首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromosomal rearrangements associated with one Ty1 element in the iso-1-cytochrome c (CYC1) region of Saccharomyces cerevisiae yeast cells were examined. Most of the rearrangements were deletions of the three linked genes, CYC1, OSM1, and RAD7, and resulted from recombination involving the single Ty1 element and a solo delta in the same orientation. These deletions differed by the number of Ty1 elements (zero, one, or two) remaining after deletion and by restriction site heterogeneities associated with these elements. A single Ty1 element remained at the deletion junction point much more frequently than no Ty1. Apparently the Ty1-associated delta element nearer to the solo delta was involved more often in recombination than the more distal Ty1-associated delta element. The restriction site data implicate gene conversion and suggest that site-specific recombination within the deltas, if occurring, is not the only mechanism of delta-delta recombination. Three other rearrangements bore deletions which began at the end of the Ty1 element and extended into regions not bearing Ty1 or delta sequences. Two of these deletions eliminated 7 kilobases of DNA, although they differed by an associated reciprocal translocation. The third involved a deletion of 14.7 kilobases of DNA associated with an overlapping inversion.  相似文献   

2.
3.
The CYC7-H2 mutation in the yeast Saccharomyces cerevisiae was caused by insertion of a Ty1 transposable element in front of the iso-2-cytochrome c structural gene, CYC7. The Ty1 insertion places iso-2-cytochrome c production under control of regulatory signals that are normally required for mating functions in yeast cells. We have investigated the regions of the Ty1 insertion that are responsible for the aberrant production of iso-2-cytochrome c in the CYC7-H2 mutant. Five alterations of the CYC7-H2 gene were obtained by specific restriction endonuclease cleavage of the cloned DNA and ligation of appropriate fragments. The CYC7+, CYC7-H2, and modified CYC7-H2 genes were each inserted into the yeast vector YIp5 and used to transform a cytochrome c-deficient yeast strain. Expression and regulation of each allele integrated at the CYC7 locus have been compared in vivo by determination of the amount of iso-2-cytochrome c produced. These results show that distal regions of the Ty1 element are not essential for the CYC7-H2 overproducing phenotype. In contrast, alterations in the vicinity of the proximal Ty1 junction abolish the CYC7-H2 expression and give rise to different phenotypes.  相似文献   

4.
5.
Some insertion mutations in Saccharomyces cerevisiae activate the expression of adjacent structural genes. The CYC7-H2 mutation is a Ty1 insertion 5' to the iso-2-cytochrome c coding region of CYC7. The Ty1 insertion causes a 20-fold increase in CYC7 expression in a and alpha haploid cell types of S. cerevisiae. This activation is repressed in the a/alpha diploid cell type. Previous computer analysis of the CYC7-H2 Ty1 activator region identified two related sequences with homology both to mammalian enhancers and to a yeast a/alpha control site. A 112-base-pair (bp) DNA fragment encompassing one of these blocks of homology functioned as one component of the Ty1 activator. A 28-bp synthetic oligonucleotide with the wild-type homology block sequence was also functional. A single base pair mutation within the enhancer core of the synthetic 28-bp regulatory element reduced its activation ability to near background amounts. In addition, the 112-bp Ty1 fragment by itself functioned as a target for repression of adjacent gene expression in a/alpha diploid cells.  相似文献   

6.
CYC1 and sup4 are part of a tightly linked cluster of genes on chromosome X in the yeast Saccharomyces cerevisiae. Using as probes previously cloned fragments containing the CYC1 and sup4 genes, we have identified and cloned the deoxyribonucleic acid (DNA) present between these genes in one strain of yeast. We find that the CYC1 and sup4 genes are approximately 21 kilobases apart. In the same strain, the meiotic map distance is approximately 3.7 centimorgans, for a ratio of 5.6 kilobases per centimorgan in this interval. The physical mapping has allowed unambiguous determination of the orientation of CYC1 and sup4 relative to each other, the centromere, and a nearby transfer ribonucleic acid (tRNA(2Ser)) gene. The spontaneous mutation cyc1-1 inactivates the CYC1 gene as well as the neighboring loci OSM1 and RAD7. We have determined that a cyc1-1-bearing strain lacks approximately 13 kilobases of single-copy DNA from the CYC1-sup4 region, including all of the CYC1 coding information. There is a sequence homologous to the middle-repetitive element Ty1 at or near the breakpoint of the cyc1-1 deletion. We discuss the possibility that Ty elements play a role in the formation of such large, spontaneous deletions, which occur frequently in this region of chromosome X in certain yeast strains.  相似文献   

7.
8.
Ty transposable-element insertion mutations of Saccharomyces cerevisiae can cause cell-type-dependent activation of adjacent-gene expression. Several cis-acting regulatory regions within Ty1 are responsible for the effect of Ty1 on adjacent-gene expression. One of these is the block II sequence that was defined by its homology to mammalian enhancers and to the yeast a1-alpha 2 control site. Tandem copies of a 57-base-pair region encompassing block II caused an additive increase in expression of the CYC7 reporter gene in the absence of other Ty1 sequences. The activation of gene expression by the multiple repeats was abolished in a/alpha diploid cells. A specific complex between a constitutive factor in whole-cell extracts and the DNA regulatory element was observed. The protein-binding site for the constitutive factor coincided with the block II element. Base-pair substitutions within the binding site abolished the ability of the block II element to function as a component of the Ty1 activator and to form the factor-DNA complex. The correlation between complex formation and reporter gene expression indicates that factor binding to the cis-acting element is essential for this element to function as a component of the Ty1 activator.  相似文献   

9.
10.
Evidence for transposition of dispersed repetitive DNA families in yeast.   总被引:149,自引:0,他引:149  
J R Cameron  E Y Loh  R W Davis 《Cell》1979,16(4):739-751
Dispersed repetitive DNA sequences from yeast (Saccharomyces cerevisiae) nuclear DNA have been isolated as molecular hybrids in lambdagt. Related S. cerevisiae strains show marked alterations in the size of the restriction fragments containing these repetitive DNAs. "Ty1" is one such family of repeated sequences in yeast and consists of a 5.6 kilobase (kb) sequence including a noninverted 0.25 kb sequence of another repetitious family, "delta", on each end. There are about 35 copies of Ty1 and at least 100 copies of delta (not always associated with Ty1) in the haploid genome. A few Ty1 elements are tandem and/or circular, but most are disperse and show (along with delta) some sequence divergence between repeat units. Sequence alterations involving Ty1 elements have been found during the continual propagation of a single yeast clone over the course of a month. One region with a large number of delta sequences (SUP4) also shows a high frequency of sequence alterations when different strains are compared. One of the differences between two such strains involves the presence or absence of a Ty1 element. The novel joint is at one inverted pair of delta sequences.  相似文献   

11.
12.
13.
14.
Transposon Tagging Using Ty Elements in Yeast   总被引:16,自引:4,他引:12       下载免费PDF全文
We have used the ability to induce high levels of Ty transposition to develop a method for transposon mutagenesis in Saccharomyces cerevisiae. To facilitate genetic and molecular analysis, we have constructed GAL1-promoted TyH3 or Ty917 elements that contain unique cloning sites, and marked these elements with selectable genes. These genes include the yeast HIS3 gene, and the plasmid PiAN7 containing the Tn903 NEO gene. The marked Ty elements retain their ability to transpose, to mutate the LYS2, LYS5, or STE2 genes, and to activate the promoterless his3 delta 4 target gene. Ty elements containing selectable genes are also useful in strain construction, in chromosomal mapping, and in gene cloning strategies.  相似文献   

15.
The small ring derivative of Saccharomyces cerevisiae chromosome III, which was formed by a cross-over between HML on the left arm and HMR on the right arm, contains three Ty elements. The class II element Ty 1-17 lies immediately centromere-distal to LEU2 on the left arm while two class I elements are tandemly arranged distal to PGK on the right arm. We have sequenced the regions of chromosome III surrounding Ty 1-17 and have defined a region where a number of transposition events have occurred. This region is flanked by the 5' ends of two tRNA genes, tRNA3Glu on the centromere distal side and tRNA3Leu immediately in front of LEU2. Close to the tRNA3Glu gene there is a region containing degenerate delta sequences organised in opposite orientations. Immediately distal to Ty 1-17 there are two complete solo delta elements, one inserted into the other. The sequence indicates that these two delta sequences were inserted into chromosome II by separate transposition events. A model is presented to explain how this structure arose and the role of solo delta elements in transposon propagation and maintenance is discussed.  相似文献   

16.
Ty1 and delta elements occur adjacent to several tRNA genes in yeast   总被引:18,自引:2,他引:16       下载免费PDF全文
A Eigel  H Feldmann 《The EMBO journal》1982,1(10):1245-1250
A comparative analysis of a number of yeast DNA-pBR322 recombinant plasmids carrying repetitive sequence elements has revealed that Ty1 or delta elements occur in the vicinity of several tRNA genes. Four examples have been characterized in detail: three glutamate tRNA genes and a serine tRNA gene. The tRNAGlu3 genes occupy different chromosomal locations; two of these genes are found adjacent to Ty1 elements, and the third is found adjacent to an independent delta element. A delta unit is also found adjacent to a tRNASer2 gene. Next to one of the tRNAGlu3 genes, the delta element is joined to a truncated sigma element. Junctions between different delta units were characterized by the sequence analysis of two DNA segments that carry no tRNA genes.  相似文献   

17.
18.
19.
20.
An extensive deletion causing overproduction of yeast iso-2-cytochrome c   总被引:27,自引:0,他引:27  
G L McKnight  T S Cardillo  F Sherman 《Cell》1981,25(2):409-419
CYC7-H3 is a cis-dominant regulatory mutation that causes a 20-fold overproduction of yeast iso-2-cytochrome c. The CYC7-H3 mutation is an approximately 5 kb deletion with one breakpoint located in the 5' noncoding region of the CYC7 gene, approximately 200 base from the ATG initiation codon. The deletion apparently fuses a new regulatory region to the structural portion of the CYC7 locus. The CYC7-H3 deletion encompasses the RAD23 locus, which controls UV sensitivity and the ANP1 locus, which controls osmotic sensitivity. The gene cluster CYC7-RAD23-ANP1 displays striking similarity to the gene cluster CYC1-OSM1-RAD7, which controls, respectively, iso-1-cytochrome c, osmotic sensitivity and UV sensitivity. We suggest that these gene clusters are related by an ancient transpositional event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号