首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of insulin responsiveness in rat hepatoma cells   总被引:2,自引:0,他引:2  
Insulin causes a 5 to 10-fold increase in the velocity of α-aminoisobutyric acid transport and a 2 to 3-fold increase in tyrosine aminotransferase activity in dexamethasone-treated hepatoma tissue culture cells. Maximal responses occur 2–4 hours after insulin addition but then decrease to control levels by 24 hours incubation. Medium conditioned by cells incubated with insulin for 24 hours retains sufficient biologically active insulin to produce an insulin response in fresh dexamethasone-treated cells. Readdition of insulin to insulin-treated cells, however, elicits no response, indicating that the cells are insensitive to the hormone. Incubation of such unresponsive cells in the absence of insulin results in recovery of responsiveness within 2 hours. These data suggest that exposure of rat hepatoma cells to insulin causes a complete but reversible loss of sensitivity to this hormone.  相似文献   

2.
Cell aggregates cultured from 7-day embryonic avian heart showed a spontaneous increase in A-system 2-aminoisobutyric acid transport when placed in protein-free and amino acid-free buffer for 3 hr. The apparent Vmax increased from 4.0 to 9.9 nmoles/μl of intracellular fluid volume/10 min in 3 hr. l-Proline (5 mM), an amino acid transported primarily by the A system, prevented this rise, but l-phenylalanine, primarily an L-system substrate, had no effect. Actinomycin, puromycin, and cycloheximide (55 μM) also prevented the time-dependent increase in transport. In contrast, cell aggregates cultured from 14-day embryonic heart exhibited a decrease in apparent Vmax during the 3-hr incubation, from 8.3 to 3.3 nmoles/μl of intracellular volume/10 min. l-Proline, but not l-phenylalanine, enhanced this decrease in A-system transport. The percentage proline inhibition of transport was reduced by actinomycin or cycloheximide (55 μM) at both ages. Insulin stimulated A-system transport at identical half-maximal concentrations of 18 nM at 7 and 14 days of embryonic development. In the presence of cycloheximide at 7 days of age, insulin prolonged the half-life of transport activity twofold. However, at 14 days, cycloheximide reduced the insulin response by 88% [Elsas, L. J., Wheeler, F. B., Danner, D. J., and DeHaan, R. L. (1975). J. Biol. Chem.250, 9381–9390]. l-Proline or actinomycin reduced both basal and insulin-stimulated transport by 7-day cell aggregates, but neither reduced the percentage insulin stimulation. We conclude that inherent developmental control(s), A-system amino acids, and insulin regulated the maximal velocity of A-system transport by controlling the biological turnover of transport protein(s). l-Proline decreased the existing synthesis of transport protein(s) at both ages. The predominant effect of insulin shifted from a posttranslational level at 7 days to a synthetic level by 14 days of embryonic development. Seven-day cell aggregates spontaneously increased synthesis in the absence of A-system amino acids, but 14-day cell aggregates required hormonal stimulation to shift the balance from degradation to synthesis of transport protein(s).  相似文献   

3.
3-O-methyl-D-glucose uptake in isolated bovine adrenal chromaffin cells   总被引:1,自引:0,他引:1  
The characteristics and regulatory nature of sugar transport in freshly isolated bovine adrenal chromaffin cells were investigated. Transport was measured by following the cell/medium distribution of non-metabolizable glucose analogue, 3-O-methyl-D-glucose. The uptake of 3-O-methyl-D-glucose was was mediated by a saturable transport system with a Km of 8.2 mM and a Vmax of 0.69 nmol/mg protein per min. Basal 3-O-methyl-D-glucose transport was competitively inhibited by D-glucose and a countertransport effect was demonstrated. Cytochalasin B and phloretin, which are specific inhibitors of carrier-mediated glucose transport, significantly decreased basal 3-O-methyl-D-glucose uptake. Basal transport was stimulated by 50 mU/ml insulin, an effect associated with an increase in Vmax. The stimulatory effect of insulin was depressed in medium lacking external Ca2+, or containing the Ca2+-antagonistic ion, La3+, or the Ca2+ channel blocker, methoxyverapamil (D-600). The data suggest that the uptake of 3-O-methyl-D-glucose in freshly isolated bovine adrenal chromaffin cells is mediated by a specific facilitated diffusion mechanism, and is subject to regulation by insulin, thus resembling sugar transport in muscle. In addition, the insulin effect appears to depend on the presence of extracellular Ca2+.  相似文献   

4.
The membrane changes which occur during cellular maturation of erythroid cells have been investigated. The transport of α-aminoisobutyric acid, alanine, and N-methylated-α-aminoisobutyric acid have been studied in the erythroblastic leukemic cell, the reticulocyte, and the erythrocyte of the Long-Evans rat. The dependence of amino acid transport on extracellular sodium concentration was investigated. Erythrocytes were found to transport these amino acids only by Na-independent systems. The steady state distribution ratio was less than 1. Reticulocytes were found to transport α-aminoisobutyric acid and alanine by Na-dependent systems, but only small amounts of N-methylated-α-aminoisobutyric acid. Small amounts of these amino acids were transported by Na-independent systems. The steady state distribution ratio was greater than one for Na-dependent transport. The erythroblastic leukemia cell, a model immature erythroid cell, showed marked Na-dependence (>90%) for α-aminoisobutyric acid and alanine transport, and >80% for the Na-dependent transport of N-methyl-α-aminoisobutyric acid. The steady state distribution ratio for the Na-dependent transport was >4. In the erythroblastic leukemic cell, at least three Na-dependent systems are present: one includes alanine and α-aminoisobutyric acid, but excludes N-methyl-α-aminoisobutyric acid; one is for α-aminoisobutyric acid, alanine and also N-methyl-α-aminoisobutyric acid; and one is for N-methyl-α-aminoisobutyric acid alone. In the reticulocyte, the number of Na-dependent systems are reduced to two: one for α-aminoisobutyric acid and alanine; one for N-methyl-α-aminoisobutyric acid. In the erythrocytes, no Na-dependent transport was found. Therefore, maturation of the blast cell to the mature erythrocyte is characterized by a systematic loss in the specificity and number of transport systems for amino acids.  相似文献   

5.
The dependence upon substrate and insulin concentrations, as well as on sodium and potassium concentrations in the medium of the uptake of glucose and 2-aminoisobutyric acid, was determined for fragments of brown and white adipose tissues incubated in vitro. Brown adipose tissue showed a high capacity for glucose uptake at high glucose concentrations, this uptake being dependent on both glucose and insulin concentration. White adipose tissue showed much more limited uptake capabilities. The presence of Na+ and K+ had little effect on the uptake. The uptake of 2-aminoisobutyric acid was similar in both adipose tissues, being enhanced by physiological levels of insulin and depressed by ouabain. This amino acid transport was dependent on Na+ and K+ concentrations, and the overall transporting capability was two to three orders of magnitude lower than that for glucose. It was concluded that amino acids could not play a significant role as bulk thermogenic substrates for brown adipose tissue, as their transporters lack the plasticity of response to high substrate and insulin concentrations which characterize brown adipose tissue uptake of glucose.  相似文献   

6.
1. The present study was designed to explore the mechanisms by which insulin stimulates system A of amino acid transport in extensor digitorum longus (EDL) muscles, by using a system A analogue, alpha-(methyl)aminoisobutyric acid (MeAIB). 2. Insulin stimulation of MeAIB uptake was noted after only 30 min of incubation and was maximal at 60 min. Kinetics of the insulin effect on MeAIB uptake were characterized by an increased Vmax. without modification of Km for MeAIB. 3. Incubation of EDL muscles with cycloheximide for 90 min did not modify MeAIB uptake in either the presence or the absence of insulin, indicating the independence of insulin action from protein synthesis de novo. Incubations for 180 min with cycloheximide caused a decrease in basal MeAIB uptake; however, the percentage stimulation of amino acid transport by insulin was unaltered. Basal MeAIB uptake was increased by incubation for 180 min, but under these conditions no change in the percentage effect of insulin was found. 4. Ouabain, gramicidin D, or both, markedly decreased basal MeAIB uptake by EDL muscle, but the percentage effect of insulin was unaltered. 5. We conclude that insulin action on amino acid transport through system A in muscle is rapid, is characterized by an increased Vmax., and is independent of protein synthesis de novo and the Na+ electrochemical gradient. Our data are compatible with insulin acting directly on the system A transporter.  相似文献   

7.
A rat islet tumor subclone, RIN-5AH-T2-B, was cultured with 2 mmol/liter of the proliferation-arresting compound sodium butyrate (NaB). Insulin gene expression and glucose-stimulated insulin release were analyzed and compared with logarithmically proliferating and confluent control cells cultured without NaB. Logarithmically proliferating control cells revealed high insulin gene expression. In the presence of amino acids, these cells showed a dose-dependent insulin response to glucose with a half-maximal and maximal 6.5-fold stimulation by 0.8 and 5.6 mmol/liter D-glucose, respectively. However, as the control cells approached growth arrest, insulin gene expression subsided to below detectability, an occurrence that is associated with decreased insulin release and accumulation of cells in the G1 phase of the cell cycle. In contrast, NaB-arrested cells showed continuous insulin gene expression throughout the experiment. Despite this, insulin release in response to glucose was lost. NaB revealed a biphasic effect on the cell-cycle: after an initial leaky G1 arrest during the first 24 h, the 5AH-B cells were arrested in G2 during the following 3 days. These data suggest that insulin gene expression and glucose-stimulated insulin release are affected by the cell cycle. These glucose-sensitive RIN-5AH-T2-B cells may be useful in studies of insulin secretion and gene regulation.  相似文献   

8.
The effect of sodium periodate on the ability of pig spleen lymphocytes to transport the nonmetabolizable amino acid, α-aminoisobutyric acid, was studied. NaIO4-treated cells exhibited a lowered rate of uptake of α-aminoisobutyric acid in contrast to phytohemagglutinin- and concanavalin A-treated cells. However, when periodate-treated cells were preincubated with untreated cells for 2 h, the mixed cells exhibited twofold stimulation in the uptake of α-aminoisobutyric acid as compared to untreated cells. The increased uptake of α-aminoisobutyric acid in mixed cells was due to a change in the V but not in the Km. The observed increased uptake of α-aminoisobutyric acid in mixed cells was inhibited (24%) by ouabain, although the level of uptake in untreated and NaIO4-treated cells was not affected. Na+,K+-ATPase activity in mixed cells, which was ouabain sensitive, was stimulated 56%. Studies also showed that there was a decrease in the fluorescence polarization (P value) of diphenyl hexatriene in mixed cells (P = 0.21) as compared to untreated cells (P = 0.24). These results demonstrate that NaIO4 treatment induces a change in the lymphocyte cell membrane and transport of α-aminoisobutyric acid. Incubation of NaIO4-treated cells with untreated cells is required for the stimulatory effect in the uptake of α-aminoisobutyric acid, and the stimulation appears to be due to changes in Na+,K+-ATPase activity and membrane fluidity.  相似文献   

9.
Membrane vesicles from rat thymocytes accumulate 2-aminoisobutyric acid in the presence of 0.1 M NaCl. Uptake is half maximal between 15 and 30 seconds after addition of the amino acid and reaches a plateau value after about 2 minutes. The uptake of 2-aminoisobutyric acid can be modulated by various sulfhydryl reagents. Reduced glutathione leads to an inhibition of uptake whereas oxidized glutathione increases uptake. Agents such as insulin and diamide which can induce disulfide formation lead to an activation of transport. These data indicate that uptake of the Na+-dependent amino acid, 2-aminoisobutyric acid, in thymocytes is modulated by a putative plasma membrane, sulfhydryl-containing protein.  相似文献   

10.
11.
Selectively permeable membrane vesicles isolated from Simian virus 40-transformed mouse fibroblasts catalyzed Na+ gradient-coupled active transport of several neutral amino acids dissociated from intracellular metabolism. Na+-stimulated alanine transport activity accompanied plasma membrane material during centrifugation in discontinuous dextran 110 gradients. Carrier-mediated transport into the vesicle was demonstrated. When Na+ was equilibrated across the membrane, countertransport stimulation of L-[3H]alanine uptake occurred in the presence of accumulated unlabeled L-alanine, 2-aminoisobutyric acid, or L-methionine. Competitive interactions among neutral amino acids, pH profiles, and apparent Km values for Na+ gradient-stimulated transport into vesicles were similar to those previously described for amino acid uptake in Ehrlich ascites cells, which suggests that the transport activity assayed in vesicles is a component of the corresponding cellular uptake process. Both the initial rate and quasi-steady state of uptake were stimulated as a function of a Na+ gradient (external Na+ greater than internal Na+) applied artificially across the membrane and were independent of endogenous (Na+ + K+)-ATPase activity. Stimulation by Na+ was decreased when the Na+ gradient was dissipated by monensin, gramicidin D or Na+ preincubation. Na+ decreased the apparent Km for alanine, 2-aminoisobutyric acid, and glutamine transport. Na+ gradient-stimulated amino acid transport was electrogenic, stimulated by conditions expected to generate an interior-negative membrane potential, such as the presence of the permeant anions NO3- and SCN-. Na+-stimulated L-alanine transport was also stimulated by an electrogenic potassium diffusion potential (K+ internal greater than K+ external) catalyzed by valinomycin; this stimulation was blocked by nigericin. These observations provide support for a mechanism of active neutral amino acid transport via the "A system" of the plasma membrane in which both a Na+ gradient and membrane potential contribute to the total driving force.  相似文献   

12.
Purified enterotoxin from the bacterium Clostridium perfringens rapidly decreased the hormonally induced uptake of α-aminoisobutyric acid in primary cultures of adult rat hepatocytes. At 5 min after toxin addition the decrease in α-aminoisobutyric acid uptake appeared not due to increased passive permeation (estimated with l-glucose) or to increased α-aminoisobutyric acid efflux. When short uptake assay times were employed a depression of α-aminoisobutyric acid influx was observed in toxin-treated hepatocytes. The depression of α-aminoisobutyric acid influx was correlated with a rapid increase in intracellular Na+ (estimated using 22Na+) apparently effected by membrane damage. In contrast, the uptake of cycloleucine in the presence of unlabeled α-aminoisobutyric acid (assay for Na+-independent amino acid uptake) by hepatocytes treated with toxin for 5 min was decreased to only a small extent or not at all depending upon experimental design. At later times, C. perfringens enterotoxin increased the exodus of l-glucose, 3-O-methylglucose and α-aminoisobutyric acid from pre-loaded cells indicating that the toxin effects progressive membrane damage. When enterotoxin was removed by repeated washing after 5–20 min the decay of α-aminoisobutyric acid uptake ceased and appeared to undergo recovery towards the hormonally induced control level. The degree of recovery of α-aminoisobutyric acid uptake was inverse to the length of time of exposure to toxin. Adding at 10 min specific rabbit antiserum against C. perfringens enterotoxin without medium change also reversed the effect of toxin on increased intracellular 22Na+, and on the exodus (from preloaded cells) of α-aminoisobutyric acid, L-glucose, and 3-O-methylglucose.  相似文献   

13.
14.
The pathway by which L-lactate (Lac) crosses the plasma membrane of isolated human neutrophils was investigated. The influx of [14C]Lac from a 2 mM Lac, 145 mM Cl-, 5.6 mM glucose medium was approximately 1.5 meq/liter of cell water.min and was sensitive to the organomercurial agent mersalyl (apparent Ki approximately 20 microM), to alpha-cyano-4-hydroxycinnamate (CHC), the classical inhibitor of monocarboxylate transport in mitochondria, and to UK-5099 (apparent Ki approximately 40 microM), a more potent analogue of CHC. Transport was also strongly blocked (greater than 80%) by 1 mM of either 3,5-diiodosalicylic acid, MK-473 (an indanyloxyacetate derivative), or diphenyl-amine-2-carboxylate, and by 0.4 mM pentachlorophenol, but not by 1 mM ethacrynic acid, furosemide, or the disulfonic stilbenes SITS or H2DIDS. One-way [14C]Lac efflux from steady-state cells amounted to approximately 6 meq/liter.min and was likewise affected by the agents listed above. Influx, which was membrane potential insensitive and Na+ independent, displayed a strong pH dependence: extracellular acidification enhanced uptake while alkalinization inhibited the process (pK' approximately 5.7 at 2 mM external Lac). The rate of [14C]Lac influx was a saturable function of external Lac, the Km being approximately 7 mM. Steady-state cells exhibited an intracellular Lac content of approximately 5 mM and secreted lactic acid into the bathing medium a a rate of approximately 4 meq/liter.min. Secretion was completely suppressed by 1 mM mersalyl which inactivates the carrier, leading to an internal accumulation of Lac. That the Lac carrier truly mediates an H+ + Lac- cotransport (or formally equivalent Lac-/OH- exchange) was documented by pH-stat techniques wherein an alkalinization of poorly buffered medium could be detected upon the addition of Lac; these pH changes were sensitive to mersalyl. Thus, the Lac carrier of neutrophils possesses several features in common with other monocarboxylate transport systems in erythrocytes and epithelia.  相似文献   

15.
The effect of insulin on glucose entry has been studied in monolayer cultures of human diploid fibroblastic cells. Influence of insulin on total cell glucose incorporation was evaluated using [14C] glucose. Glucose incorporation was increased up to two-fold in the presence of insulin. Insulin action occurred within 30 minutes and could be observed with insulin concentrations as low as 10(-10) M (10 microU)ml). The action of insulin was enhanced by preincubation in glucose-free medium. After glucose starvation the cells converted glucose primarily to glycogen and nucleotides, and the stimulation by insulin was observed equally in both fractions. Influence of insulin on the kinetics of hexose transport was studied using 2-deoxyglucose and 3-0-methyl glucose. A large diffusion component was corrected using rho-chloromercuribenzoic acid or phloridzin. Km for facilitated diffusion averaged 1.9 mM for 2-deoxyglucose and 5.3 mM for 3-O-methyl glucose, and Vmax ranged from 10-24 nmoles/min/mg cell protein. Insulin resulted in a 150% increase in Vmax with no significant change in Km. The data suggest that human diploid fibroblasts can be a useful system for the study of insulin's glucoregulatory action.  相似文献   

16.
We studied the in vivo and in vitro effect of p-chlorophenoxyisobutyrate (CPIB) on insulin binding and glucose transport in isolated rat adipocytes. In the in vitro study, adipocytes were incubated with 1mM of CPIB for 2 h at 37 degrees C, pH 7.4, and then insulin binding (37 degrees C, 60 min) and 3-0-methylglucose transport (37 degrees C, 2s) were measured. Incubation with CPIB did not affect either insulin binding or glucose transport in the cells. The addition of insulin (10 ng/ml) with CPIB to the incubation media also did not affect the following insulin binding and glucose transport. In the in vivo study, rats were fed a high sucrose-diet containing 0.25% CPIB for 7 days. Serum cholesterol, plasma free fatty acid, and insulin levels were significantly decreased in the CPIB-treated rats. The treated rats demonstrated an almost 2 fold increased maximal binding capacity for insulin (189,000 sites/cell for treated vs 123,000 sites/cell for control cells). Basal glucose transport (glucose transport in the absence of insulin) significantly decreased in the CPIB-treated rats, although insulin-stimulated glucose transport was comparable in treated and control cells. Thus, CPIB might have no direct effect on glucose transport and insulin binding, as determined by the in vitro studies. Furthermore, a relatively short-term in vivo treatment with CPIB, such as 7 days, did not stimulate glucose transport.  相似文献   

17.
Photodynamic treatment of murine L929 fibroblasts with hematoporphyrin derivative caused inhibition of the 2-aminoisobutyric acid transport system. This was reflected by an increase in the apparent Km with a constant Vmax, indicating impairment of the carrier function rather than a decrease of the number of transport sites. Hyperthermic treatment of these cells resulted in a moderate decrease of the activity of the 2-aminoisobutyric acid transport system. Overall protein synthesis was severely inhibited both by photodynamic treatment and by hyperthermia. Hyperthermia subsequent to photodynamic treatment resulted in an additive inhibition of 2-aminoisobutyric acid transport and of protein synthesis. After photodynamic treatment both 2-aminoisobutyric acid transport and protein synthesis were repaired. The repair of 2-aminoisobutyric acid transport depended on protein synthesis, as shown by the virtually complete blockage of repair by anisomycin. After hyperthermia (either alone or subsequent to photodynamic treatment), no recovery of 2-aminoisobutyric acid transport was observed, although protein synthesis was restored to the initial level. Apparently, hyperthermia subsequent to photodynamic treatment blocks the repair of photodynamically induced damage of this transport system. The experimental results further indicate that protein synthesis is not the rate-determining step for the repair of 2-aminoisobutyric acid transport, although it is necessary in this process. Cell survival was decreased both by photodynamic treatment and by hyperthermia. The combined effects of these two treatments were additive. It is discussed that these results indicate that photodynamic inhibition of 2-aminoisobutyric acid transport is not causally related to loss of clonogenicity, contrary to earlier suggestions.  相似文献   

18.
Isolated rat hepatocytes were used to investigate the relationship between the effect of insulin on amino acid transport and hormone internalization. As previously observed with fibroblastic cells, 10 mM methylamine inhibited the clustering and internalization of the hormone-receptor complex in hepatocytes. Direct measurement of 125I-insulin binding indicated that methylamine did not decrease the binding capacity of the cells. When used at concentrations that did not affect the basal rate of α-aminoisobutyric acid transport, methylamine did not cause a specific decrease in the stimulation by insulin. The data indicate that the internalization of insulin is not required for the expression of its biological effect on amino acid transport.  相似文献   

19.
3-O-[14C]Methylglucose was used to study the insulin action on the sugar transport in white fat cells. The experiments comprised determinations of the 3-O-methylglucose space at stationary distribution, of the rate constants for 3-O-methylglucose equilibrium exchange under various conditions, and of the 3-O-methylglucose inhibition of the lipogenesis from glucose. The following was found. The intracellular distribution space for 3-O-methylglucose at equilibrium was unaffected by insulin and was identical with the intracellular 3H2O space. The half-time for the equilibrium exchange of 3-O-methylglucose at a concentration of 25 mM was about 240 s in the absence of insulin and about 15 s with insulin (0.7 muM) present. Addition of phloridzin (5 mM) decreased the rate of the exchange process about 25-fold in both cases. The self-exchange of 3-O-methylglucose (1 mM) was at least 50 times faster than the self-exchange of L-glucose (1 mM). The concentration dependence of the 3-O-methylglucose exchange rate was approximately hyperbolic both in the absence and the presence of insulin, although the saturation of the transport mechanism at high concentrations of sugar was not as complete as predicted. In the absence of insulin the estimate of the half-saturation constant (Kt) was about 5 mM; that of the maximal exchange rate (Vmax) varied from 0.07 mmol s-1/liter of intracellular water to 0.2 mmol s-1 liter-1. In the presence of insulin Kt remained about 5 mM, whereas Vmax was increased to about 1.7 mmol s-1 liter-1. The latter estimate was reproducible within about 20%. The incorporation of trace amounts of [U-14C]glucose into intracellular lipids was inhibited by unlabeled 3-O-methylglucose pre-equilibrated over the membrane. The inhibition constant estimated from such experiments was about 5 mM both in the absence and the presence of insulin, and the insulin-induced increase in the rate of glucose incorporation was similar to the increase in the rate of the 3-O-methylglucose exchange process. It is concluded that exchange of 3-O-methylglucose proceeds via a mechanism which shows stereospecificity and saturability and that insulin acts by increasing the maximal transport capacity without changing the half-saturation constant.  相似文献   

20.
A Na+-specific and Na+-stimulated active α-aminoisobutyric acid transport system was reconstituted from plasma membranes isolated from mouse fibroblast BALB/c 3T3 cells transformed by simian virus 40. The plasma membranes were treated with dimethylmaleic anhydride and then extracted with 2% cholate. The cholate-solubilized supernatant proteins were combined with exogenous phospholipids and eluted through a Sephadex G-50 column. This yielded reconstituted vesicles which in the presence of Na+ could actively transport α-aminoisobutyric acid as shown by the transient accumulation above the equilibrium level (overshoot). The overshoot was not obtained with other monovalent cations such as K+, Li+, and choline+. The electrochemical effect of the lipophilic anion, SCN?, led to greater α-aminoisobutyric acid uptake as compared to that observed with Cl? or SO42?. The Na+-stimulated transport of a-aminoisobutyric acid was a saturable process with an apparent Km of 2 mm. Studies of the inhibition of α-aminoisobutyric acid transport by other amino acids showed that methylaminoisobutyric acid [specifically transported by A system (alanine preferring)]had a pronounced inhibitory effect on a-aminoisobutyric acid uptake in contrast to the slight inhibitory effect produced by phenylalanine [primarily transported by L system (leucine preferring)]. The results show that the reconstituted vesicles, prepared from partially purified membrane proteins and exogenous phospholipids, regained the same important transport properties of native membrane vesicles, i.e., Na+-specific and Na+-stimulated concentrative α-aminoisobutyric acid uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号