首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H. Y. Mohan Ram  Sunanda Rao 《Planta》1982,155(6):521-523
Nodal explants of submerged shoots ofLimnophila indica (L.) Druce were cultured in Nitsch's liquid medium containing abscisic acid (ABA, 10-9-10-6 M). At 10-7 and 10-6 M, ABA induced typical aerial leaves (entire, ovate, opposite-decussately arranged) even under submerged conditions and completely suppressed the development of water leaves (pinnately dissected and whorled). Flowers that invariably arise from aerial shoots were induced precociously by ABA even on submerged nodes.Abbreviation ABA abscisic acid  相似文献   

2.
《Aquatic Botany》1987,28(1):89-96
A two-hormone system regulating leaf development in the heterophyllous amphibious angiosperm Proserpinaca palustris L. is described. Aerial shoots develop expanded, lanceolate, serrate leaves under long-day photoperiods (LD, 16 h light: 8 h dark), whereas growth under short days (SD, 10 h light: 14 h dark) induces dissected leaf formation. The photoperiodic effect on leaf development of aerial shoots involves changes in endogenous gibberellins (GAs) since plants grown under SD in the presence of GA3 develop expanded lanceolate serrate leaves. However, when submerged, shoots develop highly dissectedaquatic leaves regardless of photoperiod or GA3 treatment. In the present study, submerged plants exposed to 1.0 or 5.0 μM abscisic acid (ABA) developed aerial-type leaves typical of the photoperiod under which they were cultured. Both exogenous ABA (5.0 μM) and GA3 (10 μM) treatments were required for laminar expansion to occur on submerged shoots under SD. It is suggested that (1) leaf development in Proserpinaca is regulated by both endogenous GAs and ABA, and (2) the endogenous status of these phytohormones is modulated by different environmental stimuli of photoperiod and water stress, respectively. The adaptive significance of this mechanism is discussed.  相似文献   

3.
Momokawa N  Kadono Y  Kudoh H 《Annals of botany》2011,108(7):1299-1306

Background and Aims

For heterophyllous amphibious plants that experience fluctuating water levels, it is critical to control leaf development precisely in response to environmental cues that can serve as a quantitative index of water depth. Light quality can serve as such a cue because the ratio of red light relative to far-red light (R/FR) increases and blue-light intensity decreases with increasing water depth. Growth experiments were conducted to examine how R/FR and blue-light intensity alter leaf morphology of a heterophyllous amphibious plant, Rotala hippuris.

Methods

Using combinations of far red (730 nm), red (660 nm) and blue (470 nm) light-emitting diodes (LEDs), growth experiments were used to quantitatively evaluate the effects of the R/FR ratio and blue-light intensity on leaf morphology.

Key Results

Under the natural light regime in an outside growth garden, R. hippuris produced distinct leaves under submerged and aerial conditions. R/FR and blue-light intensity were found to markedly affect heterophyllous leaf formation. Higher and lower R/FR caused leaf characters more typical of submerged and aerial leaves, respectively, in both aerial and submerged conditions, in accordance with natural distribution of leaf types and light under water. High blue light caused a shift of trait values toward those of typical aerial leaves, and the response was most prominent under conditions of R/FR that were expected near the water surface.

Conclusions

R/FR and blue-light intensity provides quantitative cues for R. hippuris to detect water depth and determine the developmental fates of leaves, especially near the water surface. The utilization of these quantitative cues is expected to be important in habitats where plants experience water-level fluctuation.  相似文献   

4.
5.
水淹导致皇冠草光合机构发生变化并加剧其出水后光抑制   总被引:6,自引:0,他引:6  
谷昕  李志强  姜闯道  石雷  张会金  邢全 《生态学报》2009,29(12):6466-6474
通过气体交换和叶绿素荧光等方法研究了水淹及胁迫解除后皇冠草不同功能叶的光合特性及光抑制的变化.结果表明:与对照相比,气生叶(全淹组淹水前形成的功能叶)在水淹条件下叶片大小和气孔没有明显变化,但沉水叶(全淹组淹水后新生的功能叶)的叶面积增加,气孔变小,上表皮气孔密度增加.水淹导致气生叶碳同化能力、光化学效率和叶绿素含量下降.沉水叶在发育过程中碳同化能力、光化学效率和叶绿素逐渐升高.气生叶和沉水叶出水后其活体叶片在强光下的相对含水量急剧下降,发生明显的光抑制;而弱光下无明显光抑制发生.出水后离体叶片强光照射下6h后两种功能叶均发生严重光抑制,且弱光下不能恢复.因此,可以认为淹水条件下,沉水叶上表皮气孔密度的增加使其蒸腾速率提高;沉水叶较强的碳同化能力和增加的叶面积是确保其植株水下生存的重要因素;强光使气生叶和沉水叶出水后均发生严重光抑制,导度和蒸腾速率提高导致的叶片失水则加剧了这一过程,两者共同作用导致自然条件下两种功能叶的出水死亡.  相似文献   

6.
The cuticle is the first defense against pathogens and the second way water is lost in plants. Hydrophobic layers covering aerial plant organs from primary stages of development form cuticle, including major classes of aliphatic wax components and cutin. Extensive research has been conducted to understand cuticle formation mechanisms in plants. However, many questions remain unresolved in the transport of lipid components to form cuticle. Database studies of the Lotus japonicus genome have revealed the presence of 24 sequences classified as putative non-specific lipid transfer proteins (nsLTPs), which were classified in seven groups; four groups were selected because of their expression in aerial organs. LjLTP8 forms a cluster with DIR1 in Arabidopsis thaliana while LjLTP6, LjLTP9, and LjLTP10 were grouped as type I LTPs. In silico studies showed a high level of structural conservation, and substrate affinity studies revealed palmitoyl-CoA as the most likely ligand for these LTPs, although the Lyso-Myristoyl Phosphatidyl Choline, Lyso-myristoyl phosphatidyl glycerol, and Lyso-stearyl phosphatidyl choline ligands also showed a high affinity with the proteins. The LjLTP6 and LjLTP10 genes were expressed in both the stems and the leaves under normal conditions and were highly induced during drought stress. LjLTP10 was the most induced gene in shoots during drought. The gene was only expressed in the epidermal cells of stems, primordial leaves, and young leaflets. LjLTP10 was positively regulated by MeJA but repressed by abscisic acid (ABA), ethylene, and H2O2, while LjLTP6 was weakly induced by MeJA, repressed by H2O2, and not affected by ABA and ethylene. We suggest that LjLTP10 is involved in plant development of stem and leaf cuticle, but also in acclimation to tolerate drought stress in L. japonicus.  相似文献   

7.
Luronium natans (L.) Raf. (Floating Water-plantain) is an endangered amphibious freshwater species endemic to Europe. We examined the plasticity in carbon acquisition and photosynthesis in L. natans to assess if lack of plasticity could contribute to explain the low competitive ability of the species. The plasticity of photosynthesis in submerged leaves towards inorganic carbon availability was examined and the photosynthesis of submerged, floating and aerial leaves was contrasted. L. natans was shown to be plastic in inorganic carbon uptake, as it was able to effectively acclimate to changed concentrations of free-CO2. The photosynthetic apparatus was down-regulated in plants grown at high CO2. Chlorophyll concentration, Rubisco activity and maximum photosynthesis were significantly lower in submerged leaves of plants grown at high CO2 (200 μM free-CO2) compared to plants grown at low CO2 (18 μM free-CO2). Furthermore, bicarbonate utilization was down-regulated in response to high CO2. Carbon acquisition of submerged, floating and aerial leaves of L. natans differed significantly. The aerial leaves were superior in photosynthesising in air and, surprisingly, the floating leaves had the highest rates of photosynthesis in water. The study did not support the hypothesis that the low competitive ability of L. natans is caused by inefficient photosynthesis or a lack of plasticity in photosynthesis. However, the somewhat low photosynthetic performance of the submerged leaves may be a contributing factor.  相似文献   

8.
Abstract. Previous reports indicate that heterophyllous aquatic plants can be induced to form aerial-type leaves on submerged shoots when they are grown in exogenous abscisic acid (ABA). This study reports on the relationship between osmotic stress (e.g. the situation encountered by a shoot tip when it grows above the water surface), endogenous ABA (as measured by gas chromatography-electron capture detector) and leaf morphology in the heterophyllous aquatic plant, Hippuris vulgaris. Free ABA could not be detected in submerged shoots of H. vulgaris but in aerial shoots ABA occurred at ca. 40ng (g fr wt)−1. When submerged shoots were osmotically stressed ABA appeared at levels of 26 to 40ng (g fr wt)−1. These and other data support two main conclusions: (1) Osmotically stressing a submerged shoot causes the appearance of delectable levels of ABA. (2) The rise of ABA in osmotically stressed submerged shoots in turn induces a change in leaf morphology from the submerged to the aerial form. This corroborates the hypothesis that, in the natural environment, ABA levels rise in response to the osmotic stress encountered when a submerged shoot grows up through the water/air interface and that the increased ABA leads to the production of aerial-type leaves.  相似文献   

9.
Leaf pavement cell expansion in light depends on apoplastic acidification by a plasma membrane proton-pumping ATPase, modifying cell wall extensibility and providing the driving force for uptake of osmotically active solutes generating turgor. This paper shows that the plant hormone ABA inhibits light-induced leaf disk growth as well as the blue light-induced pavement cell growth in pea (Pisum sativum L.). In the phytochrome chromophore-deficient mutant pcd2, the effect of ABA on the blue light-induced apoplastic acidification response, which exhibits a high fluence phase via phytochrome and a low fluence phase via an unknown blue light receptor, is still present, indicating an interaction of ABA with the blue light receptor pathway. Furthermore, it is shown that ABA inhibits the blue light-induced apoplastic acidification reversibly. These results indicate that the effect of ABA on apoplastic acidification can provide a mechanism for short term, reversible adjustment of leaf growth rate to environmental change.Key Words: ABA, apoplastic acidification, blue light, epidermal pavement cell growth, leaf growth, pea (Pisum sativum L.), signal integration  相似文献   

10.
Factors Affecting the Biosynthesis of Abscisic Acid   总被引:8,自引:1,他引:7  
Incorporation of labelled mevalonate into abscisic acid (ABA)has been demonstrated in the cotyledons of mature avocado seeds,embryos and endosperms of developing wheat seeds, and avocadostems. The increase in ABA concentration on wilting parallelsthe increased incorporation of [2–14C)mevalonate intoABA in avocado leaves and stems, suggesting that the increasein ABA content occurs by synthesis rather than by release froma stored precursor. Incorporation of [2–14C]mevalonateby avocado mesocarp segments is unaffected by an 18 per centwater loss. The ABA content of roots was hardly affected bya 30 per cent water loss, indicating that the wilt-activatedmechanism is not fully operative in these tissues. Submerged Ceratophyllum plants and submerged parts of Callitricheshoots show a twofold increase in ABA content on wilting whereasthe aerial rosettes of the latter plant show a sixfold increase.This suggests that the occurrence of the wilt-induced mechanismis affected by previous growth conditions as well as by themorphology of the tissue.  相似文献   

11.
The cotyledons ofXanthium strumarium plants are of low sensitivity to photoperiodic treatment and contain only trace amounts of ABA under long-day conditions. The first pair of leaves, very sensitive to photoperiodic treatment, contains a higher level ofABA, decreasing with age of the plant. Prolonged short-day photoperiodic treatment increases the ABA level in the cotyledons but this is still 10times lower than in the first two leaves. Exogenous 10?4M ABA increases the ABA level in the cotyledons to the level corresponding to that in the first leaves, and enhances the photoperiodic sensitivity of cotyledons. In contrast to cotyledons, the photoperiodic treatment affects the ABA level in the first pair of leaves only slightly. The authors propose that a high ABA level supports the transition of plants to flowering, while a low ABA level may be responsible for a low photoperiodic sensitivity of cotyledons inXanthium plants.  相似文献   

12.
13.
A mutant of Nicotiana plumbaginifolia, CKR1, isolated on the basis of its enhanced resistance to cytokinins was found to have a greater tendency to wilt than the wild type (Blonstein et al., 1991, Planta 183, 244–250). Further characterisation has shown that the wiltiness in the mutant is not caused by an insensitivity to abscisic acid (ABA) because the external application of ABA leads to stomatal closure and phenotypic reversion. The basal ABA level in the mutant is < 20% of that in the wild type. Following stress, the ABA level in wild-type leaves increases by approx 9-to 10-fold while the mutant shows only a slight increase. This deficiency in ABA is unlikely to be the consequence of accelerated catabolism as the levels of two major metabolites of ABA, phaseic and dihydrophaseic acid, are also much reduced in the mutant. The qualitative and quantitative distributions of carotenoids, the presumed presursors of ABA, are the same for the leaves of both wild type and mutant. Biosynthesis of ABA at the C15 level was investigated by feeding xanthoxin (Xan) to detached leaves. Wild-type leaves convert between 9–19% of applied Xan to ABA while the mutant converts less than 1%. The basal level of trans-ABA-alcohol (t-ABA-alc) is 3-to 10-fold greater in the mutant and increases by a further 2.5-to 6.0-fold after stress. This indicates that the lesion in the wilty mutant of N. plumbaginifolia affects the conversion of ABA-aldehyde to ABA, as in the flacca and sitiens mutants of tomato and the droopy mutant of potato (Taylor et al., 1988, Plant Cell Environ. 11, 739–745; Duckham et al., 1989, J. Exp. Bot. 217, 901–905). Wild-type tomato and N. plumbaginifolia leaves can convert trans-Xan into t-ABA-alc, and Xan into ABA, while those of flacca and the wilty N. plumbaginifolia mutant convert both Xan and t-Xan to t-ABA-alc.  相似文献   

14.
Leaves from dark-grown barley (Hordeum vulgare L. var Larker) seedlings grown in the presence and absence of fluridone were used to determine whether or not abscisic acid (ABA) accumulation was necessary for proline to accumulate in wilted tissue. Wilted tissue (polyethylene glycol-treated) leaves from fluridone-grown seedlings did not accumulate ABA but did accumulate proline at a rate that was not different from the non-fluridone-treated leaves. Thus ABA accumulation is not required for wilting-induced proline accumulation in barley leaves. Proline accumulation in wilted leaves from the wilty tomato (Lycopersicon esculentum) mutant, flacca, was compared to that in the wild type, Rheinlands Ruhm. Proline accumulated in wilted leaves from flacca. The rate of accumulation was faster in flacca compared to the rate in the wild type because the wilty mutant wilted faster. ABA accumulated in wilted leaves from the wild type but not in the wilty mutant. This result is a further confirmation that ABA accumulation is not required for wilting-induced proline accumulation. These results are significant in that proline accumulation in barley leaves can be induced independently by any one of three treatments: wilting, ABA, or salt.  相似文献   

15.
Dark-induced growth (skotomorphogenesis) is primarily characterized by rapid elongation of the hypocotyl. We have studied the role of abscisic acid (ABA) during the development of young tomato (Solanum lycopersicum L.) seedlings. We observed that ABA deficiency caused a reduction in hypocotyl growth at the level of cell elongation and that the growth in ABA-deficient plants could be improved by treatment with exogenous ABA, through which the plants show a concentration dependent response. In addition, ABA accumulated in dark-grown tomato seedlings that grew rapidly, whereas seedlings grown under blue light exhibited low growth rates and accumulated less ABA. We demonstrated that ABA promotes DNA endoreduplication by enhancing the expression of the genes encoding inhibitors of cyclin-dependent kinases SlKRP1 and SlKRP3 and by reducing cytokinin levels. These data were supported by the expression analysis of the genes which encode enzymes involved in ABA and CK metabolism. Our results show that ABA is essential for the process of hypocotyl elongation and that appropriate control of the endogenous level of ABA is required in order to drive the growth of etiolated seedlings.  相似文献   

16.
17.
Gynophore elongation and pod formation were studied in peanut plants (Arachis hypogaea L.) under light and dark conditions in vivo. The gynophores elongated until pod formation was initiated. Pod (3–20 mm length) development could be totally controlled by alternating dark (switched on) and light (switched off) conditions, repeatedly. Gynophore elongation responded conversely to light/dark conditions, compared to pods. In this study we aimed to correlate the light/dark effects with endogenous growth substances. The levels of endogenous growth substances were determined in the different stags of pod development. Gynophores shortly after penetration into the soil, ‘white’ gynophores, released twice the amount of ethylene as compared to the aerial green ones, or to gynophores bearing pods. Ethylene inhibitors had no effect on the percent of gynophores that developed pods, but affected pod size which were smaller compared to the control. A similar level of IAA was extracted from gynophore tips of green gynophores, ‘white’ gynophores and pods. ABA levels differed between the three stages and were highest in the green gynophores and lowest in the pods.  相似文献   

18.
Samples of leaves of red mangrove (Rhizophora mangle) were incubated on an agar medium selective for pythiaceous oomycetes. Leaves on trees above the water did not contain oomycetes. Marine oomycetes, principally Phytophthora vesicula, had colonized leaves within 2 h of leaf submergence, probably finding them by chemotaxis. The frequency of occurrence of P. vesicula in submerged leaves reached 100% within 30 h of submergence. By 43 h most, if not all, parts of leaves were occupied, and surface treatment with a biocide indicated that leaves were occupied internally. Frequencies of P. vesicula remained near 100% through about 2 weeks of submergence and then declined to about 60% in older (≥4 weeks) leaves. Leaves of white mangrove (Laguncularia racemosa) were also extensively occupied by P. vesicula after falling into the water column, but decaying leaves of turtlegrass (Thalassia testudinum) were not colonized by oomycetes. Ergosterol analysis indicated that the standing crop of living, non-oomycete (ergosterol-containing) fungal mass in submerged red-mangrove leaves did not rise above that which had been present in senescent leaves on the tree; decaying turtlegrass leaves had an ergosterol content that was only about 2% of the maximum concentration detected for red-mangrove leaves. These results suggest that oomycetes are the predominant mycelial eucaryotic saprotrophs of mangrove leaves that fall into the water column and that for turtlegrass leaves which live, die, and decompose under submerged conditions, mycelial eucaryotes make no substantial contribution to decomposition.  相似文献   

19.
The relationship between malic acid production and carbon assimilation was examined in the submerged aquatic Crassulacean acid metabolism (CAM) plant, Isoetes howellii Engelmann. Under natural conditions free-CO2 level in the water was highest at 0600 hours and 14CO2 assimilation rates in I. howellii were also highest at this time. After 0900 hours there was a similar pattern in (a) rate of free-CO2 depletion from the water, (b) reduction of carbon assimilation rates, and (c) rate of deacidification in leaves. Rates of daytime deacidification increased under CO2-free conditions and as irradiance intensity increased. Nighttime CO2 uptake was estimated to contribute one-third to one-half of the total daily gross carbon assimilation. CO2 uptake, however, accounted for only one-third to one-half of the overnight malic acid accumulation. Internal respiratory CO2 may be a substrate for a large portion of overnight acid accumulation as leaves incubated overnight without CO2 accumulated substantial levels of malic acid. Loss of CAM occurred in emergent leaf tips even though submerged bases continued CAM. Associated with loss of CAM in aerial leaves was an increase in total chlorophyll, a/b ratio, and carotenoids, and a decrease in leaf succulence. δ13C values of I. howellii were not clearly distinguishable from those for associated non-CAM submerged macrophytes.  相似文献   

20.
《Aquatic Botany》2001,69(2-4):147-164
Colonisation by reed seedlings, Phragmites australis (Cav.) Trin. ex Steud. is rare and usually occurs after drawdown and when shallow water prevails. P. australis seeds have high rates of germination but successful colonisation is dependent upon subsequent water depths. We investigated the capacity of young reed plants to resist a 4 weeks submergence stress within a 5 months period, and their subsequent recovery. A pond experiment examined the interactions between submergence depth and the age of the seedlings at submergence. Four submergence treatments were used. In two partial submergence treatments, 50 and 80% of the initial leaf area was submerged. In two total submergence treatments, plants were either submerged at 125% of their initial height with possible subsequent development of emerged leaves, or the water was deepened as they grew to maintain total submergence for 4 weeks. The ages at submergence were 40, 60 and 80 days. Plants were harvested at 5 months. Shoot elongation, biomass allocations to aerial biomass, roots and rhizomes, and photosynthetic activity of aerial leaves were measured. Redox potential was measured for a subsample.Mortality (18.7%) occurred only in the permanent submergence treatment for 40-day-old seedlings. In all treatments, submerged leaves senesced, except the terminal (youngest) leaves of permanently submerged plants. Submergence differentially affected shoot length and biomass, depending upon the intensity of the treatment and the seedling age. The major differences were found between the two partial and two total submergence treatments. Partial submergence (50 and 80%) significantly enhanced biomass accumulation and growth, whereas total submergence largely decreased biomass production and growth in length, with less effect on shoot numbers. The 80-day-old seedlings tolerated submergence better but growth was poorest in medium-aged plants (60-day-old). Increased elongation of the growing internodes of up to 140% was caused by submergence, and photosynthetic activity was enhanced by 85% in emergent leaves of plants initially submerged but allowed to produce emerged leaves during the treatment period.Young P. australis plants require shallow water levels without long lasting submergence to grow and survive. Tolerance to submergence increases with age. These processes contribute to define the conditions for colonisation via seeds in P. australis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号