首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For survival in adverse environments where there is drought, high salt concentration or low temperature, some plants seem to be able to synthesize biochemical compounds, including proteins, in response to changes in water activity or osmotic pressure. Measurement of the water activity or osmotic pressure of simple aqueous solutions has been based on freezing point depression or vapor pressure deficit. Measurement of the osmotic pressure of plants under water stress has been mainly based on vapor pressure deficit. However, differences have been noted for osmotic pressure values of aqueous polyethylene glycol (PEG) solutions measured by freezing point depression and vapor pressure deficit. For this paper, the physicochemical basis of freezing point depression and vapor pressure deficit were first examined theoretically and then, the osmotic pressure of aqueous ethylene glycol and of PEG solutions were measured by both freezing point depression and vapor pressure deficit in comparison with other aqueous solutions such as NaCl, KCl, CaCl(2), glucose, sucrose, raffinose, and bovine serum albumin (BSA) solutions. The results showed that: (1) freezing point depression and vapor pressure deficit share theoretically the same physicochemical basis; (2) theoretically, they are proportional to the molal concentration of the aqueous solutions to be measured; (3) in practice, the osmotic pressure levels of aqueous NaCl, KCl, CaCl(2), glucose, sucrose, and raffinose solutions increase in proportion to their molal concentrations and there is little inconsistency between those measured by freezing point depression and vapor pressure deficit; (4) the osmotic pressure levels of aqueous ethylene glycol and PEG solutions measured by freezing point depression differed from the values measured by vapor pressure deficit; (5) the osmotic pressure of aqueous BSA solution measured by freezing point depression differed slightly from that measured by vapor pressure deficit.  相似文献   

2.
Responses of stomata of clones of Populus candicans Ait. × P. berolinensis Dipp. and Populus deltoides Bartr. × P. caudina (Ten.) Bugala to two levels of light intensity and vapor pressure deficit were studied in controlled environments. Significant stomatal responses to light and vapor pressure deficit were observed. Interactive effects of low light intensity and high vapor pressure deficit elicited greater stomatal closure than was obtained under low light or high vapor pressure deficit alone, indicating adaptation for increased water use efficiency under conditions unfavorable for photosynthesis relative to transpiration. Adaxial stomata of both clones were more sensitive than abaxial stomata to changing vapor pressure deficit and light intensity. Stomatal response to vapor pressure deficit appeared to be independent of bulk leaf water status. Stomata of P. candicans × P. berolinensis were more sensitive than stomata of P. deltoides × P. caudina to a change in vapor pressure deficit and less sensitive to a change in light intensity. The sensitivity of stomata of P. candicans × P. berolinensis to vapor pressure deficit may be related to drought resistance in its parentage (P. berolinensis).  相似文献   

3.
於嘉禾  王卫光  陈泽峰 《生态学报》2024,44(11):4808-4819
旱地约占全球陆地面积的40%,而水分是旱地植被生长的一大限制要素。尽管土壤水分与饱和水汽压差对植被生长的重要性已经得到了广泛证实,然而目前二者对植被生产力影响的空间异质性及其形成因素仍未得到深入研究,这对研究旱地生态系统对气候变化的响应带来了挑战。为了填补这一认知空白,研究收集了多源气象、根区土壤含水率和总初级生产力产品,基于随机森林算法量化了植被总初级生产力对根区土壤含水率和饱和水汽压差的敏感性,结合土地覆盖数据和分档平均方法分析了敏感性空间异质性的形成机制。结果表明:全球旱地饱和水汽压差与植被生产力总体呈显著上升趋势;根区土壤水分对植被生长的影响以正效应主导,饱和水汽压差对植被生长的影响以负效应主导;相较于森林和灌木,饱和水汽压差对植被生长的负效应及根区土壤含水率对植被生长的正效应在农田、草地和苔原及半干旱区更为强烈;植被生产力对饱和水汽压差和根区土壤水分的敏感性在数量上总体呈显著的线性负相关性。综上,植被种类和气候条件是导致全球旱地植被生产力对土壤水分和饱和水汽压差敏感性空间异质性的重要因素。  相似文献   

4.
Air temperature, vapor pressure deficit, and light intensity microclimatic gradients were examined along four forest edge and four paired forest interior transects in the East and West Usambara Mountains, Tanzania. Between 14 August 1995 and 11 August 1998, 287, 282, and 196 air temperature, vapor pressure deficit, and light intensity gradients, respectively, were measured along the four forest edge and four interior transects. The relationship between microclimate and distance from the forest edge was examined using piecewise linear regression. All microclimatic gradients were classified into one of nine shapes based on the sign and the size of the two estimated slopes. The relative frequency in the shapes of 65 percent of air temperature gradients, 52 percent of vapor pressure deficit gradients, and 62 percent of light intensity gradients along forest edge transects exceeded the relative frequency of these same shapes along forest interior transects, indicating that a majority of the forest edge microclimatic gradients measured were influenced by edge effects. Yet this result also indicated that approximately one‐third of all air temperature and light intensity gradients and nearly one‐half of all vapor pressure deficit gradients recorded during this study were affected by factors independent of edge effects per se, and that forest edge microclimatic gradients were temporally nonconstant. For air temperature and vapor pressure deficit gradients, low spatial but high temporal variation existed in estimated edge width and the relative change in microclimate between the forest edge and interior. For light intensity gradients, both high spatial and temporal variability characterized estimated edge width and relative change in microclimate between the forest edge and interior. The pooled mean edge width and relative change in microclimate between die forest edge and interior across the four forest edge transects for air temperature, vapor pressure deficit, and light intensity gradients were 94.1 m and 2.00°C, 82.6 m and 0.29 kPa, and 60.5 m and 10.6 joules/sec/m2, respectively. These results suggest that forest edge microclimatic gradients in general may be inherently dynamic and nonconstant.  相似文献   

5.
L. M. Bates  A. E. Hall 《Oecologia》1982,54(3):304-308
Summary Previously we reported that leaf conductance of cowpea (Vigna unguiculata) decreased with small changes in soil water status without associated changes in leaf water status. In these studies a larger range of soil water deficits was imposed in a rain-free environment by prolonged soil drying, and by weekly irrigation with different amounts of water. With progressive soil water deficits, leaf conductance and xylem pressure potential both declined, but in a manner which indicated that they were not related. Diurnal courses of leaf conductance usually indicated that stomatal opening occurred in the morning, and partial or complete stomatal closure occurred during midday and afternoon. This stomatal closure was associated with increases in air vapor pressure deficit. Day-to-day increases in leaf conductance, at times when radiation was not limiting stomatal opening, were associated with decreases in air vapor pressure deficits. However, maximum leaf conductances and their responses to vapor pressure deficit were generally smaller for plants subjected to greater depletion of soil water.  相似文献   

6.
Journal of Plant Growth Regulation - Atmospheric humidity, defined as the vapor pressure deficit (VPD), is an important factor affecting plant transpiration and nutritional status. Previous work...  相似文献   

7.
在台风天气应用热扩散技术对福建长汀土壤严重侵蚀区的马尾松树干液流进行测定,结果显示:台风带来的高强度降雨和大风抑制了马尾松的蒸腾作用;台风降雨并未提高植物的可利用水分;台风前后马尾松的光合作用和水分生理活动无明显差异;台风过程中与马尾松树干液流密度极显著相关(P<0.01)的环境因子有太阳辐射、空气温度和水汽压亏缺,晴天时则为空气温度、太阳辐射、相对湿度和水汽压亏缺。研究表明,台风没有增加植物的可利用水分,也未对马尾松的生理活动产生破坏作用。  相似文献   

8.
冠层气孔导度(gs)是衡量冠层-大气界面水汽通量的重要生物学常数,研究其特征及对环境因子的响应,能为开展森林冠层水汽交换过程的机理性研究提供理论依据.于2014年利用SF-L热扩散式探针测定了侧柏的树干液流密度(Js),同步监测光合有效辐射(PAR)、饱和水汽压差(VPD)、气温(T)等环境因子,计算侧柏的冠层气孔导度特征并分析其对各环境因子的响应.结果表明: 侧柏液流密度的日变化总体呈双峰曲线,生长季高于非生长季,且胸径越大液流密度越大;冠层气孔导度日变化与单位叶面积冠层蒸腾(EL)趋势相近,均呈双峰曲线,生长季的冠层气孔导度和蒸腾较非生长季略高.侧柏冠层气孔导度与空气温度呈抛物线关系,在10 ℃左右冠层气孔导度达到峰谷;光合有效辐射以400 μmol·m-2·s-1为界,小于该阈值两者呈正相关关系,大于该阈值则冠层气孔导度受其影响较小;与饱和水汽压差呈负对数函数关系,随饱和水汽压差增大而逐渐降低.较高的空气温度和光合有效辐射、较低的饱和水汽压差有利于侧柏形成较大的冠层气孔导度,进而促进冠层蒸腾.  相似文献   

9.
李浩  胡顺军  朱海  李茜倩 《生态学报》2017,37(21):7187-7196
利用TDP热扩散式茎流计,结合自动气象站,对古尔班通古特沙漠南缘原生梭梭的树干液流及环境因子进行连续监测,分析了梭梭树干液流对环境要素的响应,建立了生长季梭梭树干液流与环境因子的关系,估算出梭梭群落的日、季耗水量。结果表明:(1)液流速率日变化主要为单峰曲线,夏季偶有出现双峰曲线,不同季节间的液流速率大小差异显著,夏季树干液流启动早,峰值出现早,夜间持续有微弱的液流;(2)梭梭树干瞬时液流速率与风速、净辐射、空气温度、饱和水汽压亏缺值等因素呈显著正相关,与实际水汽压和空气湿度呈极显著负相关,影响梭梭树干瞬时液流速率变化的关键因子是净辐射和饱和水汽压亏缺值是导致树干液流速率瞬时变化的关键因子;(3)梭梭树干日均液流速率与净辐射、空气温度、实际水汽压、土壤含水率和土壤温度等呈极显著正相关,与空气湿度等呈极显著负相关,与风速相关性不显著,影响梭梭日均液流速率变化的关键因子是净辐射、饱和水汽压亏缺和空气温度。  相似文献   

10.
The gas exchange characteristics are reported for Amaranthus tricolor, a C4 vegetable amaranth of southeastern Asia. Maximum photosynthetic capacity was 48.3±1.0 μmol CO2 m-2 s-1 and the temperature optimum was 35°C. The calculated intercellular CO2 concentration at this leaf temperature and an incident photon flux (400–700 mm) of 2 mmol m-2 s-1 averaged 208±14 μl l-1, abnormally high for a C4 species. The photosynthetic rate, intercellular CO2 concentration, and leaf conductance all decreased with an increase in water vapor pressure deficit. However, the decrease in leaf conductance which resulted in a decrease in intercellular CO2 concentration accounted for only one fourth of the observed decrease in photosynthetic rate as water vapor pressure deficit was increased. Subsequent measurements indicated that the dependence of net photosynthesis on intercellular CO2 concentration changed with water vapor pressure deficit.  相似文献   

11.
The gas exchange characteristics are reported for Amaranthus tricolor, a C4 vegetable amaranth of southeastern Asia. Maximum photosynthetic capacity was 48.3±1.0μmol CO2 m?2s?1 and the temperature optimum was 35°C. The calculated intercellular CO2 concentration at this leaf temperature and an incident photon flux (400–700 mm) of 2 mmol m?2s?1 averaged 208±14 μl l?1, abnormally high for a C4 species. The photosynthetic rate, intercellular CO2 concentration, and leaf conductance all decreased with an increase in water vapor pressure deficit. However, the decrease in leaf conductance which resulted in a decrease in intercellular CO2 concentration accounted for only one fourth of the observed decrease in photosynthetic rate as water vapor pressure deficit was increased. Subsequent measurements indicated that the depence of net photosynthesis on intercellular CO2 concetration changed with water vapor pressure deficit.  相似文献   

12.
The montane cloud forest (MCF) is one of the most threatened ecosystems, in spite of its high strategic value for sustainable development, the role it plays in the hydrological cycle maintenance, and as reservoir of endemic biodiversity. For Mexico, this forest is considered the most threatened terrestrial ecosystem at national level because of land-use changes and the effects of global climate change. To compare and assess the environmental vulnerability in the MCF we measured two physiological traits (stomatal conductance and leaf water potential), four climate variables (air temperature, photosynthetically active radiation, vapor pressure deficit, water availability) and the potential geographic distribution of eleven tree species from this forest. We evaluated stomatal conductance responses using the envelope function method (EFM), and after analyzing these responses we developed a vulnerability index that allowed us to compare the environmental vulnerability among species. We proposed the EFM as a useful tool to assess regional environmental vulnerability by comparing species. Our results showed differential species responses to all the studied variables; however, the vulnerability index allowed us to conclude that the most vulnerable species was Liquidambar styraciflua, and the least vulnerable Persea longipes. We also found that temperatures above 34 °C, and vapor pressure deficit above 2.9 kPa with relative humidity below 30% jeopardized the stomatal conductance performance of all species. We also found leaf water potential as the most influential variable over the studied species followed by vapor pressure deficit, showing that even in the MCF water is a determinant factor for species’ development.  相似文献   

13.
Understanding the water relations of Eucalyptus trees plays an important role in finding solutions to dryland salinity in southern Australia. A model for studying structure–function relationships in isolated tree crowns (radiation absorption, transpiration and photosynthesis, RATP) was parameterized to permit the seasonal transpiration course of a Eucalyptus salmonophloia tree to be quantified. Model responses to different parameterizations were tested in a sensitivity analysis. Predictive quality was mostly affected by the accuracy of information about leaf area density and stomatal responses to air vapor pressure deficit, and to a lesser extend by foliage dispersion. Assuming simple, non‐synergistic influences of changes in photosynthetic active radiation and air vapor pressure deficit on stomatal transpiration control, the model was able to simulate the daily water uptake of E. salmonophloia trees with reasonable predictive quality during an entire season. In order to more precisely simulate short‐term (i.e. diurnal) water use dynamics, the model must be extended to account for hydraulic and chemical controls of stomatal regulation of crown energy balance.  相似文献   

14.
Although drought in temperate deciduous forests decreases transpiration rates of many species, stand-level transpiration and total evapotranspiration is often reported to exhibit only minor interannual variability with precipitation. This apparent contradiction was investigated using four years of transpiration estimates from sap flux, interception–evaporation estimates from precipitation and throughfall gauges, modeled soil evaporation and drainage estimates, and eddy covariance data in a mature oak-hickory forest in North Carolina, USA. The study period included one severe drought year and one year of well above-average precipitation. Normalized for atmospheric conditions, transpiration rates of some species were lower in drought than in wet periods whereas others did not respond to drought. However, atmospheric conditions during drought periods are unlike conditions during typical growing season periods. The rainy days that are required to maintain drought-free periods are characterized by low atmospheric vapor pressure deficit, leading to very low transpiration. In contrast, days with low air vapor pressure deficit were practically absent during drought and moderate levels of transpiration were maintained throughout despite the drying soil. Thus, integrated over the growing season, canopy transpiration was not reduced by drought. In addition, high vapor pressure deficit during drought periods sustained appreciable soil evaporation rates. As a result, despite the large interannual variation in precipitation (ranging from 934 to 1346 mm), annual evapotranspiration varied little (610–668 mm), increasing only slightly with precipitation, due to increased canopy rainfall interception. Because forest evapotranspiration shows only modest changes with annual precipitation, lower precipitation translates to decreased replenishment of groundwater and outflow, and thus the supply of water to downstream ecosystems and water bodies.  相似文献   

15.
Colliguaya odorifera Mol. is the only species of the Chilean matorral which shows an active dispersion of its seeds (autochory). This mechanism is dependent on daily variation of temperatures. Other climatic variables (air humidity of vapor pressure deficit) appear as not having direct influences on seed dispersal.  相似文献   

16.
运用Granier热扩散探针法对半干旱黄土丘陵区不同胸径辽东栎进行树干液流测定,并对太阳辐射、空气温湿度、降水量、土壤水分等环境因子进行同步观测,分析不同土壤水分条件下不同胸径辽东栎的树干液流变化特征及其对环境因子的响应.结果表明:辽东栎液流日变化特征总体上与太阳辐射和空气水汽压亏缺呈相同趋势,但液流峰值出现时间早于两个气象环境因子的峰值时间.同一树木个体在土壤水分条件较高时期的树干液流通量高于土壤水分较低时期.在相同土壤水分条件下,大径级样本液流通量显著高于小径级样本.采用指数饱和曲线函数对液流通量与太阳辐射和空气水汽压亏缺以及两因子的综合指标进行拟合,效果良好,可以反映液流通量对气象环境因子的响应规律.不同胸径辽东栎在不同土壤水分条件下的拟合曲线特征和拟合参数差异表明,在土壤水分较高时段,液流通量可快速上升至饱和值;在土壤水分较低时段,液流通量上升缓慢.小径级样本对土壤水分变化的反应更加剧烈.单位空气水汽压亏缺的日液流通量值(日液流通量与空气水汽压亏缺的比值)在两种土壤水分条件下的比值与边材面积呈线性相关,且小径级样本的斜率高于大径级样本,说明小径级样本对土壤水分的变化较为敏感,在土壤含水量较低时段,大径级样本较厚的导水组织对土壤水分供应不足起到了缓冲作用.  相似文献   

17.
Describing spatial variation in species richness and understanding its links to ecological mechanisms are complementary approaches for explaining geographical patterns of richness. The study of elevational gradients holds enormous potential for understanding the factors underlying global diversity. This paper investigates the pattern of species richness and range-size distribution of epiphytic bryophytes along an elevational gradient in Marojejy National Park, northeast Madagascar. The main objectives are to describe bryophyte species composition and endemism in Marojejy National Park, to describe the species richness and distribution patterns of epiphytic bryophytes along an elevational gradient from 250 m to 2050 m and to evaluate the explanatory value of environmental variables for the observed patterns. Bryophyte samples were collected following a nested design with four hierarchical levels: elevational belts, plots, quadrats, and microplots. In total, 254 epiphytic bryophyte species were recorded, comprising 157 liverworts and 97 mosses. Twenty-three of these are endemic to Madagascar. Species richness exhibits a hump-shaped pattern along the elevational gradient, peaking at 1,250 m. Eighty-seven percent of the total recorded species have a range distribution lower than 1,000 m, at which point 36% are restricted to these single elevations. Our results suggest that mean temperature, relative humidity, and vapor pressure deficit play important roles in shaping the richness pattern observed in this study. While the liverwort richness pattern did not correlate to vapor pressure deficit and responded only weakly to relative humidity, the richness pattern shown by mosses correlates well with mean temperature, relative humidity, and vapor pressure deficit.  相似文献   

18.
边缘效应带促进红松生长的光合生理生态学研究   总被引:13,自引:2,他引:11  
王文杰  祖元刚  杨逢建  王慧梅  王非 《生态学报》2003,23(11):2318-2326
以一个经过12a边缘效应带处理的14年生红松幼林生态系统为研究对象,通过对3种宽度(4m,6m,8m)边缘效应带及保留带内红松幼树的光合日进程、碳素日积累量及相关生理生态学因子(光照、气孔导度、小枝木质部水势、叶片温度、叶面饱和蒸气压亏缺)的研究,探讨了造成不同效应带和保留带内红松生长差异的光合生理生态学原因。结果:4m效应带光照不足引起的碳素日积累量过低导致红松生长较差,8m效应带气孔导度过低引起的光合午休现象导致了碳素日积累量低、红松生长较差。8m效应带引起气孔导度下降的因素主要是过强光照引起叶片温度较高、叶面饱和蒸气压亏缺较大以及小枝木质部水势过低。研究认为,太宽的8m带和太窄的4m带都在一定程度上引起了光合生理生态学的不适应,导致生长水平下降,6m宽度的边缘效应带是人工促进红松生长的最佳边缘效应带。  相似文献   

19.
Spatial climate datasets of 1981–2010 long-term mean monthly average dew point and minimum and maximum vapor pressure deficit were developed for the conterminous United States at 30-arcsec (~800m) resolution. Interpolation of long-term averages (twelve monthly values per variable) was performed using PRISM (Parameter-elevation Relationships on Independent Slopes Model). Surface stations available for analysis numbered only 4,000 for dew point and 3,500 for vapor pressure deficit, compared to 16,000 for previously-developed grids of 1981–2010 long-term mean monthly minimum and maximum temperature. Therefore, a form of Climatologically-Aided Interpolation (CAI) was used, in which the 1981–2010 temperature grids were used as predictor grids. For each grid cell, PRISM calculated a local regression function between the interpolated climate variable and the predictor grid. Nearby stations entering the regression were assigned weights based on the physiographic similarity of the station to the grid cell that included the effects of distance, elevation, coastal proximity, vertical atmospheric layer, and topographic position. Interpolation uncertainties were estimated using cross-validation exercises. Given that CAI interpolation was used, a new method was developed to allow uncertainties in predictor grids to be accounted for in estimating the total interpolation error. Local land use/land cover properties had noticeable effects on the spatial patterns of atmospheric moisture content and deficit. An example of this was relatively high dew points and low vapor pressure deficits at stations located in or near irrigated fields. The new grids, in combination with existing temperature grids, enable the user to derive a full suite of atmospheric moisture variables, such as minimum and maximum relative humidity, vapor pressure, and dew point depression, with accompanying assumptions. All of these grids are available online at http://prism.oregonstate.edu, and include 800-m and 4-km resolution data, images, metadata, pedigree information, and station inventory files.  相似文献   

20.
环境因子对冬小麦水分利用效率的影响   总被引:13,自引:0,他引:13  
王慧 《生态学报》1996,16(6):584-590
对干湿两种水分处理下农田冬小麦群体水分利用效率与环境因子的关系进行分析。结果表明:(1)各环境因子以综合复杂的方式影响水分利用效率。(2)由土壤干旱和大气高蒸发势迭加而成的水分亏缺所引起的气阻阻力上升有利于提高水分利用效率,但水分亏缺同时引起的叶-气水汽压梯度增大则会降低水分利用效率。在水分亏缺最强的午后12:00 ̄16:00时,水分利用效率最低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号