首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The symbiotic plasmid of Rhizobium trifolii G1008 was mobilized to other Rhizobium strains and to Agrobacterium using Tn5-Mob, a transposon that confers on a host replicon the ability to be mobilized in trans by RP4. Incompatibility was observed between pSymG1008 and the hairy-root-inducing plasmid pRi1855. Agarose gel electrophoresis revealed that pRi1855 was eliminated as an autonomous element in the presence of pSymG1008 and its absence was correlated with loss of the ability to induce hairy root disease. This indicates a close ancestral relationship between a Rhizobium symbiotic plasmid and a plant pathogenic plasmid of Agrobacterium. pSymG1008 and pRi1855 can be assigned to the IncRh-3 incompatibility group. Furthermore, pSymG1008 was mobilized at low frequency to R. phaseoli 51E and the transconjugants isolated had lost the indigenous Sym plasmid and the ability to nodulate beans.  相似文献   

2.
This study examined the symbiotic properties of Agrobacterium transconjugants isolated by transferring a Tn5-mob-marked derivative of the 315 kb megaplasmid pRt4Sa from Rhizobium leguminosarum bv. trifolii 4S (wild-type strain) to Agrobacterium tumefaciens A136 as the recipient. The genetic characteristics of the AT4S transconjugant strains were ascertained by random amplified polymorphic DNA (RAPD) analyses and Southern hybridization using Tn5-mob and nod genes as probes. Several of these AT4S transconjugants carrying pRt4Sa were able to nodulate roots of the normal legume host, white clover. In addition, some AT4S transconjugant strains were able to induce nodules on other leguminous plants, including alfalfa and hairy vetch. A characteristic bacteroid differentiation was observed in clover and alfalfa nodules induced by the AT4S-series strains, although nitrogen-fixing activity (acetylene reduction) was not found. Furthermore, strain H1R1, obtained by retracing transfer of the pRt4Sa::Tn5-mob from strain AT4Sa to strain H1 (pRt4Sa cured derivative of 4S), induced Fix(+) nodules on clover roots. These results indicate the evidence that only nod genes can be expressed in the Agrobacterium background.  相似文献   

3.
A 14-kilobase (kb) fragment of Rhizobium trifolii Sym plasmid containing nodulation (nod) genes or the pSym plasmid of R. trifolii cointegrated with a broad-host-range vector R68.45 (pPN1) were transferred to Lignobacter strain K17 and Pseudomonas aeruginosa strain PAO5 by conjugation. Lignobacter transconjugants carrying Sym plasmid pPN1 formed nodules on white, red, and subterranean clover plants. Lignobacter transconjugants containing a 14-kb fragment of nod genes cloned into a multicopy plasmid nodulated only white and subterranean clover plants, whereas transconjugants carrying the same fragment cloned into a low-copy plasmid vector nodulated only white clover plants. All nodules formed by Lignobacter transconjugants showed bacterial release from the infection threads into the host cytoplasm. Pseudomonas transconjugants with plasmid pPN1 formed nodule-like structures on white clover plants. These structures were not invaded by bacteria; however, a few bacteria were found within the intercellular spaces of the outermost cells of the structures. Pseudomonas transconjugants carrying the 14-kb fragment of R. trifolii nod genes did not form nodules on tested clover plants. All clover plants inoculated with either Pseudomonas or Lignobacter transconjugants containing a 14-kb fragment of nod genes (but not entire Sym plasmid) showed the "thick-and-short-root" response when compared to the control plants inoculated with the R. trifolii wild-type strain.  相似文献   

4.
Plasmid RP4 was used to mobilize the agrocin 84-encoding plasmid, pAg396, from Agrobacterium tumefaciens strain 396 to A. tumefaciens C58 and C58CI as well as Rhizobium meliloti. It was transferred to, but not stably maintained in, R. leguminosarum. It could not be transferred to R. lupini, R. japonicum or R. trifolii. Plasmid pAg396 did not segregate in R. meliloti and produced levels of agrocin comparable to the parental strain A. tumefaciens 396. The potential of agrocin producing R. meliloti in biological control of crown gall is being investigated.  相似文献   

5.
Two self-transmissible Sym(biosis) plasmids, one encoding pea-specific nodulation and nitrogen-fixation functions (plasmid pJB5JI) and the other encoding clover-specific nodulation and nitrogen-fixation functions (plasmid pBR1AN) were used to determine whether the symbiotic genes encoded on these plasmids are expressed in various members of the Rhizobiaceae. The host specificity of Rhizobium trifolii and R. leguminosarum Sym plasmid-cured strains could be directly determined by the transfer to these strains of the appropriate Sym plasmid. The nodulation of white clovers was restored by either plasmid pJB5JI or pBR1AN when these plasmids were transferred to two transposon Tn5-induced hair-curling (Hac-) R. trifolii mutants. In addition, lucerne nodulation was restored to a Hac- R. meliloti mutant when either plasmid pBR1AN or pJB5JI was transferred to this strain. The phenotype of nonmucoid (Muc-) Rhizobium mutants, which had altered cell surfaces, was not influenced by the transfer to these strains of plasmid pBR1AN or plasmid pJB5JI.  相似文献   

6.
Rhizobium phaseoli CFN299 forms nitrogen-fixing nodules in Phaseolus vulgaris (bean) and in Leucaena esculenta. It has three plasmids of 185, 225, and 410 kilobases. The 410-kilobase plasmid contains the nitrogenase structural genes. We have transferred these plasmids to the plasmid-free strain Agrobacterium tumefaciens GMI9023. Transconjugants containing different combinations of the R. phaseoli plasmids were obtained, and they were exhaustively purified before nodulation was assayed. Only transconjugants harboring the 410-kilobase plasmid nodulate P. vulgaris and L. esculenta. Nodules formed by all such transconjugants are able to reduce acetylene. Transconjugants containing the whole set of plasmids from CFN299 nodulate better and fix more nitrogen than the transconjugants carrying only the Sym plasmid. Microscopic analysis of nodules induced by A. tumefaciens transconjugants reveals infected cells and vascular bundles. None of the A. tumefaciens transconjugants, not even the one with the whole set of plasmids from CFN299, behaves in symbiosis like the original R. phaseoli strain; the transconjugants produce fewer nodules and have lower acetylene reduction (25% as compared to the original R. phaseoli strain) and more amyloplasts per nodule. More than 2,000 bacterial isolates from nodules of P. vulgaris and L. esculenta formed by the transconjugants were analyzed by different criteria. Not a single rhizobium could be detected. Our results show that R. phaseoli plasmids may be expressed in the A. tumefaciens background and direct the formation of effective, differentiated nodules.  相似文献   

7.
Two nodulation regions from the symbiotic plasmid (pSym) of Rhizobium phaseoli CE-3 were identified. The two regions were contained in overlapping cosmids pSM927 and pSM991. These cosmids, in a R. phaseoli pSym-cured strain background, induced ineffective nodules on Phaseolus vulgaris roots. Transconjugants of Rhizobium meliloti harbouring pSM991 induced nodule-like structures on bean roots, suggesting that this cosmid contains host-range determinants. Analysis of deletions and insertional mutations in the sequences of pSM991 indicated that the genes responsible for the induction and development of nodules in P. vulgaris are organized in two regions 20 kb apart. One region, located in a 6.8 kb EcoRI fragment, includes the common nodABC genes. The other region, located in a 3.5 kb EcoRI fragment, contains information required for host-range determination.  相似文献   

8.
The symbiotic plasmid (pSym) of Rhizobium leguminosarum bv. trifolii 4S5, which carries Tn5-mob, was successfully transferred into Agrobacterium tumefaciens A136 by using a conjugation method. The resulting transconjugants induced the development of ineffective nitrogen-fixing nodules on the roots of white clover seedlings. Depending on the manner in which the pSym was retained, the transconjugants were divided into two groups of strains, Afp and Afcs. pSym was retained as a plasmid in the Afp strains but was integrated into the int gene encoding a phage-related integrase on the linear chromosome of A. tumefaciens A136 in strain Afcs1 (one of the Afcs strains) to form a symbiosis island. Conjugation was performed between strain Afcs1 and R. leguminosarum bv. trifolii H1 (a pSym-cured derivative of wild-type strain 4S), and the Rhizobium H1tr strains were screened as transconjugants. Eighteen of the H1tr strains induced effective nitrogen-fixing nodules on the roots of the host plants. pSym was transferred into all of the transconjugants, except for strain H1tr1, at the same size as pSym of strain 4S5. In strain H1tr1, pSym was integrated into the chromosome as a symbiosis island. These data suggest that pSym can exist among Rhizobium and Agrobacterium strains both as a plasmid and as a symbiosis island with transposon mediation.  相似文献   

9.
Genetic rearrangements of a Rhizobium phaseoli symbiotic plasmid.   总被引:5,自引:8,他引:5  
Different structural changes of the Sym plasmid were found in a Rhizobium phaseoli strain that loses its symbiotic phenotype at a high frequency. These rearrangements affected both nif genes and Tn5 mob insertions in the plasmid, and in some cases they modified the expression of the bacterium's nodulation ability. One of the rearrangements was more frequent in heat-treated cells, but was also found under standard culture conditions; other structural changes appeared to be related to the conjugal transfer of the plasmid.  相似文献   

10.
11.
A large Sym plasmid from a fast-growing cowpea Rhizobium species was made mobilizable by cointegration with plasmid pSUP1011, which carries the oriT region of RP4. This mobilizable Sym plasmid was transferred to a number of Rhizobium strains, in which nodulation and nitrogen fixation functions for symbiosis with plants of the cowpea group were expressed.  相似文献   

12.
13.
Regions of the Rhizobium meliloti nodulation genes from the symbiotic plasmid were transferred to Agrobacterium tumefaciens and Rhizobium trifolii by conjugation. The A. tumefaciens and R. trifolii transconjugants were unable to elicit curling of alfalfa root hairs, but were able to induce nodule development at a low frequency. These were judged to be genuine nodules on the basis of cytological and developmental criteria. Like genuine alfalfa nodules, the nodules were initiated from divisions of the inner root cortical cells. They developed a distally positioned meristem and several peripheral vascular bundles. An endodermis separated the inner tissues of the nodule from the surrounding cortex. No infection threads were found to penetrate either root hairs or the nodule cells. Bacteria were found only in intercellular spaces. Thus, alfalfa nodules induced by A. tumefaciens and R. trifolii transconjugants carrying small nodulation clones of R. meliloti were completely devoid of intracellular bacteria. When these strains were inoculated onto white clover roots, small nodule-like protrusions developed that, when examined cytologically, were found to more closely resemble roots than nodules. Although the meristem was broadened and lacked a root cap, the protrusions had a central vascular bundle and other rootlike features. Our results suggest that morphogenesis of alfalfa root nodules can be uncoupled from infection thread formation. The genes encoded in the 8.7-kilobase nodulation fragment are sufficient in A. tumefaciens or R. trifolii backgrounds for nodule morphogenesis.  相似文献   

14.
Rhizobium loti strains NZP2037 and NZP2213 were each found to contain a single large plasmid: pRlo2037a (240 MDal) and pRlo2213a (120 MDal), respectively. Plasmid DNA present in crude cell lysates of each strain and purified pRlo2037a DNA did not hybridize with pID1, a recombinant plasmid containing part of the nitrogen fixation (nif) region of R. meliloti, indicating that nif genes were not present on these plasmids. The transposon Tn5 was inserted into pRlo2037a and this plasmid was then transferred into R. leguminosarum, R. meliloti and Agrobacterium tumefaciens. All transconjugants failed to nodulate Lotus pedunculatus, suggesting that the ability to nodulate this legume was also not carried on pRlo2037a. Transfer of pRlo2037a to R. loti strain NZP2213 did not alter the Nod+ Fix- phenotype of this strain for L. pedunculatus. Determinants for flavolan resistance, believed to be necessary for effective nodulation of L. pedunculatus, were not carried on pRlo2037a. These data suggest that nodulation, nitrogen fixation and flavolan resistance genes are not present on the large plasmid in R. loti strain NZP2037.  相似文献   

15.
It was shown for some oncogenic Agrobacterium tumefaciens strains that agrocin 84 sensitivity is determined by the presence of a large closed circular DNA plasmid, called the Ti-plasmid. Whereas wild-type strain C58 is agrocin 84 sensitive, all Ti-plasmid cured derivatives were found to be fully resistant. Moreover all independently isolated agrocin 84 resistant colonies were stably non-oncogenic and plasmid negative. In a growth experiment carried out at 37 degrees C it was shown that the kinetics of appearance of non-oncogenic cells on the one hand and of agrocin 84 resistant cells on the other were identical. The fact that not all oncogenic, plasmid harbouring, Agrobacterium tumefaciens strains are sensitive to agrocin 84, points to the possibility that the genes determining agrocin 84 sensitivity are not essential for tumor-inducing ability.  相似文献   

16.
Ti (Tumor inducing) plasmids in Agrobacterium tumefaciens can transfer their T-DNA region into dicotyledonous plants, in which the expression of T-DNA genes causes plant tumors and the production of bacterial nutrients, e.g., opines such as nopaline. Naturally occurring Ti plasmids (pTi) are difficult to cure by conventional curing methods because of their high stability. Here, we developed a novel curing method based on plasmid incompatibility. For this, a curing plasmid, pMGTrep1, was newly constructed and subsequently introduced into A. tumefaciens strains harboring pTi by conjugation with Escherichia coli harboring pMGTrep1. The conjugation yielded 32-99% nopaline non-utilizing agrobacterial transconjugants in which pMGTrep1 replaced pTi due to incompatibility. Then, pMGTrep1-less derivatives of the transconjugants are easily selected in the presence of sucrose because pMGTrep1 contains a sucrose-sensitive sacB gene. This efficient method is directly applicable for curing plasmids with the same incompatibility group and shoud also applicable to other types of plasmids in Agrobacterium groups, including A. rhizogenes, by replacing the rep gene region of the curing plasmid with that of the corresponding incompatibility.  相似文献   

17.
Plasmid R68.45 was used to promote conjugal transfer of chromosomal markers in Rhizobium trifolii RS55. Analysis of two-factor and three-factor crosses among R. trifolii strains enabled construction of a circular linkage map of the R. trifolii chromosome, containing 17 nutritional and resistance markers.  相似文献   

18.
19.
A nodulation plasmid, pRtr-514a, of molecular size 180 megadaltons (Mdal) was identified in Rhizobium trifolii strain NZP514. This plasmid was absent in both spontaneous and heat-cured Nod- derivatives of NZP514, and these strains were unable to induce root hair curling. The ability to nodulate clover was transferred from the wild-type strain to a Nod- derivatives, PN104, with the broad-host-range plasmid R68.45 (39 megadaltons) at a cotransfer frequency of about 4 X 10(-3). Most of the Nod+ transconjugants were resistant to kanamycin, tetracycline, and carbenicillin and had received a plasmid approximately 36 or 70 Mdal larger than pRtr514a but did not contain a plasmid of the size of R68.45, indicating that pRtr-514a was mobilized as a cointegrate plasmid containing either one or possibly two copies of R68.45. Use of these cointegrate-containing strains as donors in further crosses with the Nod- derivative strain PN118 resulted in high-frequency transfer of Nod+ (10(-3) to 10(-4), with cotransfer frequencies with kanamycin of up to 100%. Introduction of R68.45 into a derivative of NZP514 containing the broad-host-range plasmid pJP4 (52 Mdal) resulted in a high frequency of transconjugants carrying a cointegrate plasmid composed of pRtr-514a and pJP4. When used as donors to Nod- derivatives, such strains cotransferred Nod+ with kanamycin plus mercury at a frequency of 67%. The identification of stable cointegrates between pRtr-514a and the broad-host-range plasmids R68.45 and pJP4 should enable several genetic manipulations to be carried out with this nodulation plasmid, including the transfer of the plasmid to most gram-negative bacterial genera.  相似文献   

20.
One remarkable characteristic of the genomes of some Rhizobium species is the frequent occurrence of rearrangements. In some instances these rearrangements alter the symbiotic properties of the strains. However, no detailed molecular mechanisms have been proposed for the generation of these rearrangements. To understand the mechanisms involved in the formation of rearrangements in the genome of Rhizobium phaseoli, we have designed a system which allows the positive selection for amplification and deletion events. We have applied this system to investigate the stability of the symbiotic plasmid of R. phaseoli. High-frequency amplification events were detected which increase the copy number of a 120-kb region carrying nodulation and nitrogen fixation genes two to eight times. Deletion events that affect the same region were also found, albeit at a lower frequency. Both kinds of rearrangements are generated by recombination between reiterated nitrogenase (nifHDK) operons flanking the 120-kb region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号