antibody blocked the guanosine triphosphate (GTP) or CHA inhibitory effect on adenylyl cyclase in both pregnant and non-pregnant rats, pointing to alphaGi3 as the main isoform involved in the A1 receptor response. These results suggest that, at the end of pregnancy, there is a down-regulation of adenosine A1 receptors counterbalanced with a strengthened functionality, probably due to an increase in both alphaGi3 protein and receptor affinity. 相似文献
8.
目的:观察侧脑室注射腺苷A1受体(ARA1)反义寡聚脱氧核苷酸(As-ODN)对脑缺血预处理(CIP)脑保护作用的影响,进一步探讨腺苷A1受体在CIP脑保护作用中的作用。方法:将54只凝闭双侧椎动脉的Wistar大鼠分为Sham组、CIP组、损伤性脑缺血组、CIP 损伤性脑缺血组、双蒸水 CIP 损伤性脑缺血组、ARA1As-ODN组、ARA1As-ODN CIP组、和ARA1As-ODN CIP 损伤性脑缺血组。ARA1As-ODN的剂量分为10nmol/5μl和20nmol/5μl,溶于双蒸水中,侧脑室注射。所有动物均在Sham手术后或末次全脑缺血/再灌注后7d断头取脑,硫堇染色观察海马CA1区锥体神经元迟发性死亡(DND)情况。结果:Sham组和CIP组均未见DND。与Sham、CIP组相比,损伤性脑缺血组出现了明显的DND,表现为组织学分级(HG)升高和锥体神经元密度(ND)下降(P<0.05)。CIP可显著抑制损伤性脑缺血引起的DND。与CIP 损伤性缺血组相比,ARA1As-ODN CIP 损伤性脑缺血组出现了显著的DND,表现为HG升高、ND降低(P<0.05),这种变化与ARA1As-ODN的剂量呈明显正相关。结论:腺苷A1受体As-ODN可阻断CIP诱导的脑缺血耐受,进一步证实了腺苷A1受体表达上调参与CIP诱导的脑缺血耐受。 相似文献
9.
Adenosine A1 receptor (A1) protein and mRNA is increased in the nucleus accumbens following repeated cocaine treatment. In spite of this protein up-regulation, A1 agonist-stimulated [35S]GTPgammaS binding was attenuated in accumbens homogenates of rats withdrawn for 3 weeks from 1 week of daily cocaine injections. Cellular subfractionation revealed that the discrepancy between total A1 protein and G protein coupling resulted from a smaller proportion of receptors in the plasma membrane. The decrease in functional receptor in the plasma membrane was further indicated by diminished formation of heteromeric receptor complex consisting of A1 and dopamine D1A receptors. To explore the functional significance of the altered distribution of A1 receptors, at 3 weeks after discontinuing repeated cocaine or saline, animals were injected with cocaine and 45 min later the subcellular distribution of A1 receptors quantified. Whereas a cocaine challenge in repeated saline-treated animals induced a marked increase in membrane localization of the A1 receptor, the relative distribution of receptors in repeated cocaine rats was not affected by acute cocaine. These data suggest that the sorting and recycling of A1 receptors is dysregulated in the nucleus accumbens as the consequence of repeated cocaine administration. 相似文献
10.
Trincavelli ML Melani A Guidi S Cuboni S Cipriani S Pedata F Martini C 《Journal of neurochemistry》2008,104(2):479-490
Ischemia, through modulation of adenosine receptors (ARs), may influence adenosine-mediated-cellular responses. In the present study, we investigated the modulation of rat A2A receptor expression and functioning, in rat cerebral cortex and striatum, following in vivo focal ischemia (24 h). In cortex, middle cerebral artery occlusion did not induce any alterations in A2A receptor binding and functioning. On the contrary, in striatum, a significant decrease in A2A ligand affinity, associated with an increase in receptor density, were detected. In striatum, ischemia also induced a significant reduction both in G protein pool and in A2A receptor-G protein coupling. On the contrary, A2A receptor functional responsiveness, measured as stimulation of adenylyl cyclise, was not affected by ischemia, suggesting receptor up-regulation may represent a compensatory mechanism to maintain receptor functioning during cerebral damage. Immunohistochemical study showed that following 24 h middle cerebral artery occlusion, A2A ARs were definitely expressed both on neurons and activated microglia in ischemic striatum and cortex, but were not detected on astrocytes. In the non-ischemic hemisphere and in sham-operated rats A2A ARs were barely detected. Modifications of ARs may play a significant role in determining adenosine effects during ischemia and therefore should be taken into account when evaluating time-dependent protective effects of specific A2A active compounds. 相似文献
11.
孕酮对缺血/再灌注大鼠脑皮层水肿的影响 总被引:10,自引:1,他引:10
目的探讨孕酮(progesterone,PROG)对脑水肿的影响.方法48只大鼠随机分为6组即缺血/再灌(I/R)组,二甲基亚砜(DMSO)组,预防(pretreatment)组,防治(pre+posttreatment)组,治疗(posttreatment)组,地塞米松(DEXA)组.采用大鼠局灶性脑缺血/再灌注(I/R)模型,测定大脑中动脉阻塞(MCAO)24h后脑皮层水、钠、钾、钙含量.结果与DMSO组相比,应用PROG预防及防治组均能明显降低缺血皮层的H2O(P<0.01)、Na+(P<0.01)、Ca2+(P<0.01)含量,升高K+(P<0.01)含量,而治疗组虽能明显降低H2O(P<0.05)、Na+(P<0.01),但降低Ca2+(P>0.05)和升高K+(P>0.05)的效果不显著.DEXA组的结果与PROG预防或防治组类似.结论用PROG预防或防治能显著减轻I/R引起的脑水肿. 相似文献
12.
Hyperthermia‐induced seizures alter adenosine A1 and A2A receptors and 5′‐nucleotidase activity in rat cerebral cortex 下载免费PDF全文
David Agustín León‐Navarro José L. Albasanz Mairena Martín 《Journal of neurochemistry》2015,134(3):395-404
Febrile seizure is one of the most common convulsive disorders in children. The neuromodulator adenosine exerts anticonvulsant actions through binding adenosine receptors. Here, the impact of hyperthermia‐induced seizures on adenosine A1 and A2A receptors and 5′‐nucleotidase activity has been studied at different periods in the cerebral cortical area by using radioligand binding, real‐time PCR, and 5′‐nucleotidase activity assays. Hyperthermic seizures were induced in 13‐day‐old rats using a warmed air stream from a hair dryer. Neonates exhibited rearing and falling over associated with hindlimb clonus seizures (stage 5 on Racine scale criteria) after hyperthermic induction. A significant increase in A1 receptor density was observed using [3H]DPCPX as radioligand, and mRNA coding A1 was observed 48 h after hyperthermia‐induced seizures. In contrast, a significant decrease in A2A receptor density was detected, using [3H]ZM241385 as radioligand, 48 h after hyperthermia‐evoked convulsions. These short‐term changes in A1 and A2A receptors were also accompanied by a loss of 5′‐nucleotidase activity. No significant variations either in A1 or A2A receptor density or 5′‐nucleotidase were observed 5 and 20 days after hyperthermic seizures. Taken together, both regulation of A1 and A2A receptors and loss of 5′‐nucleotidase in the cerebral cortex suggest the existence of a neuroprotective mechanism against seizures.
13.
Martire A Tebano MT Chiodi V Ferreira SG Cunha RA Köfalvi A Popoli P 《Journal of neurochemistry》2011,116(2):273-280
An interaction between adenosine A(2A) receptors (A(2A) Rs) and cannabinoid CB(1) receptors (CB(1) Rs) has been consistently reported to occur in the striatum, although the precise mechanisms are not completely understood. As both receptors control striatal glutamatergic transmission, we now probed the putative interaction between pre-synaptic CB(1) R and A(2A) R in the striatum. In extracellular field potentials recordings in corticostriatal slices from Wistar rats, A(2A) R activation by CGS21680 inhibited CB(1) R-mediated effects (depression of synaptic response and increase in paired-pulse facilitation). Moreover, in superfused rat striatal nerve terminals, A(2A) R activation prevented, while A(2A) R inhibition facilitated, the CB(1) R-mediated inhibition of 4-aminopyridine-evoked glutamate release. In summary, the present study provides converging neurochemical and electrophysiological support for the occurrence of a tight control of CB(1) R function by A(2A) Rs in glutamatergic terminals of the striatum. In view of the key role of glutamate to trigger the recruitment of striatal circuits, this pre-synaptic interaction between CB(1) R and A(2A) R may be of relevance for the pathogenesis and the treatment of neuropsychiatric disorders affecting the basal ganglia. 相似文献
14.
Selvatici R Falzarano S Franceschetti L Cavallini S Marino S Siniscalchi A 《Neurochemistry international》2006,49(8):729-736
The aim of the current study was to characterize the effects of chemical ischemia and reperfusion at the transductional level in the brain. Protein kinase C isoforms (, β1, β2, γ, δ and ) total levels and their distribution in the particulate and cytosolic compartments were investigated in superfused rat cerebral cortex slices: (i) under control conditions; (ii) immediately after a 5-min treatment with 10 mM NaN3, combined with 2 mM 2-deoxyglucose (chemical ischemia); (iii) 1 h after chemical ischemia (reperfusion). In control samples, all the PKC isoforms were detected; immediately after chemical ischemia, PKC β1, δ and isoforms total levels (cytosol + particulate) were increased by 2.9, 2.7 and 9.9 times, respectively, while isoform was slightly reduced and γ isoform was no longer detectable. After reperfusion, the changes displayed by , β1, γ, δ and were maintained and even potentiated, moreover, an increase in β2 (by 41 ± 12%) total levels became significant. Chemical ischemia-induced a significant translocation to the particulate compartment of PKC isoform, which following reperfusion was found only in the cytosol. PKC β1 and δ isoforms particulate levels were significantly higher both in ischemic and in reperfused samples than in the controls. Conversely, following reperfusion, PKC β2 and isoforms displayed a reduction in their particulate to total level ratios. The intracellular calcium chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid, 1 mM, but not the N-methyl-d-asparate receptor antagonist, MK-801, 1 μM, prevented the translocation of β1 isoform observed during ischemia. Both drugs were effective in counteracting reperfusion-induced changes in β2 and isoforms, suggesting the involvement of glutamate-induced calcium overload. These findings demonstrate that: (i) PKC isoforms participate differently in neurotoxicity/neuroprotection events; (ii) the changes observed following chemical ischemia are pharmacologically modulable; (iii) the protocol of in vitro chemical ischemia is suitable for drug screening. 相似文献
15.
McKenna WL Wong-Staal C Kim GC Macias H Hinck L Bartoe JL 《Journal of neurochemistry》2008,104(4):1081-1090
Growth cone response to the bifunctional guidance cue netrin-1 is regulated by the activity of intracellular signaling intermediates such as protein kinase C-alpha (PKCα) and adenylyl cyclase. Among the diverse cellular events these enzymes regulate is receptor trafficking. Netrin-1, itself, may govern the activity of these signaling intermediates, thereby regulating axonal responses to itself. Alternatively, other ligands, such as activators of G protein-coupled receptors, may regulate responses to netrin-1 by governing these signaling intermediates. Here, we investigate the mechanisms controlling activation of PKCα and the subsequent downstream regulation of cell surface UNC5A receptors. We report that activation of adenosine receptors by adenosine analogs, or activation of the putative netrin-1 receptor, the G protein-coupled receptor adenosine A2b receptor (A2bR) results in PKCα-dependent removal of UNC5A from the cell surface. This decrease in cell surface UNC5A reduces the number of growth cones that collapse in response to netrin-1 and converts repulsion to attraction. We show these A2bR-mediated alterations in axonal response are not because of netrin-1 because netrin-1 neither binds A2bR, as assayed by protein overlay, nor stimulates PKCα-dependent UNC5A surface loss. Our results demonstrate that netrin-1-independent A2bR signaling governs the responsiveness of a neuron to netrin-1 by regulating the levels of cell surface UNC5A receptor. 相似文献
16.
Autocrine activation of adenosine A1 receptors blocks D1A but not D1B dopamine receptor desensitization 总被引:1,自引:0,他引:1
Adenosine is known to modulate dopamine responses in several brain areas. Here, we show that tonic activation of adenosine receptors is able to impede desensitization of D1 dopamine receptors. As measured by cAMP accumulation in transfected COS-7 cells, long-term exposure to dopamine agonists promoted desensitization of D1B receptor but not that of D1A receptor. The inability of D1A receptor to desensitize was a result of the adenosine present in culture medium acting through activation of adenosine A1 receptors. Cell incubation with either adenosine deaminase, CGS-15943, a generic adenosine receptor antagonist, or the A1 antagonist DPCPX restored the long-term desensitization time-course of D1A receptors. In Ltk cells stably expressing A1 adenosine receptors and D1A dopamine receptors, pre-treatment of cells with R(-)-PIA, a full A1 receptor agonist, did not significantly inhibit the acute increase in cAMP levels induced by D1 receptor agonists, but blocked desensitization of D1A receptors. However, simultaneous activation of A1 and D1A receptors promoted a delayed D1A receptor desensitization. This suggests that functional interaction between A1 and D1A receptors may depend on the activation kinetics of components regulating D1 receptor responses, acting differentially on D1A and D1B receptors. 相似文献
17.
The effect of phospholipases and proteases on the membrane-bound and solubilized A1 adenosine receptor has been studied. Phospholipids modulate the [3H]N6-(R)-phenylisopropyladenosine binding to A1 adenosine receptors in crude membranes and in soluble preparations, because changes in the phospholipid environment decrease both the binding capacity and the affinity for the ligand. It has become clear that 1) there is co-solubilization of receptor and phospholipids; 2) the phospholipid requirements are different for the coupled and the uncoupled receptor; 3) a net charge in the polar head produced by phospholipase D prevents the agonist binding to the receptor-G protein complex; alternatively, when the whole polar head is removed by phospholipase C the uncoupled receptor is altered; and 4) the protease action upon the receptor suggests that receptor coupled to G protein is more protected by the membrane than the uncoupled receptor. In kinetic experiments performed on membranes it was demonstrated that phospholipase C and trypsin increased the Kd value of the high-affinity state by modifying both k1 and k-1. In contrast they only modified the dissociation constant of the low-affinity state. In conclusion it should be noted that phospholipids play a key role for the binding of R-PIA to A1 adenosine receptor. Also, a different disposition within the membrane of the coupled and uncoupled receptor is encountered. 相似文献
18.
This study was designed to localize adenosine receptors and to provide evidence that specific receptors are active only in either uncapacitated or capacitated mouse spermatozoa, where they play a role in regulating cAMP production. Using specific antibodies, stimulatory A(2A) receptors were localized primarily on the acrosomal cap region and the flagellar principal piece. Interestingly, the staining was much more pronounced in uncapacitated than in capacitated spermatozoa, suggesting capacitation-dependent changes in epitope accessibility. A(1) receptors showed a very similar distribution, but the staining was markedly greater in capacitated than in uncapacitated cells. After addition of purified decapacitation factor (DF) to capacitated cells, strong staining for A(2A) was regained, suggesting reversibility in epitope accessibility. Chlortetracycline analysis revealed that an agonist specific for A(2A) receptors had no detectable effect on capacitated cells, but after DF-induced decapacitation, the agonist then stimulated capacitation. That agonist also significantly stimulated cAMP production in uncapacitated cells, had no effect on capacitated cells, but regained the ability to stimulate cAMP in the latter following DF treatment. In contrast, an A(1) agonist inhibited cAMP in capacitated cells. These results indicate that specific adenosine receptors function in a reversible manner in one or other capacitation state, resulting in regulation of cAMP. 相似文献
19.
Luciana E. Drumond Talita H. Ferreira‐Vieira Danielle Bernardes Josiane F. Silva Virgínia S. Lemos Márcio F. D. Moraes Grace S. Pereira Juliana Carvalho‐Tavares André R. Massensini 《Journal of neurochemistry》2012,123(2):317-324
Although it is well known that regular exercise may promote neuroprotection, the mechanisms underlying this effect are still not fully understood. We investigated if swim training promotes neuroprotection by potentiating antioxidant pathways, thereby decreasing the effects of oxidative stress on glutamate and nitric oxide release. Male Wistar rats (n=36) were evenly randomized into a trained group (TRA) (5 days/week, 8 weeks, 30 min) and a sedentary group (SED). Forty‐eight hours after the last session of exercise, animals were killed and brain was collected for in vitro ischemia. Cortical slices were divided into two groups: a group in which oxidative stress was induced by oxygen and glucose deprivation (OGD), and a group of non‐deprived controls (nOGD). Interestingly, exercise by itself increased superoxide dismutase activity (nOGD, SED vs. TRA animals) with no effect on pro‐oxidative markers. In fact, TRA‐OGD slices showed lowered levels of lactate dehydrogenase when compared with SED‐OGD controls, reinforcing the idea that exercise affords a neuroprotective effect. We also demonstrated that exercise decreased glutamate and nitrite release as well as lipid membrane damage in the OGD cortical slices. Our data suggest that under conditions of metabolic stress, swim training prevents oxidative damage caused by glutamate and nitric oxide release. 相似文献
20.
Supersensitivity of P2X receptors in cerebrocortical cell cultures after in vitro ischemia 总被引:1,自引:0,他引:1
Wirkner K Köfalvi A Fischer W Günther A Franke H Gröger-Arndt H Nörenberg W Madarász E Vizi ES Schneider D Sperlágh B Illes P 《Journal of neurochemistry》2005,95(5):1421-1437
Neuronally enriched primary cerebrocortical cultures were exposed to glucose-free medium saturated with argon (in vitro ischemia) instead of oxygen (normoxia). Ischemia did not alter P2X7 receptor mRNA, although serum deprivation clearly increased it. Accordingly, P2X7 receptor immunoreactivity (IR) of microtubuline-associated protein 2 (MAP2)-IR neurons or of glial fibrillary acidic protein (GFAP)-IR astrocytes was not affected; serum deprivation augmented the P2X7 receptor IR only in the astrocytic, but not the neuronal cell population. However, ischemia markedly increased the ATP- and 2'-3'-O-(4-benzoylbenzoyl)-adenosine 5'-triphosphate (BzATP)-induced release of previously incorporated [3H]GABA. Both Brilliant Blue G and oxidized ATP inhibited the release of [3H]GABA caused by ATP application; the Brilliant Blue G-sensitive, P2X7 receptor-mediated fraction, was much larger after ischemia than after normoxia. Whereas ischemic stimulation failed to alter the amplitude of ATP- and BzATP-induced small inward currents recorded from a subset of non-pyramidal neurons, BzATP caused a more pronounced increase in the frequency of miniature inhibitory postsynaptic currents (mIPSCs) after ischemia than after normoxia. Brilliant Blue G almost abolished the effect of BzATP in normoxic neurons. Since neither the amplitude of mIPSCs nor that of the muscimol-induced inward currents was affected by BzATP, it is assumed that BzATP acts at presynaptic P2X7 receptors. Finally, P2X7 receptors did not enhance the intracellular free Ca2+ concentration either in proximal dendrites or in astrocytes, irrespective of the normoxic or ischemic pre-incubation conditions. Hence, facilitatory P2X7 receptors may be situated at the axon terminals of GABAergic non-pyramidal neurons. When compared with normoxia, ischemia appears to markedly increase P2X7 receptor-mediated GABA release, which may limit the severity of the ischemic damage. At the same time we did not find an accompanying enhancement of P2X7 mRNA or protein expression, suggesting that receptors may become hypersensitive because of an increased efficiency of their transduction pathways. 相似文献