首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Localization of Argonaute2 (AGO2) protein—an essential component for the processing of small interfering RNA (siRNA)-directed RNA interference (RNAi) in RNA-induced silencing complex (RISC) in nuage of rat spermatogenic cells—was evaluated by immunofluorescence microscopy (IFM) and immunoelectron microscopy (IEM). AGO2 was shown, for the first time, to be localized to four previously classified types of nuage: irregularly shaped perinuclear granules (ISPGs), intermitochondrial cement (IMC), satellite bodies (SBs), and chromatoid bodies (CBs). Dual IEM staining for AGO2/Maelstrom (MAEL) protein or AGO2/MIWI protein demonstrated that AGO2 is colocalized with MAEL or MIWI proteins in these types of nuage. Dual IFM and IEM staining of AGO2/lysosomal-associated membrane protein 2 (LAMP2) showed that CB in round spermatids are in contact with and surrounded by LAMP2-positive vesicles, whereas nuage in pachytene spermatocytes are not. Taken together, our findings indicate that: (i) AGO2 in pachytene spermatocytes functions in ISPGs, IMC, and SBs; (ii) AGO2 in round spermatids functions in CBs, and that CBs are associated with lysosomal compartments.  相似文献   

2.
The localization of DDX25/GRTH and gonadotropin-stimulated RNA helicase was studied in the spermatogenic cells of rat, mouse, and guinea pig by immunofluorescence and immunoelectron microscopy (IEM). Immunofluorescence studies identified four kinds of granular staining: (1) fine particles observed in meiotic cells; (2) small granules associated with a mitochondrial marker, appearing in pachytene spermatocytes after stage V; (3) short strands lacking the mitochondrial marker in late spermatocytes; and, (4) large irregularly shaped granules in round spermatids. IEM identified DDX25 signals in nine compartments: (1) fine dense particles in the meiotic cells; (2) intermitochondrial cement; (3) loose aggregates of 70–90 nm particles; (4) chromatoid bodies; (5) late chromatoid bodies; (6) satellite bodies; (7) granulated bodies; (8) mitochondria-associated granules; and, (9) reticulated bodies. Compartments (1) to (6) were previously classified into nuage while (7) to (9) were classified as nuage components by the present study. The results suggest that DDX25 functions in these nine compartments.  相似文献   

3.
The functions of MAELSTROM protein (MAEL) in spermatogenesis are gradually being identified but the precise distribution of MAEL in spermatogenic cells during spermatogenesis has not yet been mapped. We studied the expression of MAEL in rat testis by immunofluorescence and immunoelectron microscopy (IEM). Immunofluorescence staining showed that MAEL was localized in intermitochondrial cement, irregularly-shaped perinuclear granules and satellite bodies of pachytene spermatocytes, and in chromatoid bodies of spermatids. The SBs appeared exclusively in pachytene spermatocytes at stages IX–X and were stained strongly for MAEL. In step 12–19 spermatids, many granules stained for MAEL but not DDX4. These granules were confirmed to be non-nuage structures, including mitochondria-associated granules, reticulated body, granulated body by IEM. In the neck region of late spermatids and sperm, MAEL-positive small granules were found. MAEL is colocalized with MIWI in nuage and non-nuage. The results suggest that MAEL seems to function in nuage and non-nuage structures and interacts with MIWI.  相似文献   

4.
The chromatoid body (CB) is a unique structure of male germ cells composed of thin filaments that condense into a perinuclear organelle after meiosis. Due to the presence of proteins involved in different steps of RNA metabolism and of different classes of RNAs, including microRNAs (miRNAs), the CB has been recently suggested to function as an RNA processing centre. Herein, we show that the RNA binding protein SAM68 transiently localizes in the CB, in concomitance with the meiotic divisions of mouse spermatocytes. Precise staging of the seminiferous tubules and co-localization studies with MVH and MILI, two well recognized CB markers, documented that SAM68 transiently associates with the CB in secondary spermatocytes and early round spermatids. Furthermore, although SAM68 co-immunoprecipitated with MVH in secondary spermatocytes, its ablation did not affect the proper localization of MVH in the CB. On the other hand, ablation of the CB constitutive component MIWI did not impair association of SAM68 with the CB. Isolation of CBs from Sam68 wild type and knockout mouse testes and comparison of their protein content by mass spectrometry indicated that Sam68 ablation did not cause overall alterations in the CB proteome. Lastly, we found that SAM68 interacts with DROSHA and DICER in secondary spermatocytes and early round spermatids and that a subset of miRNAs were altered in Sam68(-/-) germ cells. These results suggest a novel role for SAM68 in the miRNA pathway during spermatogenesis.  相似文献   

5.
To demonstrate the cellular and subcellular localization of mouse vasa homologue protein during germ cell development, specific antibody was raised against the full-length MVH protein. The immunohistochemical analyses demonstrated that MVH protein was exclusively expressed in primordial germ cells just after their colonization of embryonic gonads and in germ cells undergoing gametogenic processes until the post-meiotic stage in both males and females. The co-culture of EG cells with gonadal somatic cells indicated inductive MVH expression caused by an intercellular interaction with gonadal somatic cells. In adult testis, MVH protein was localized in the cytoplasm of spermatogenic cells, including chromatoid bodies in spermatids, known to be a perinuclear nuage structure which includes polar granules that contain VASA protein in Drosophila.  相似文献   

6.
Mitochondrial carriers (MC) form a highly conserved family involved in solute transport across the inner mitochondrial membrane in eukaryotes. In mammals, ATP-Mg/Pi carriers, SCaMCs, form the most complex subgroup with four paralogs, SCaMC-1, -2, -3 and -3L, and several splicing variants. Here, we report the tissue distribution and subcellular localization of a mammalian-specific SCaMC paralog, 4930443G12Rik/SCaMC-1Like (SCaMC-1L), which displays unanticipated new features. SCaMC-1L proteins show higher amino acid substitution rates than its closest paralog SCaMC-1. In mouse, SCaMC-1L expression is restricted to male germ cells and regulated during spermatogenesis but unexpectedly its localization is not limited to mitochondrial structures. In mature spermatids SCaMC-1L is detected in the mitochondrial sheath but in previous differentiation stages appears associated to cytosolic granules which colocalize with specific markers of the chromatoid body (CB) in post-meiotic round spermatids and inter-mitochondrial cement (IMC) in spermatocytes. The origin of this atypical distribution was further investigated by transient expression in cell lines. Similarly to male germ cells, in addition to mitochondrial and cytosolic distribution, a fraction of SCaMC-1L-expressing COS-7 cells display cytosolic SCaMC-1L-aggregates which exhibit aggresomal-like features as the CB. Our results indicate that different regions of SCaMC-1L hinder its import into mitochondria and this apparently favours the formation of cytosolic aggregates in COS-7 cells. This mechanism could be also operational in male germ cells and explain the incorporation of SCaMC-1L into germinal granules.  相似文献   

7.
Germ cell-specific ATP-dependent RNA helicase, the product of the mouse vasa homolog (Mvh), has been shown to play an essential role in the development of the male germ cell. In male Mvh knockout mice, premeiotic germ cells arrest at the zygotene stage. To investigate the role of MVH protein in the progression of meiosis, we searched for genes encoding partners that interact with MVH in testicular germ cells. Using the yeast two-hybrid system, we found that MVH interacts with mouse RanBPM, a Ran-GTP binding protein involved in microtubule nucleation. RanBPM is predominantly expressed in the testis, especially in maturating spermatocytes. Within the cell, RanBPM and MVH are closely associated with perinuclear RNA-protein complexes and chromatoid bodies. The interaction of MVH with RanBPM points to a functional relationship between translational regulation and the microtubule nucleation during meiosis. Mol. Reprod. Dev. 66: 1-7, 2004.  相似文献   

8.
Chromatoid body (CB) was identified as granules stained by basic dye 130 years ago and called by various names. Electron microscopy revealed that the CB belonged to nuage (cloud in French) specific for germ cells. We described the localization of several proteins, including RNA helicases, in the nuage compartments classified into six types and in several spermatogenic cell-specific structures. All the proteins examined were detected in the nuage, including the CB with different staining intensities. Several proteins were localized to non-nuage structures, suggesting that these nuage proteins structures are related to nuage function.  相似文献   

9.
The localization of DEAD (Asp-Glu-Ala-Asp) box helicase 6 (DDX6) in spermatogenic cells from the mouse, rat, and guinea pig was studied by immunofluorescence (IF) and immunoelectron microscopy (IEM). Spermatogenic cells from these species yielded similar DDX6 localization pattern. IF microscopy results showed that DDX6 localizes to both the nucleus and cytoplasm. In the cytoplasm of spermatogenic cells, diffuse cytosolic and discrete granular staining was observed, with the staining pattern changing during cell differentiation. IEM revealed that DDX6 localized to the five different types of nuage structures and non-nuage structures, including small granule aggregate and late spermatid annuli. Nuclear labeling was strongest in leptotene and zygotene spermatocytes and moderately strong in the nuclear pocket of late spermatids. DDX6 also localized to the surface of outer dense fibers, which comprise of flagella. The results show that DDX6 is present in nuage and non-nuage structures as well as nuclei, suggesting that DDX6 has diverse functions in spermatogenic cells.  相似文献   

10.
Nuages are found in the germ cells of diverse organisms. However, nuages in postnatal male germ cells of mice are poorly studied. Previously, we cloned a germ cell-specific gene named Rnf17, which encodes a protein containing both a RING finger and tudor domains. Here, we report that RNF17 is a component of a novel nuage in male germ cells--the RNF17 granule, which is an electron-dense non-membrane bound spherical organelle with a diameter of 0.5 mum. RNF17 granules are prominent in late pachytene and diplotene spermatocytes, and in elongating spermatids. RNF17 granules are distinguishable from other known nuages, such as chromatoid bodies. RNF17 is able to form dimers or polymers both in vitro and in vivo, indicating that it may play a role in the assembly of RNF17 granules. Rnf17-deficient male mice were sterile and exhibited a complete arrest in round spermatids, demonstrating that Rnf17 encodes a novel key regulator of spermiogenesis. Rnf17-null round spermatids advanced to step 4 but failed to produce sperm. These results have shown that RNF17 is a component of a novel germ cell nuage and is required for differentiation of male germ cells.  相似文献   

11.
The germ-line cells of many animals possess a characteristic cytoplasmic structure termed nuage or germinal granules. In mice, nuage that is prominent in postnatal male germ cells is also called intermitochondrial cement or chromatoid bodies. TDRD1/MTR-1, which contains Tudor domain repeats, is a specific component of the mouse nuage, analogously to Drosophila Tudor, a constituent of polar granules/nuage in oocytes and embryos. We show that TDRD6 and TDRD7/TRAP, which also contain multiple Tudor domains, specifically localize to nuage and form a ribonucleoprotein complex together with TDRD1/MTR-1. The characteristic co-localization of TDRD1, 6 and 7 was disrupted in a mutant of mouse vasa homologue/DEAD box polypeptide 4 (Mvh/Ddx4), which encodes another evolutionarily conserved component of nuage. In vivo over-expression experiments of the TDRD proteins and truncated forms during male germ cell differentiation showed that a single Tudor domain is a structural unit that localizes or accumulates to nuage, but the expression of the truncated, putative dominant negative forms is detrimental to meiotic spermatocytes. These results indicate that the Tudor-related proteins, which contain multiple repeats of the Tudor domain, constitute an evolutionarily conserved class of nuage components in the germ-line, and their localization or accumulation to nuage is likely conferred by a Tudor domain structure and downstream of Mvh, while the characteristic repeated architecture of the domain is functionally essential for the differentiation of germ cells.  相似文献   

12.
Germ cells of diverse animal species have a unique membrane-less organelle called germ plasm (GP). GP is usually associated with mitochondria and contains RNA binding proteins and mRNAs of germ genes such as vasa. GP has been described as the mitochondrial cloud (MC), intermitochondrial cement (IC) and chromatoid body (CB). The mechanism underlying varying GP structures has remained incompletely understood. Here we report the analysis of GP through light and electron microscopy by using Vasa as a marker in adult male germ cells of the fish medaka (Oryzias latipes). Immunofluorescence light microscopy revealed germ cell-specific Vasa expression. Vasa is the most abundant in mitotic germ cells (oogonia and spermatogonia) and reduced in meiotic germ cells. Vasa in round spermatids exist as a spherical structure reminiscent of CB. Nanogold immunoelectron microscopy revealed subcellular Vasa redistribution in male germ cells. Vasa in spermatogonia concentrates in small areas of the cytoplasm and is surrounded by mitochondria, which is reminiscent of MC. Vasa is intermixed with mitochondria to form IC in primary spermatocytes, appears as the free cement (FC) via separation from mitochondria in secondary spermatocyte and becomes condensed in CB at the caudal pole of round spermatids. During spermatid morphogenesis, Vasa redistributes and forms a second CB that is a ring-like structure surrounding the dense fiber of the flagellum in the midpiece. These structures resemble those described for GP in various species. Thus, Vasa identifies GP and adopts varying structures via dynamic reorganization at different stages of germ cell development.  相似文献   

13.
The organization and molecular composition of complicated Cajal bodies (CBs) and interchromatin granule clusters (IGCs) in oocytes of the house cricket, Acheta domesticus, were studied using immunofluorescent/confocal and Immunogold labeling/electron microscopy. In A. domesticus oocytes, the CB consists of the fibrillar matrix and a central cavity containing a predominantly granular body with insertions of tightly packed fibrillar material. The latter structure was identified as an "internal" IGC, since it is enriched with the SC35 protein, a marker for IGCs. The IGCs located outside the CB were also identified. Microinjections of the fluorescein-tagged U7 snRNA into the ooplasm showed the targeting of the U7 to the matrix of the CB. Some other essential CB components (coilin, snRNPs, fibrillarin) were found to be colocalized in the matrix of the CB. Neither confocal nor Immunogold microscopy revealed significant amounts of RNA polymerase II (pol II) in the CB of A. domesticus oocytes. The splicing factor SC35 was detected in the matrix of the CB. In oocytes treated with DRB, the amount of IGCs in the nucleoplasm increased significantly, granular and fibrillar components of IGCs were segregated, and the fibrillar areas accumulated pol II. Additionally, IG-like granules were shown to display on the surface of the CB probably due to a shifting from the internal IGC. We believe that in A. domesticus oocytes, CBs are involved in nuclear distribution of splicing factors, but their role in pol II transport is less significant. We also suggest that the formation of complicated CBs is a result of interconnection between two different nuclear domains, CBs and IGCs.  相似文献   

14.
This report presents data from ultrastructural and morphometric studies on the germinal-body-like structures, nuage, nuage-mitochondrial clusters and chromatoid bodies in 4.5-day embryo cells and spermatogenic cells of the laboratory mouse Mus musculus. In the 4.5-day embryo cells the germinal-body-like structures that, according to previous data, arise by condensation of mitochondria in Graafian oocytes, were found not to undergo any ultrastructural alterations. In spermatogonia the germinal-body-like structures presumably were transformed into nuage that functioned as 'intermitochondrial cement' binding the mitochondrial clusters. In primary spermatocytes mitochondria aggregated by nuage were found with large vacuoles containing membraneous conglomerates that were obviously excreted by organelles into the cytoplasm. The chromatoid bodies that arose in spermatocytes and finally disintegrated in the posterior part of late spermatids seemed not to be implicated in the pathway of the germinal-body-like structure. The dispersion of chromatoid bodies was noted to be accompanied by excretion of membraneous conglomerates by late spermatid mitochondria. The spermatozoa were not found to contain either the germinal-body-like structures or any other germ-plasm-related structures.  相似文献   

15.
A conserved feature of germ cells in many animal species is the presence of perinuclear electron-dense material called the "nuage" that is believed to be a precursor of germinal (or polar or P) granules. In Xenopus oogenesis the nuage is first observed near the nuclear envelope and subsequently in close contact with mitochondria, at which stage it is called the mitochondrial cement. In this study, we found that, in Xenopus pre-stage I and stage I oocytes, nuage and mitochondrial cement contain the spliceosomal Sm proteins, Xcat2 mRNA, and DEAD-box RNA helicase XVLG1. Other components of Cajal bodies or splicing machinery such as coilin, SMN protein, and snRNAs are absent from the nuage and mitochondrial cement. We suggest that Xenopus Sm proteins have adapted to a role independent of pre-mRNA splicing and that instead of binding to their traditional spliceosomal partner such as snRNA, they bind mRNAs that are the components of germinal granules (i.e., Xcat2 mRNA) and facilitate the transport of these mRNAs from the nucleus to the nuage that is a precursor of germinal granules. In addition, the presence of Vasa-like DEAD-box helicase in Xenopus nuage suggests involvement of nuage in the microRNA and/or RNAi pathway, similar to the role of nuage in Drosophila.  相似文献   

16.
An oocyte nucleus contains different extrachromosomal nuclear domains collectively called nuclear bodies (NBs). In the present work we revealed, using immunogold labeling electron microscopy, some marker components of interchromatin granule clusters (IGCs) and Cajal bodies (CBs) in morphologically heterogeneous oocyte NBs studied in three hemipteran species: Notostira elongata, Capsodes gothicus (Miridae) and Velia caprai (Veliidae). Both IGC and CB counterparts were revealed in oocyte nuclei of the studied species but morphological and biochemical criteria were found to be not sufficient to determine carefully the define type of oocyte NBs. We found that the molecular markers of the CBs (coilin and non-phosphorylated RNA polymerase II) and IGCs (SC35 protein) may be localized in the same NB. Anti-SC35 antibody may decorate not only a granular material representing "true" interchromatin granules but also masks some fibrillar parts of complex NBs. Our first observations on the hemipteran oocyte NBs confirm the high complexity and heterogeneity of insect oocyte IGCs and CBs in comparison with those in mammalian somatic cells and amphibian oocytes.  相似文献   

17.
18.
19.
Mitochondria undergo dramatic rearrangement during Drosophila spermatogenesis. In wild type testes, the many small mitochondria present in pre-meiotic spermatocytes later aggregate, fuse, and interwrap in post-meiotic haploid spermatids to form the spherical Nebenkern, whose two giant mitochondrial compartments later unfurl and elongate beside the growing flagellar axoneme. Drp1 encodes a dynamin-related protein whose homologs in many organisms mediate mitochondrial fission and whose Drosophila homolog is known to govern mitochondrial morphology in neurons. The milton gene encodes an adaptor protein that links mitochondria with kinesin and that is required for mitochondrial transport in Drosophila neurons. To determine the roles of Drp1 and Milton in spermatogenesis, we used the FLP-FRT mitotic recombination system to generate spermatocytes homozygous for mutations in either gene in an otherwise heterozygous background. We found that absence of Drp1 leads to abnormal clustering of mitochondria in mature primary spermatocytes and aberrant unfurling of the mitochondrial derivatives in early Drp1 spermatids undergoing axonemal elongation. In milton spermatocytes, mitochondria are distributed normally; however, after meiosis, the Nebenkern is not strongly anchored to the nucleus, and the mitochondrial derivatives do not elongate properly. Our work defines specific functions for Drp1 and Milton in the anchoring, unfurling, and elongation of mitochondria during sperm formation.  相似文献   

20.
Immunohistochemical localization of a calmodulin-dependent protein phosphatase, calcineurin, was studied in the mouse testis in relation to previous observations showing that calmodulin is unusually rich in spermatogenic stages from mid-pachytene spermatocytes to elongating spermatids. The antibodies raised against calcineurin from scallop testis reacted with subunit B, but not subunit A, of calcineurin isoforms from mouse brain and testis. Indirect immunofluorescence using these antibodies on the mouse testis revealed positive reactions only in the nuclei of round or elongating spermatids: calcineurin started to accumulate in nuclei from the acrosomal cap phase, peaked at the initial stage of nuclear elongation, and decreased thereafter. There was almost no signal in the cytoplasm; spermatogenic cells at other stages, including spermatogonia, spermatocytes, mature sperm, and other somatic cells in the seminiferous tubules were totally negative. Immuno-electron microscopy gave the same result, on the basis of measuring the density of immunogold particles. These results suggest a role for calcineurin in remodeling of the nuclear chromatin in metamorphosing spermatids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号