首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recovery from inactivation of T-type Ca channels is slow and saturates at moderate hyperpolarizing voltage steps compared with Na channels. To explore this unique kinetic pattern we measured gating and ionic currents in two closely related isoforms of T-type Ca channels. Gating current recovers from inactivation much faster than ionic current, and recovery from inactivation is much more voltage dependent for gating current than for ionic current. There is a lag in the onset of gating current recovery at -80 mV, but no lag is discernible at -120 mV. The delay in recovery from inactivation of ionic current is much more evident at all voltages. The time constant for the decay of off gating current is very similar to the time constant of deactivation of open channels (ionic tail current), and both are strongly voltage dependent over a wide voltage range. Apparently, the development of inactivation has little influence on the initial deactivation step. These results suggest that movement of gating charge occurs for inactivated states very quickly. In contrast, the transitions from inactivated to available states are orders of magnitude slower, not voltage dependent, and are rate limiting for ionic recovery. These findings support a deactivation-first path for T-type Ca channel recovery from inactivation. We have integrated these concepts into an eight-state kinetic model, which can account for the major characteristics of T-type Ca channel inactivation.  相似文献   

2.
The whole cell version of the patch clamp technique was used to identify and characterize voltage-gated Ca2+ channels in enzymatically dissociated bovine adrenal zona fasciculata (AZF) cells. The great majority of cells (84 of 86) expressed only low voltage-activated, rapidly inactivating Ca2+ current with properties of T-type Ca2+ current described in other cells. Voltage-dependent activation of this current was fit by a Boltzmann function raised to an integer power of 4 with a midpoint at -17 mV. Independent estimates of the single channel gating charge obtained from the activation curve and using the "limiting logarithmic potential sensitivity" were 8.1 and 6.8 elementary charges, respectively. Inactivation was a steep function of voltage with a v1/2 of -49.9 mV and a slope factor K of 3.73 mV. The expression of a single Ca2+ channel subtype by AZF cells allowed the voltage-dependent gating and kinetic properties of T current to be studied over a wide range of potentials. Analysis of the gating kinetics of this Ca2+ current indicate that T channel activation, inactivation, deactivation (closing), and reactivation (recovery from inactivation) each include voltage-independent transitions that become rate limiting at extreme voltages. Ca2+ current activated with voltage- dependent sigmoidal kinetics that were described by an m4 model. The activation time constant varied exponentially at test potentials between -30 and +10 mV, approaching a voltage-independent minimum of 1.6 ms. The inactivation time constant (tau i) also decreased exponentially to a minimum of 18.3 ms at potentials positive to 0 mV. T channel closing (deactivation) was faster at more negative voltages; the deactivation time constant (tau d) decreased from 8.14 +/- 0.7 to 0.48 +/- 0.1 ms at potentials between -40 and -150 mV. T channels inactivated by depolarization returned to the closed state along pathways that included two voltage-dependent time constants. tau rec-s ranged from 8.11 to 4.80 s when the recovery potential was varied from - 50 to -90 mV, while tau rec-f decreased from 1.01 to 0.372 s. At potentials negative to -70 mV, both time constants approached minimum values. The low voltage-activated Ca2+ current in AZF cells was blocked by the T channel selective antagonist Ni2+ with an IC50 of 20 microM. At similar concentrations, Ni2+ also blocked cortisol secretion stimulated by adrenocorticotropic hormone. Our results indicate that bovine AZF cells are distinctive among secretory cells in expressing primarily or exclusively T-type Ca2+ channels.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Efonidipine is a dihydropyridine Ca2+ antagonist with inhibitory effects on both L-type and T-type Ca2+ channels and potent bradycardiac activity especially in patients with high heart rate. In the present study, we examined the frequency dependence of efonidipine action on the T-type Ca2+ channel in isolated guinea-pig ventricular myocytes. The potency of efonidipine to inhibit the T-type Ca2+ current was higher under higher stimulation frequencies. The IC50 values were 1.3 x 10(-8), 2.0 x 10(-6) and 6.3 x 10(-6) M under stimulation frequencies of 1, 0.2 and 0.05 Hz, respectively. The reduction of T-type Ca2+ current amplitude was not accompanied by change in the time course of current decay. Efonidipine (10 microM) inhibited T-type Ca2+ current elicited by depolarization from holding potentials ranging from -90 to -30 mV by about 30%; the voltage-dependence of steady-state inactivation was not changed by the drug. Efonidipine slowed the recovery from inactivation following an inactivating prepulse. In conclusion, efonidipine was shown to have frequency-dependent inhibitory effects on the T-type Ca2+ channel, which could be explained by slow dissociation of the drug from the inactivated state of the channel.  相似文献   

4.
1. In all neurones freshly isolated from various brain regions of newborn, adult and aged rats, the T-type Ca2+ currents were elicited by step depolarizations to potentials more positive than -60 mV from a holding potential of -100 mV, and reached a peak in the current-voltage relationship around -30 mV. 2. The activation and inactivation processes were highly potential-dependent, and the latter was fitted by a single exponential function. 3. It was concluded that mammalian brain neurones possess a definite class of T-type Ca2+ channel characterized by both current kinetics and ion selectivity for Ca2+, Ba2+ and Sr2+. However, the pharmacological nature of the T-type Ca2+ channel differed from that in other tissues such as cardiac and smooth muscle cells, peripheral neurones, and cultured cells.  相似文献   

5.
Calcium-dependent potassium (BK-type) Ca2+ and voltage-dependent K+ channels in chromaffin cells exhibit an inactivation that probably arises from coassembly of Slo1 alpha subunits with auxiliary beta subunits. One goal of this work was to determine whether the Ca2+ dependence of inactivation arises from any mechanism other than coupling of inactivation to the Ca2+ dependence of activation. Steady-state inactivation and the onset of inactivation were studied in inside-out patches and whole-cell recordings from rat adrenal chromaffin cells with parallel experiments on inactivating BK channels resulting from cloned alpha + beta2 subunits. In both cases, steady-state inactivation was shifted to more negative potentials by increases in submembrane [Ca2+] from 1 to 60 microM. At 10 and 60 microM Ca2+, the maximal channel availability at negative potentials was similar despite a shift in the voltage of half availability, suggesting there is no strictly Ca2+-dependent inactivation. In contrast, in the absence of Ca2+, depolarization to potentials positive to +20 mV induces channel inactivation. Thus, voltage-dependent, but not solely Ca2+-dependent, kinetic steps are required for inactivation to occur. Finally, under some conditions, BK channels are shown to inactivate as readily from closed states as from open states, indicative that a key conformational change required for inactivation precedes channel opening.  相似文献   

6.
Rapid inactivation of Ca2+ release-activated Ca2+ (CRAC) channels was studied in Jurkat leukemic T lymphocytes using whole-cell patch clamp recording and [Ca2+]i measurement techniques. In the presence of 22 mM extracellular Ca2+, the Ca2+ current declined with a biexponential time course (time constants of 8-30 ms and 50-150 ms) during hyperpolarizing pulses to potentials more negative than -40 mV. Several lines of evidence suggest that the fast inactivation process is Ca2+ but not voltage dependent. First, the speed and extent of inactivation are enhanced by conditions that increase the rate of Ca2+ entry through open channels. Second, inactivation is substantially reduced when Ba2+ is present as the charge carrier. Third, inactivation is slowed by intracellular dialysis with BAPTA (12 mM), a rapid Ca2+ buffer, but not by raising the cytoplasmic concentration of EGTA, a slower chelator, from 1.2 to 12 mM. Recovery from fast inactivation is complete within 200 ms after repolarization to -12 mV. Rapid inactivation is unaffected by changes in the number of open CRAC channels or global [Ca2+]i. These results demonstrate that rapid inactivation of ICRAC results from the action of Ca2+ in close proximity to the intracellular mouths of individual channels, and that Ca2+ entry through one CRAC channel does not affect neighboring channels. A simple model for Ca2+ diffusion in the presence of a mobile buffer predicts multiple Ca2+ inactivation sites situated 3-4 nm from the intracellular mouth of the pore, consistent with a location on the CRAC channel itself.  相似文献   

7.
The Ca2+ current activated upon hyperpolarization of Paramecium tetraurelia decays over a period of 150-200 ms during sustained steps under voltage clamp. At membrane potentials between -70 and approximately -100 mV, the time course of this inactivation is described by a single exponential function. Steps negative to approximately -100 mV elicit currents that decay biexponentially, however. Three lines of evidence suggest that this current's inactivation is a function of intracellular Ca2+ concentration rather than membrane potential: (a) Comparing currents with similar amplitudes but elicited at widely differing membrane potentials suggests that their time course of decay is a sole function of inward current magnitude. (b) The extent of current inactivation is correlated with the amount of Ca2+ entering the cell during hyperpolarization. (c) The onset and time course of recovery from inactivation can be hastened significantly by injecting cells with EGTA. We suggest that the decay of this current during hyperpolarization involves a Ca(2+)-dependent pathway.  相似文献   

8.
Inactivation of a dihydropyridine-sensitive calcium current was studied in a cell line (A7r5) derived from smooth muscle of the rat thoracic aorta. Inactivation is faster with extracellular Ca2+ than with Ba2+. In Ba2+, inactivation increases monotonically with depolarization. In Ca2+, inactivation is related to the amount of inward current, so that little inactivation is seen in Ca2+ for brief depolarizations approaching the reversal potential. Longer depolarizations in Ca2+ reveal two components of inactivation, the slower component behaving like that observed in Ba2+. Furthermore, lowering extracellular Ca2+ slows inactivation. These results are consistent with the coexistence of two inactivation processes, a slow voltage-dependent inactivation, and a more rapid current-dependent inactivation which is observable only with Ca2+. Ca(2+)-dependent inactivation is decreased but not eliminated when intracellular Ca2+ is buffered by 10 mM BAPTA, suggesting that Ca2+ acts at a site on or near the channel. We also studied recovery from inactivation after either a short pulse (able to produce significant inactivation only in Ca2+) or a long pulse (giving similar inactivation with either cation). Surprisingly, recovery from Ca(2+)-dependent inactivation was voltage dependent. This suggests that the pathways for recovery from inactivation are similar regardless of how inactivation is generated. We propose a model where Ca(2+)- and voltage-dependent inactivation occur independently.  相似文献   

9.
Calcium currents were recorded from cultured horizontal cells (HCs) isolated from adult white bass retinas, using the whole-cell patch-clamp technique. Ca2+ currents were enhanced using 10 mM extracellular Ca2+, while Na+ and K+ currents were pharmacologically suppressed. Two components of the Ca2+ current, one transient, the other sustained, were found. The large transient component of the Ca2+ current, which has not been seen before in HCs, is similar, but not identical, to the T-type Ca2+ current described previously in a variety of preparations. The sustained component of the Ca2+ current is similar, but not identical, to the L-type current described in other preparations. FTX, a factor isolated from the venom of the funnel-web spider, Agelenopsis aperta, preferentially and irreversibly blocks the sustained component of the Ca2+ current at very dilute concentrations. The sustained component of the Ca2+ current inactivates slowly, over the course of 15-60 s, in some HCs. This inactivation of the sustained Ca2+ current, when present, is primarily voltage dependent rather than Ca2+ dependent.  相似文献   

10.
Voltage-dependent slowing of K channel closing kinetics by Rb+   总被引:4,自引:1,他引:3  
We have studied the effect of Rb+ on K channel closing kinetics in toadfish pancreatic islet cells. These channels are voltage dependent, activating at voltages positive to -10 mV. The channels also inactivate upon prolonged depolarizations, and the inactivation time course is best fit by the sum of two exponentials. Instantaneous current-voltage relationships show that external Rb+ enters the channel as easily as K+, but carries less current. In the voltage range from -140 to -50 mV, the closing time course of the channels can be fit with a single exponential. When Rb+ is present in the external solution the channels close more slowly. The magnitude of this Rb+ effect is voltage dependent, decreasing at more negative voltages. Similarly, when the internal solution contains Rb+ instead of K+ the closing time constants are increased. The effect of internal Rb+ is also voltage dependent; at voltages positive to -80 mV the closing time constant in internal Rb+ is slower than in K+, whereas at more negative voltages the difference is negligible. With internal Rb+, the relationship between the closing time constant and voltage is best fit with two exponential components, suggesting the presence of two distinct voltage-dependent processes. The results are discussed in terms of a model of the K channel with two internal binding sites, and we conclude that Rb+ produces its effects on channel gating by binding to a site in the pore.  相似文献   

11.
Although L-type Ca2+ channels have been shown to play a central role in cardiac excitation-contraction (E-C) coupling, little is known about the role of T-type Ca2+ channels in this process. We used the amphotericin B perforated patch method to study the possible role of T-type Ca2+ current in E-C coupling in isolated canine Purkinje myocytes where both Ca2+ currents are large. T-type Ca2+ current was separated from L-type Ca2+ current using protocols employing the different voltage dependencies of the channel types and their different sensitivities to pharmacological blockade. We showed that Ca2+ admitted through either T- or L-type Ca2+ channels is capable of initiating contraction and that the contractions depended on Ca2+-induced Ca2+ release from the sarcoplasmic reticulum (SR). The contractions, however, had different properties. Those initiated by Ca2+ entry through T-type Ca2+ channels had a longer delay to the onset of shortening, slower rates of shortening and relaxation, lower peak shortening, and longer time to peak shortening. These differences were present even when L-type Ca2+ current amplitude, or charge entry, was less than that of T-type Ca2+ current, suggesting that Ca2+ entry through the T-type Ca2+ channel is a less effective signal transduction mechanism to the SR than is Ca2+ entry through the L-type Ca2+ channel. We conclude that under our experimental conditions in cardiac Purkinje cells Ca2+ entry through the T-type Ca2+ channel can activate cell contraction. However, Ca2+ entry through the L-type Ca2+ channel is a more effective signal transduction mechanism. Our findings support the concept that different structural relationships exist between these channel types and the SR Ca2+ release mechanism.  相似文献   

12.
Microprocessor-controlled changes of [free Ca2+] at the outer surface of the sarcoplasmic reticulum (SR) wrapped around individual myofibrils of a skinned canine cardiac Purkinje cell and aequorin bioluminescence recording were used to study the mechanism of Ca2+-induced release of Ca2+ from the SR. This Ca2+ release is triggered by a rapid increase of [free Ca2+] at the outer surface of the SR of a previously quiescent skinned cell. Ca2+-induced release of Ca2+ occurred under conditions that prevented any synthesis of ATP from ADP, was affected differentially by interventions that depressed the SR Ca2+ pump about equally, and required ionic conditions incompatible with all known Ca2+-releasing, uncoupled, partial reactions of the Ca2+ pump. Increasing the [free Ca2+]trigger up to an optimum increased the amount of Ca2+ released. A supraoptimum increase of [free Ca2+] trigger inactivated Ca2+-induced release of Ca2+, but partial inactivation was also observed at [free Ca2+] below that necessary for its activation. The amplitude of the Ca2+ release induced by a given increase of [free Ca2+] decreased when the rate of this increase was diminished. These results suggest that Ca2+-induced release of Ca2+ is through a channel across the SR membrane with time- and Ca2+-dependent activation and inactivation. The inactivating binding site would have a higher affinity for Ca2+ but a lower rate constant than the activating site. Inactivation appeared to be a first-order kinetic reaction of Ca2+ binding to a single site at the outer face of the SR with a Q10 of 1.68. The removal of inactivation was the slowest step of the cycle, responsible for a highly temperature-dependent (Q10 approximately 4.00) refractory period.  相似文献   

13.
Using the tight-seal voltage-clamp method, the ionic currents in the enzymatically dispersed single smooth muscle cells of the guinea pig taenia coli have been studied. In a physiological medium containing 3 mM Ca2+, the cells are gently tapering spindles, averaging 201 (length) x 8 microns (largest diameter in center of cell), with a volume of 5 pl. The average cell capacitance is 50 pF, and the specific membrane capacitance 1.15 microF/cm2. The input impedance of the resting cell is 1-2 G omega. Spatially uniform voltage-control prevails after the first 400 microseconds. There is much overlap of the inward and outward currents, but the inward current can be isolated by applying Cs+ internally to block all potassium currents. The inward current is carried by Ca2+. Activation begins at approximately -30 mV, maximum ICa occurs at +10-+20 mV, and the reversal potential is approximately +75 mV. The Ca2+ channel is permeable to Sr2+ and Ba2+, and to Cs+ moving outwards, but not to Na+ moving inwards. Activation and deactivation are very rapid at approximately 33 degrees C, with time-constants of less than 1 ms. Inactivation has a complex time course, resolvable into three exponential components, with average time constants (at 0 mV) of 7, 45, and 400 ms, which are affected differently by voltage. Steady-state inactivation is half-maximal at -30 mV for all components combined, but -36 mV for the fast component and -26 and -23 mV for the other two components. The presence of multiple forms of Ca2+ channel is inferred from the inactivation characteristics, not from activation properties. Recovery of the fast channel occurs with a time-constant of 72 ms (at +10 mV). Ca2+ influx during an action potential can transfer approximately 9 pC of charge, which could elevate intracellular Ca2+ concentration adequately for various physiological functions.  相似文献   

14.
Inactivation viewed through single sodium channels   总被引:17,自引:12,他引:5       下载免费PDF全文
Recordings of the sodium current in tissue-cultured GH3 cells show that the rate of inactivation in whole cell and averaged single channel records is voltage dependent: tau h varied e-fold/approximately 26 mV. The source of this voltage dependence was investigated by examining the voltage dependence of individual rate constants, estimated by maximum likelihood analysis of single channel records, in a five-state kinetic model. The rate constant for inactivating from the open state, rather than closing, increased with depolarization, as did the probability that an open channel inactivates. The rate constant for closing from the open state had the opposite voltage dependence. Both rate constants contributed to the mean open time, which was not very voltage dependent. Both open time and burst duration were less than tau h for voltages up to -20 mV. The slowest time constant of activation, tau m, was measured from whole cell records, by fitting a single exponential either to tail currents or to activating currents in trypsin-treated cells, in which the inactivation was abolished. tau m was a bell-shaped function of voltage and had a voltage dependence similar to tau h at voltages more positive than -35 mV, but was smaller than tau h. At potentials more negative than about -10 mV, individual channels may open and close several times before inactivating. Therefore, averaged single channel records, which correspond with macroscopic current elicited by a depolarization, are best described by a convolution of the first latency density with the autocorrelation function rather than with 1 - (channel open time distribution). The voltage dependence of inactivation from the open state, in addition to that of the activation process, is a significant factor in determining the voltage dependence of macroscopic inactivation. Although the rates of activation and inactivation overlapped greatly, independent and coupled inactivation could not be statistically distinguished for two models examined. Although rates of activation affect the observed rate of inactivation at intermediate voltages, extrapolation of our estimates of rate constants suggests that at very depolarized voltages the activation process is so fast that it is an insignificant factor in the time course of inactivation. Prediction of gating currents shows that an inherently voltage-dependent inactivation process need not produce a conspicuous component in the gating current.  相似文献   

15.
Patch-clamp studies were carried out in villus enterocytes isolated from the guinea pig proximal small intestine. In the whole-cell mode, outward K+ currents were found to be activated by depolarizing command pulses to -45 mV. The activation followed fourth order kinetics. The time constant of K+ current activation was voltage-dependent, decreasing from approximately 3 ms at -10 mV to 1 ms at +50 mV. The K+ current inactivated during maintained depolarizations by a voltage- independent, monoexponential process with a time constant of approximately 470 ms. If the interpulse interval was shorter than 30 s, cumulative inactivation was observed upon repeated stimulations. The steady state inactivation was voltage-dependent over the voltage range from -70 to -30 mV with a half inactivation voltage of -46 mV. The steady state activation was also voltage-dependent with a half- activation voltage of -22 mV. The K+ current profiles were not affected by chelation of cytosolic Ca2+. The K+ current induced by a depolarizing pulse was suppressed by extracellular application of TEA+, Ba2+, 4-aminopyridine or quinine with half-maximal inhibitory concentrations of 8.9 mM, 4.6 mM, 86 microM and 26 microM, respectively. The inactivation time course was accelerated by quinine but decelerated by TEA+, when applied to the extracellular (but not the intracellular) solution. Extracellular (but not intracellular) applications of verapamil and nifedipine also quickened the inactivation time course with 50% effective concentrations of 3 and 17 microM, respectively. Quinine, verapamil and nifedipine shifted the steady state inactivation curve towards more negative potentials. Outward single K+ channel events with a unitary conductance of approximately 8.4 pS were observed in excised inside-out patches of the basolateral membrane, when the patch was depolarized to -40 mV. The ensemble current rapidly activated and thereafter slowly inactivated with similar time constants to those of whole-cell K+ currents. It is concluded that the basolateral membrane of guinea pig villus enterocytes has a voltage-gated, time-dependent, Ca(2+)-insensitive, small-conductance K+ channel. Quinine, verapamil, and nifedipine accelerate the inactivation time course by affecting the inactivation gate from the external side of the cell membrane.  相似文献   

16.
Calcium channels are important regulators of neuronal excitability and contribute to transmitter release, calcium dependent gene expression, and oscillatory behavior in many cell types. Under physiological conditions, native low-voltage (T-type)- and high-voltage-activated (HVA) currents are potently inhibited by trivalent cations. However, the presence of multiple calcium channel isoforms has hampered our ability to unequivocally assess the effects of trivalent cations on channel activity. Here, we describe the actions of nine trivalent metal ions on transiently expressed alpha1G (Cav3.1) T-type calcium channels cloned from human brain. In 2 mM external barium solution, yttrium most potently inhibited alpha1G current (IC50 = 28 nM), followed by erbium > gadolinium ~ cerium > holmium > ytterbium > neodymium > lanthanum > scandium. With the exception of scandium, blocking affinity was loosely correlated with decreasing ionic radius. A detailed characterization of yttrium block revealed a 25-fold decrease in blocking affinity when the external concentration of charge carrier was increased from 2 mM to 20 mM. In 20 mM barium, yttrium also effectively inhibited various types of cloned HVA channels indicating that this ion is a nonselective blocker. For all calcium channels examined, yttrium preferentially inhibited inward over outward current, but block was otherwise voltage independent. In addition to peak current inhibition, P/Q- and L-type channels underwent a unique speeding of the macroscopic time course of inactivation. Whereas peak current block of alpha1A channels was highly sensitive to the external charge carrier concentration, the inactivation effects mediated by yttrium were not, suggesting that the two effects are due to distinct mechanisms. Moreover, the speeding effect was greatly attenuated by manipulations that slowed the inactivation kinetics of the channels. Thus, our evidence suggests that yttrium effects are mediated by two distinct events: peak current block likely occurring by occlusion of the pore, and kinetic speeding arising from yttrium interactions with the channel that alter the state of the inactivation gate.  相似文献   

17.
1. Experiments were performed to determine the mechanisms by which ethanol (EtOH) decreases the amplitude of voltage-dependent inward currents through calcium channels in Aplysia neurons. Voltage-clamp protocols used conditioning prepulses of varying amplitude, duration, and frequency, to examine the relationship between prior activity of the channel and EtOH action. Calcium and barium were used as charge carriers, allowing dissociation of effects due to inactivation of calcium channels from other perturbations resulting in the impediment of current flow through the open channel. 2. When Ba2+ was the charge carrier and channel activation was unconfounded by inactivation processes, the reduction of ICa produced by EtOH was independent of the voltage, frequency, or duration of conditioning prepulses. 3. When Ca2+ was the charge carrier, ICa was reduced as a function of conditioning prepulses, in three protocols used. EtOH enhanced this reduction, most probably because of its effects on the inactivation of ICa. Consistent with this interpretation, the time constant of decay of ICa was decreased, and recovery from inactivation was retarded by EtOH. 4. EtOH did not reduce ICa by a change in membrane surface potential, at least at low EtOH concentrations. 5. An analysis of the time course of development of ICa reduction by EtOH showed that it developed slowly, over a matter of minutes. 6. Our data indicate that EtOH does not reduce ICa by direct occlusion of the calcium channel. EtOH affects the inactivation of the calcium current, and this may occur by an action on the channel protein.  相似文献   

18.
Summary Ca-channel currents were recorded in Cs-loaded single smooth muscle cells from rat vas deferens to define the dependence of the inactivation time course on Ca concentration. The decay of Ca-channel current obtained in a Ba2+- or Sr2+-containing external solution during long voltage-clamp pulses was much slower than that in a Ca-containing solution. The difference was not due to a change in the surface potential of the membrane as judged from the steady-state activation and inactivation curves. When Ca was the charge carrier, increasing external Ca concentration slightly accelerated the rate of inactivation. In addition, the rate of inactivation of Ca-channel current in 10.8mm Ba was also accelerated by adding Ca to the external solution in a concentration-dependent manner. The time course of Ca-current inactivation was slowed when the cells were dialyzed with a high concentration of citrate, a Ca-chelating agent. From these results, we concluded that a mechanism regulated by intracellular Ca activity plays a role in the inactivation of Ca channels in smooth muscle. The Ca-dependent process may protect against Ca overload by regulating Ca entry in smooth muscle cells.  相似文献   

19.
An analysis of the relationship between electrical membrane activity and Ca2+ influx in differentiated GnRH-secreting (GT1) neurons revealed that most cells exhibited spontaneous, extracellular Ca(2+)-dependent action potentials (APs). Spiking was initiated by a slow pacemaker depolarization from a baseline potential between -75 and -50 mV, and AP frequency increased with membrane depolarization. More hyperpolarized cells fired sharp APs with limited capacity to promote Ca2+ influx, whereas more depolarized cells fired broad APs with enhanced capacity for Ca2+ influx. Characterization of the inward currents in GT1 cells revealed the presence of tetrodotoxin-sensitive Na+, Ni(2+)-sensitive T-type Ca2+, and dihydropyridine-sensitive L-type Ca2+ components. The availability of Na+ and T-type Ca2+ channels was dependent on the baseline potential, which determined the activation/inactivation status of these channels. Whereas all three channels were involved in the generation of sharp APs, L-type channels were solely responsible for the spike depolarization in cells exhibiting broad APs. Activation of GnRH receptors led to biphasic changes in cytosolic Ca2+ concentration ([Ca2+]i), with an early, extracellular Ca(2+)-independent peak and a sustained, extracellular Ca(2+)-dependent phase. During the peak [Ca2+]i response, electrical activity was abolished due to transient hyperpolarization. This was followed by sustained depolarization of cells and resumption of firing of increased frequency with a shift from sharp to broad APs. The GnRH-induced change in firing pattern accounted for about 50% of the elevated Ca2+ influx, the remainder being independent of spiking. Basal [Ca2+]i was also dependent on Ca2+ influx through AP-driven and voltage-insensitive pathways. Thus, in both resting and agonist-stimulated GT1 cells, membrane depolarization limits the participation of Na+ and T-type channels in firing, but facilitates AP-driven Ca2+ influx.  相似文献   

20.
Planar lipid bilayer recordings were used to study Ca channels from bovine cardiac sarcolemmal membranes. Ca channel activity was recorded in the absence of nucleotides or soluble enzymes, over a range of membrane potentials and ionic conditions that cannot be achieved in intact cells. The dihydropyridine-sensitive L-type Ca channel, studied in the presence of Bay K 8644, was identified by a detailed comparison of its properties in artificial membranes and in intact cells. L-type Ca channels in bilayers showed voltage dependence of channel activation and inactivation, open and closed times, and single-channel conductances in Ba2+ and Ca2+ very similar to those found in cell-attached patch recordings. Open channels were blocked by micromolar concentrations of external Cd2+. In this cell-free system, channel activity tended to decrease during the course of an experiment, reminiscent of Ca2+ channel "rundown" in whole-cell and excised-patch recordings. A purely voltage-dependent component of inactivation was observed in the absence of Ca2+ stores or changes in intracellular Ca2+. Millimolar internal Ca2+ reduced unitary Ba2+ influx but did not greatly increase the rate or extent of inactivation or the rate of channel rundown. In symmetrical Ba2+ solutions, unitary conductance saturated as the Ba2+ concentration was increased up to 500 mM. The bilayer recordings also revealed activity of a novel Ca2+-permeable channel, termed "B-type" because it may contribute a steady background current at negative membrane potentials, which is distinct from L-type or T-type Ca channels previously reported. Unlike L-type channels, B-type channels have a small unitary Ba2+ conductance (7 pS), but do not discriminate between Ba2+ and Ca2+, show no obvious sensitivity to Bay K 8644, and do not run down. Unlike either L- or T-type channels, B-type channels did not require a depolarization for activation and displayed mean open times of greater than 100 ms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号