首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Plants regenerated from seed-derived callus of a PNMS 6B line of pearl millet (Pennisetum glaucum (L.) R. Br.) were evaluated for their resistance induced by somaclonal variation for downy mildew disease caused by Sclerospora graminicola (Sacc.) Schroter. Among the 201 lines regenerated, only 3 lines consistently proved highly resistant (free from disease incidence) for up to 5 generations; whereas, 17 lines were resistant (disease incidence ranging from 1 to 9%). Resistance was confirmed by testing the plants under both laboratory and field conditions. The plants were evaluated for their agronomic traits. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
The use of different sources of cytoplasmic male sterility (CMS) in hybrid seed production of pearl millet [Pennisetum glaucum (L.) R. Br.] is advocated to avoid possible disease epidemics occurring due to cytoplasmic uniformity. The effects of commercially unexploited, but potentially exploitable, sources of CMS, like A2, A3 and A4, on downy mildew [Sclerospora graminicola (Sacc.) Schroet] incidence were studied by using the disease incidence of isonuclear hybrids with male-sterile and fertile cytoplasm. The mean downy mildew incidence of hybrids carrying different male-sterile cytoplasm was similar to that of hybrids retaining the fertile cytoplasm. The cytoplasm accounted for only 0.6% of the total variation and its effect was non-significant; pollinators could explain most of the variation in determining the disease incidence of hybrids. This suggested that these male-sterile cytoplasms are not linked to downy mildew susceptibility and thus can be exploited commercially to broaden the cytoplasmic base of the male-sterile lines and, ultimately, of hybrids.  相似文献   

3.
Transgenic pearl millet lines expressing pin gene—exhibiting high resistance to downy mildew pathogen, Sclerospora graminicola—were produced using particle-inflow-gun (PIG) method. Shoot-tip-derived embryogenic calli were co-bombarded with plasmids containing pin and bar genes driven by CaMV 35S promoter. Bombarded calli were cultured on MS medium with phosphinothricin as a selection agent. Primary transformants 1T0, 2T0, and 3T0 showed the presence of both bar and pin coding sequences as evidenced by PCR and Southern blot analysis, respectively. T1 progenies of three primary transformants, when evaluated for downy mildew resistance, segregated into resistant and susceptible phenotypes. T1 plants resistant to downy mildew invariably exhibited tolerance to Basta suggesting co-segregation of pin and bar genes. Further, the downy mildew resistant 1T1 plants were found positive for pin gene in Southern and Northern analyses thereby confirming stable integration, expression, and transmission of pin gene. 1T2 progenies of 1T0 conformed to dihybrid segregation of 15 resistant:1 susceptible plants.  相似文献   

4.
Summary Intercrossing and irradiation were successfully used in pearl millet (Pennisetum typhoides) to develop multiple interchanges involving up to the total complement of all the chromosomes in one complex. In interchange heterozygotes showing 12 + 1 II and 14, 90.9 and 87.8 per cent of the cells, respectively, had chromosome configurations other than that of 12 and 14 chromosomes. In general, the frequency of such cells resulting from breakdown of the expected complex configuration increased with the increase in the number of translocated chromosomes in the complex. The higher the number of chromosomes involved in the interchange ring, the higher were the pollen and ovule sterility. The results indicated that meiotic instability, deficiency-duplication gametes, and unequal distribution of chromosomes account for increased sterility of multiple interchange heterozygotes. Even though interchanges in pearl millet predominantly show the alternate type of segregation, sterility seems to be the major barrier for the exploitation of the multiple interchange method for gamete selection and the establishment of homozygous lines in this plant species.  相似文献   

5.
Hydroxyproline-rich glycoproteins (HRGPs) are important plant cell wall structural components, which are also involved in response to pathogen attack. In pearl millet, deposition and cross-linking of HRGPs in plant cell walls was shown to contribute to the formation of resistance barriers against the phytopathogenic oomycete Sclerospora graminicola. In the present study, the purification and characterization of HRGPs that accumulated in coleoptiles of pearl millet seedlings in response to S. graminicola inoculation has been carried out. Periodic acid Schiff's staining revealed that the purified protein was a glycoprotein. The protein to carbohydrate ratio was determined to be 95.5%:4.5% (w/w). Proline amounted for 20 mol% of the total amino acids as indicated by amino acid composition analysis. The isolated protein had a pI of 9.8 and was shown to be composed of subunits of 27, 17, and 14 kDa. Cross reactivity with the monoclonal antibody MAC 265 and the presence of the signature amino acid sequence, PVYK, strongly suggested to classify the purified glycoprotein as a member of the P/HRGPs class. In the presence of horseradish peroxidase and H2O2 the purified glycoprotein served as a substrate for oxidative cross-linking processes.  相似文献   

6.
Summary The peroxidases zymogram phenotypes of seven primary trisomics of pearl millet (Pennisetum typhoides) and their disomic sibs were determined. It was found that each of the trisomics can be differentiated from its disomic sib and from other trisomics on the basis of the isozyme band intensities.This research was supported in part by the USDA under grant PL-480  相似文献   

7.
8.
Summary Sixteen translocation stocks developed in pearl millet, Pennisetum typhoides (Burm.) S.&H. (2 n = 14) were inter-crossed and the meiotic configurations of f1's analysed. A translocation tester set comprising five translocation stocks, each involving two non-homologous chromosomes has been developed.  相似文献   

9.
Summary Nomenclature and chromosome constitution for twenty different aneuploids with telocentrics in Pennisetum typhoides are presented.  相似文献   

10.
Innate defence mechanisms in plants can be triggered and enhanced by certain agents, which are referred to as inducers. Inducing resistance against a broad spectrum of pathogens in otherwise susceptible plants is seen as a potentially safer alternative to other methods of chemical control of plant diseases. Cerebrosides, which are glycosphingolipids extracted from various plant pathogens, have been reported as resistance elicitors in the rice‐pathogen system. In the present study, cerebroside elicited resistance against downy mildew disease (caused by Sclerospora graminicola) of pearl millet (Pennisetum glaucum) that was highly significant. The resistance was of systemic nature and the time required for the resistance to build up was from 2 days onwards. There was a significant yield enhancement due to disease suppression by cerebroside treatment. Promising results were obtained in a preliminary field trial.  相似文献   

11.
Pearl millet (Pennisetum glaucum L. Br.) is the most important crop in India and Africa. Downy mildew disease of pearl millet caused by the oomycetous fungus Sclerospora graminicola (Sacc.) Schroet., is the major biological constraint in the production of pearl millet. Plasma membrane H+-ATPase is induced in resistant pearl millet against downy mildew pathogen. Sodium orthovanadate, an inhibitor of H+-ATPase, was used in this study to understand its effect on other known defence responses in pearl millet including H+-ATPase. Results suggest that vanadate down-regulates all defence responses tested, such as H+-ATPase (53 ± 5.0%), peroxidase (36 ± 5.6%), phenylalanine ammonia lyase (43 ± 4.5%), β-1,3 glucanase (25 ± 4.2%), lytic activity (32 ± 3.0%), hypersensitive response (57 ± 4.3%) and pathogen colonisation. These data indicate that the plasma membrane H+-ATPase may be a key step in the signaling pathway leading to defence activation in pearl millet against downy mildew disease.  相似文献   

12.
Arachidonic acid (AA) induces hypersensitive response (HR) on coleoptile/root regions of two-day-old pearl millet seedlings. The response is comparable to the HR induced by the downy mildew pathogen, Sclerospora graminicola. A time gap in the appearance of cell necrosis among genotypes of pearl millet was related to the degree of resistance to downy mildew. Based on the time required for the development of necrotic spots induced by AA, the pearl millet genotypes were categorised as highly resistant/resistant (HR in 3–6 h), susceptible (HR in 7–12 h) and highly susceptible (HR in 13 h and above). The percentage disease incidence in each genotype was compared with the time required for the development of AA-induced HR. The appearance of hypersensitive cell necrosis was rapid in genotypes having high resistance to downy mildew and was slow in genotypes with high susceptibility. This simple method of screening various pearl millet genotypes in the absence of the pathogen aids in identifying the downy mildew resistant/susceptible host cultivars without the risk of introducing the virulent race of the pathogen.  相似文献   

13.
Large-scale cultivation of pearl millet [Pennisetum glaucum (L.) R. Br. F1 hybrids in India has led to increased incidence of downy-mildew (Sclerospora graminicola). There is concern that the A1 male-sterile cytoplasm used in all the hybrids released so far is responsible for this increase. The influence of A1 malesterile cytoplasm on downy-mildew incidence in pearl millet was studied by comparing the disease reaction of 40 pairs of F1 hybrids, each pair carrying respectively a1 male-sterile and normal B cytoplasm. Mean downy-mildew incidence was similar in the hybrids carrying either A1 male-sterile or B cytoplasm. The general combining ability of lines with and without A1 cytoplasm was found to be similar for downy-mildew incidence. These results indicated that in pearl millet A1 cytoplasm is not associated with increased downymildew incidence. The possible danger of using only one source of cytoplasm has been briefly discussed.  相似文献   

14.
Dual cultures were successfully established using malformed florets of pearl millet infected with Sclerospora graminicola, the downy mildew pathogen. A higher proportion (86%) of calli from malformed florets formed dual cultures on Murashige and Skoog's (MS) medium with 2 mg 1-1 of 2,4-dichlorophenoxy acetic acid (2,4-d), compared to shoot tips (25%). Fungal mycelium covered the entire surface of the callus within 30 days of placement of explants on the MS medium with 2 mg 1-1 of 2,4-d. The infected calli also differentiated and produced plantlets when transferred to MS medium without 2,4-d.  相似文献   

15.
Four near-isonuclear polycytoplasmic versions of 81A and two of Pb 402A male-sterile lines of pearl millet (Pennisetum typhoides) were used in factorial matings with five inbred male testers in different combinations in three sets. The cytoplasmic differences were studied for several agronomic traits using mean values and general combining effects (gca) of male-sterile lines, and specific combining ability effects of hybrids. The fertility/ sterility behaviour of different male-sterile lines in crosses with common male parents was also studied. Significant differences among near-isonuclear polycytoplasmic lines were observed in mean values for a few traits such as plant height, leaf length and peduncle length, but the differences for combining ability were more pronounced. The A3 cytoplasm was a better general combiner than the A2 cytoplasm for grain yield and both A2 and A3 cytoplasms were better general combiners for leaf length and peduncle length. In addition, superiority of A3 cytoplasm for gca was observed for plant height and ear characters over the A2 cytoplasm in set II. A differential behaviour of cytoplasms, both in combination with a common pollinator and across pollinators, was observed for several traits. The results provide evidence for the distinctiveness of different cytoplasmic sources in pearl millet and for the influence of cytoplasmic factors on the phenotypic expression of nuclear genes. A diversification of male sterility sources in the breeding of pearl millet hybrids is suggested.  相似文献   

16.
17.
Cytogenetics of pearl millet   总被引:1,自引:0,他引:1  
Summary The somatic karyotype of pearl millet Pennisetum americanum (L.) Leeke. (2n = 14) has been studied in several cultivars, but few cytological markers have been discovered which could help in the easy identification of the chromosomes. Analysis of pachytene bivalents permits such identification but is feasible only in a few cultivars. Recently, several lines having telocentric chromosomes have been produced and classified but their potentialities as cytogenetic tools have yet to be explored. Some African populations of pearl millet carry B-chromosomes in their karyotype. Cytogenetics of B-chromosomes has been reported in great detail. Bs undergo spontaneous changes to produce deficient- and iso-chromosomes. The main effect of B-chromosomes is on chiasma frequency which is exerted by the relative amounts of chiasma promoting euchromatin and the chiasma depressing heterochromatin in the Bs. Haploid plants occur occasionally and sometimes show a low degree of seed set, offering a possibility of establishing homozygous inbred lines. Cytogenetics of several spontaneous and induced autotetraploids have been reported. In general quadrivalent formation between the seven sets of four homologues was random. Seed set of the autotetraploids could be improved by selection; improved seed fertility was found to be associated with increased chiasma frequency, increased quadrivalent frequency and regular distribution of chromosomes at anaphase I. Genes controlling morphological characters of plant phenotype segregate independent of those controlling fertility and in pearl millet polyploidy per se is not limiting to plant vigour. Primary trisomics represent the best studied among the aneuploids of pearl millet. All the seven primary trisomics have been identified and described. Some were used in assigning genes to specific chromosomes but in general trisomies have poor vigour and fertility, and show low frequency of transmission. Apart from B-chromosomes, cytogenetics of interchanges has been the best studied aspect of pearl millet. The frequency of co-orientation of an interchange complex at metaphase I, which determines the fertility or sterility of the interchange heterozygote, is influenced by the genetic background and thus is theoretically amenable for selection leading to improved fertility of the heterozygote. Interchange tester-stocks have been assembled which can be used to identify the chromosomes involved in any newly obtained interchange. A complex interchange line involving all the chromosomes of the complement has also been produced, but the ring-of-fourteen produces total male and female sterility.Genotypic control of mitosis and meiosis has been reported, with reference to chromosome numerical mosaicism, multiploid sporocytes, desynapsis and chromosome fragmentation, and male sterility. Pearl millet being a largely outbreeding species, forced inbreeding was mainly found to result in loss of morphological vigour and reduction in mean chiasma frequency per PMC. Interspecific hybrids between pearl millet and several related species have been cytologically investigated and homology of the seven chromosomes of pearl millet with seven of the fourteen chromosomes of P. purpureum has been demonstrated. Cytogenetic evidence from haploids, autopolyploids and interspecific hybrids has indications to suggest that the haploid number of x = 7 is derived from x = 5, but the evidence is inconclusive and needs critical evaluation.  相似文献   

18.
The effect of various levels of nitrogen (0.0, 30.0, 60.0, 120.0) and phosphorus (0.0, 6.5, 13.0, 36.0) on the incidence and severity of downy mildew of pearl millet and yield of two pearl millet varieties (Zango and GB8375) were studied under field conditions in 2000 and 2001 respectively. Both nitrogen and phosphorus significantly increased incidence and severity of the disease in the two varieties. Grain yield and 1000 grain weight of the varieties also increased with nitrogen and phosphorus levels.  相似文献   

19.
Summary A biochemical study on phenolic (total phenols and orthodihydroxy phenols) content and on the activities of phenol oxidizing enzymes (peroxidase and polyphenol oxidase) in pea cultivars resistant and susceptible to powdery mildew infection revealed that the resistant cultivars contained higher levels of phenolics and phenol-oxidizing enzymes than the susceptible ones. A further study of their F1s, F2s and backcross progenies suggested a high heritability for all biochemical traits. The correlation coefficients between the biochemical parameters and the disease index were also high. Both additive (d) and dominant () components were found to contribute to the inheritance of these constituents.Associate Professor (Genetics), Department of Basic Sciences  相似文献   

20.
Few crop breeding programs today are breeding crops in their areas of diversity and origin. This study reports on a Malian breeding program in an area of genetic diversity. It has the objective to accumulate resistance to major populations of Sclerospora graminicola (= Sg) with modern breeding and selection methods. This study is part of the development of pearl millet top cross hybrids, with a reduced plant height, Sg-resistance (= resistance to pearl millet downy mildew) and 'stay green' at physiological maturity. The parent entries, among other relevant characteristics, were selected for a high level of resistance (good sources of resistance) making use of a combination of artificial young plant screening methods and single location field testing, in 1998. Pedigree selection in F1 to F4 was from 1999 to 2002. Its synthetics and composites were selected for low S. graminicola-levels, in 2003 to 2005 and in 2003 and 2006 tested for S. graminicola-resistance together with 5 checks at two Locations differing in S. graminicola-virulence responses. The 2006 test seemingly indicated the expected quadratic checks, whereby entry 1 is resistant at location 1 and susceptible at location 2 and entry 2 is susceptible at location 1 but resistant at location 2. This quadratic check is indicating differences in virulence between the two S. grominicola-populations and also an adaptation of the pathogen populations on the newly accumulated genes for resistance in the host. It is also indicating that one or more genes for resistance against each of the two populations were accumulated. A good number of synthetics and composites combined low S. graminicola-incidences with relatively high yields and some had 'stay green' at physiological maturity. One too late entry seemingly had immunity. The 2006 results indicate presence of several S. graminicola-resistance genes in the parent entries and accumulation of one or more genes in certain derived entries, and were obtained in combination with reduced plant height and for the first time in pearl millet also with 'stay green' at physiological maturity. The accumulation of S. graminicola-resistance is expected to increase the chance for regional or global 'stay green' hybrids for grain (medium tall) and fodder (tall).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号