首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The synthesis of closed circular simian virus 40 (SV40) deoxyribonucleic acid (DNA) containing sequences homologous to host cell DNA depends upon the conditions under which the cells are infected. When BS-C-1 monkey cells were infected with non-plaque-purified virus at low multiplicity of infection [MOI, 0.032 plaque-forming units (PFU)/cell], little, if any, of the SV40 DNA extracted from the infected cells hybridized to host DNA; but when increasingly higher multiplicities were used (in the range 0.16 to 3,000 PFU/cell), an increasingly greater amount of the extracted SV40 DNA hybridized to host DNA. The same effect was observed when the closed circular SV40 DNA was extracted from purified virions (grown at low and high MOI) rather than from the infected cell complex. When the cells were infected at high MOI with plaque-purified virus (11 viral clones were tested), none of the SV40 DNA extracted from the cells hybridized detectably with host cell DNA. However, plaque-purified virus that was serially passaged, undiluted, induced the synthesis of virus DNA which again showed extensive homology to host DNA. It is suggested that, under certain circumstances, recombination occurs between viral and host DNA during lytic infection which results in the incorporation of host DNA sequences into closed circular SV40 DNA.  相似文献   

2.
We have studied parameters for optimizing the Spodoptera frugiperda (Sf9) cell culture and viral infection for the production of Anticarsia gemmatalis multiple nucleopolyhedrosis virus (AgMNPV) polyhedra inclusion bodies (PIBs) in shaker-Schott or spinner bottles and bioreactors. We have assayed the kLa of the systems, initial cell seeding, cell culture volume, dissolved oxygen (DO), multiplicity of infection (MOI), nutrients consumption, and metabolites production. The medium surface oxygen transfer was shown to be higher in shaker bottles than in spinner ones, which was in direct correlation to the higher cell density obtained. Best quantitative performances of PIBs production were obtained with a SF900II medium volume/shaker-bottle volume ratio of 15% and MOI of 0.5 to 1 performed at a cell concentration at infection (CCI) of 1 to 2.5×106 cells/ml in a medium containing enough glucose and glutamine. Upon infection, a decrease in the cell multiplication was observed to be dependent on the MOI used, and the μX at the exponential growth phase in infected and non-infected cultures were, respectively, of 0.2832 and 0.3914 (day−1). The glucose consumption and lactate production were higher in the infected cultures (μGlucose and μLactate of, respectively, 0.0248 and 0.0089×10−8 g/cell×day in infected cultures and 0.0151 and 0.0046×10−8 g/cell×day in non infected ones). The glutamine consumption did not differ in both cultures (μGlutamine of 0.0034 and 0.0037×10−8 g/cell×day in, respectively, infected and non infected cultures). When a virus MOI of 0.1 to 1 was used for infection, a higher concentration of PIBs/ml was obtained. This was in direct correlation to a higher cell concentration present in these cultures, where a decrease in cell multiplication due to virus infection is minimized. When a MOI of 1 was used, a more effective decrease in cell multiplication was observed and a lower concentration of PIBs/ml was obtained, but with the best performance of PIBs/cell. Correlations between MOI and CCI indicate that a MOI 0.1 to 1.4 and a CCI of 106 to 2×106 cells/ml led to the best PIBs production performances. The virulence of PIBs produced in cultures infected at low or high MOI showed comparable DL50. Culture and infection in scaling-up conditions, performed in a bioreactor, were shown to provide the cells with a better environment and be capable of potentially improving the shaker-Schott findings. For an accurate qualitative control of PIB virulence, hemolymph from AgMNPV infected Anticarsia gemmatalis was used as starting material for passages in Sf9 cells. These led to a loss of virulence among the PIBs with an increase in the DL50. The loss of virulence was accompanied by a loss in budded virus titer, a decreased number of PIBs produced and an altered DNA restriction pattern, suggesting the generation of defective interference particles (DIPs). Transmission electron microscopy (TEM) studies revealed that after cell passages, PIBs lacking virions were progressively synthesized. The study described here point out the biological constraints and bioprocess issues for the preparation of AgMNPV PIBs for biological control.  相似文献   

3.
FMD is one of the most economically damaging diseases that affect livestock animals. In this study FMD Virus type A87/IRN was multiplied on BHK21 cells. The virus was titrated by TCID50 method, it was 107.5/ml. The FMD virus samples were inactivated by gamma ray from 60Co source at −20°C. Safety test was done by IBRS2 monolayer cell culture method, also antigenicity of irradiated and un-irradiated virus samples were studied by Complement Fixation Test. The Dose/Survival curve for irradiated FMD Virus was drawn, the optimum dose range for inactivation of FMDV type A87/IRN and unaltered antigenicity was obtained 40–44 kGy. The inactivated virus samples by irradiation and ethyleneimine (EI) were formulated respectively as vaccine with Al(OH)3 gel and other substances. The vaccines were inoculated to Guinea pigs and the results of Serum Neutralization Test for the normal vaccine and radio-vaccine showed protective titer after 8 months. The potency test of the inactivated vaccines was done, PD50 Value of the vaccines were calculated 7.06 and 5.6 for inactivated vaccine by EI and gamma irradiation respectively.  相似文献   

4.
Bunyamwera virus replication was examined in Aedes albopictus (mosquito) cell cultures in which a persistent infection is established and in cytopathically infected BHK cells. During primary infection of A. albopictus cells, Bunyamwera virus reached relatively high titers (107 PFU/ml), and autointerference was not observed. Three virus-specific RNAs (L, M, and S) and two virion proteins (N and G1) were detected in infected cells. Maximum rates of viral RNA synthesis and viral protein synthesis were extremely low, corresponding to <2% of the synthetic capacities of uninfected control cells. Viral protein synthesis was maximal at 12 h postinfection and was shut down to barely detectable levels at 24 h postinfection. Virus-specific RNA and nucleocapsid syntheses showed similar patterns of change, but later in infection. The proportions of cells able to release a single PFU at 3, 6, and 54 days postinfection were 100, 50, and 1.5%, respectively. Titers fell to 103 to 105 PFU/ml in carrier cultures. Persistently infected cultures were resistant to superinfection with homologous virus but not with heterologous virus. No changes in host cell protein synthesis or other cytopathic effects were observed at any stage of infection. Small-plaque variants of Bunyamwera virus appeared at approximately 7 days postinfection and increased gradually until they were 75 to 95% of the total infectious virus at 66 days postinfection. Temperature-sensitive mutants appeared between 23 and 49 days postinfection. No antiviral activity similar to that reported in A. albopictus cell cultures persistently infected with Sindbis virus (R. Riedel and D. T. Brown, J. Virol. 29: 51-60, 1979) was detected in culture fluids by 3 months after infection. Bunyamwera virus replicated more rapidly in BHK cells than in mosquito cells but reached lower titers. Autointerference occurred at multiplicities of infection of 10. Virus-specific RNA and protein syntheses were at least 20% of the levels in uninfected control cells. Host cell protein synthesis was completely shut down, and nucleocapsid protein accumulated until it was 4% of the total cell protein. We discuss these results in relation to possible mechanisms involved in determining the outcome of arbovirus infection of vertebrate and mosquito cells.  相似文献   

5.
登革病毒对人血管内皮细胞感染性的研究   总被引:6,自引:0,他引:6  
用登革病毒Ⅱ型(DV2)感染体外培养和传代的人脐静脉内皮细胞(HUVEC),研究发现,HUVEC是登革病毒的允许性细胞。病毒感染后12h即可在培养上清中用微量蚀斑法测出病毒,病毒滴度48h达高峰,以后迅速下降。并发现在一定范围内病毒产量随病毒感染复数(MOI)的增加而增高。间接免疫荧光法证明感染的HUVEC胞浆及胞膜上携带DV2抗原。电镜和光镜下,感染细胞未见明显的形态和结构改变。  相似文献   

6.
Vero cells growth and rabies production in IPT-AF medium, a property animal-component-free medium are described in this work. Kinetics of cell growth and rabies virus (strain LP 2061) production were first conducted in spinner flasks. Over eight independent experiments, Vero cell growth in IPT-AF medium, on 2 g/l Cytodex 1 was consistent. An average Cd (cell division number) of 3.3 ± 0.4 and a specific growth rate μ of 0.017 ± 0.006 h−1 were achieved. Such performances were comparable to those obtained in serum-containing medium (MEM + 10% FCS). Rabies virus production on Vero cells in IPT-AF medium was also optimised in spinner flasks. The effects of multiplicity of infection (MOI), regulation of glucose level at 1 g/l and cell washing step, were investigated. The highest virus titer was achieved when the cells were infected at an MOI of 0.1; this level was equal to 107 FFU/ml. The step of medium exchange before cell infection can be omitted; nevertheless in this case glucose level should be maintained at 1 g/l to avoid a decrease of specific virus productivity. Process optimisation in a 2-l stirred bioreactor pointed out that the aeration mode was the prominent parameter that affected cell growth in IPT-AF medium and on Cytodex 1 microcarriers. An acceptable level of cell density (cell density level of 1.5 × 106 cells/ml) was achieved when cells were grown in batch mode and using headspace aeration. Nevertheless, this aeration mode is not optimal for large-scale culture. The addition of Pluronic F68 at 0.1% at 24 h post inoculation as well as the switch from surface aeration mode to the sparged mode, 2 days after the start of the culture, had markedly improved cell growth performance. A cell density level of 5.5 × 106 cells/ml was reached when cells were grown in a 2-l bioreactor, on 3 g/l Cytodex 1 in IPT-AF medium and using the recirculation culture mode. Cell infection at an MOI of 0.1 and using perfused culture, resulted in a maximal virus titer of 3.5 × 107 FFU/ml. The activity of the pooled inactivated rabies virus harvests showed a protective activity that meets WHO requirements.  相似文献   

7.
A stable line of baby hamster kidney cells for use in the production of, and subsequent purification of, foot-and-mouth disease virus (FMDV) was grown in large quantities on the cylindrical surfaces of 2-liter Baxter bottles. The bottles, in round wire cages, were rotated on a three-tiered roller mill. The cells retained their rapid growth characteristics and susceptibility to FMDV in a tris(hydroxymethyl)aminomethane buffer-containing medium which was especially formulated for large-scale work. This medium, without being changed, sustained cell growth for 6 to 7 days to yield confluent layers containing 500 to 750 million cells per bottle. In small-scale virus-growth experiments, harvested fluids contained about 103.8 to 108.8 plaque-forming units (PFU) per ml. This corresponded to a yield of 30 to 50 PFU per cell. In production runs with 190 cultures, the infectious fluids usually contained 107.9 to 109.2 PFU per ml, and the mass of essentially pure virus obtained therefrom ranged from 7 to 17 mg concomitant with cumulative infectivity recoveries of about 20%.  相似文献   

8.

Background

In a globalized word, prevention of infectious diseases is a major challenge. Rapid detection of viable virus particles in water and other environmental samples is essential to public health risk assessment, homeland security and environmental protection. Current virus detection methods, especially assessing viral infectivity, are complex and time-consuming, making point-of-care detection a challenge. Faster, more sensitive, highly specific methods are needed to quantify potentially hazardous viral pathogens and to determine if suspected materials contain viable viral particles. Fourier transform infrared (FTIR) spectroscopy combined with cellular-based sensing, may offer a precise way to detect specific viruses. This approach utilizes infrared light to monitor changes in molecular components of cells by tracking changes in absorbance patterns produced following virus infection. In this work poliovirus (PV1) was used to evaluate the utility of FTIR spectroscopy with cell culture for rapid detection of infective virus particles.

Results

Buffalo green monkey kidney (BGMK) cells infected with different virus titers were studied at 1 - 12 hours post-infection (h.p.i.). A partial least squares (PLS) regression method was used to analyze and model cellular responses to different infection titers and times post-infection. The model performs best at 8 h.p.i., resulting in an estimated root mean square error of cross validation (RMSECV) of 17 plaque forming units (PFU)/ml when using low titers of infection of 10 and 100 PFU/ml. Higher titers, from 103 to 106 PFU/ml, could also be reliably detected.

Conclusions

This approach to poliovirus detection and quantification using FTIR spectroscopy and cell culture could potentially be extended to compare biochemical cell responses to infection with different viruses. This virus detection method could feasibly be adapted to an automated scheme for use in areas such as water safety monitoring and medical diagnostics.  相似文献   

9.
Spodoptera frugiperda insect cells were grown in Sf-900 serum-free medium and two kinds of serum-supplemented media (IPL -41 and Grace's). The specific growth rates of uninfected cells were found to be 0.024, 0.35, and 0.034 h(-1) respectively, at 33 degrees C. The IPL -41 medium supported to highest maximum cell density (10.6 x 10(6) cells/mL) compared to 3.5 x 10(6) and 8.7 x 10(6) cells/mL with the Grace's and serum-free media, respectively. In temperature shifdown experiments with a temperature-sensitive baculo-virus (acts10YM1CAT), virus titer and chloramphenicol acetyl transferase (CAT) expression were highest in the IPL -41 (5.1 x 10(7) PFU/mL and 20000 U/mL). Use of Grace's medium gave higher virus titers than the serum-free medium (4.4 x 10(6) vs 4.1 x 10(5) PFU/mL) as well as higher CAT titers (7050 vs 1980 U/mL). Interestingly, in the three media used, the highest virus and CAT titers were obtained at MOI (multiplicity of infection) of 0.02 At MOI of 2.0 virtually no increase in virus of CAT titer was observed. This result is contrary to those obtained at constant-temperature (27 degrees C) infection and cell culture, in which higher virus titers and recombinant protein expression and obtained at higher MOI.  相似文献   

10.
Four-week-old rats (WKA/Hkm strain) were infected intranasally with the Ann Arbor/1/50 strain of influenza C virus and examined for clinical symptoms, virus replication, and serum antibody response. Although the animals showed no definite signs of illness, the virus replicated in the nose, and the hemagglutination-inhibiting (HI) and neutralizing antibodies were produced in their sera. When the inoculum sizes of 106.2 and 103.2 PFU were used, virus was recovered from nasal homogenates between days 1 and 10, and serum HI antibody became detectable by 10 days after infection. The rats infected with 101.2 PFU of the virus continued to shed virus until as late as day 20 without producing serum HI antibody. The amount of virus recovered from the nose was not affected significantly by either sex. age, or strain of the rat except that a slower virus growth was seen in the LE strain. It was also observed that the rats, previously inoculated with 103.2 PFU of the virus, showed no virus shedding when reinfected 7 weeks later but produced virus though in low titers when reinfected 50 to 55 weeks later. Virus was also recovered from rats once inoculated with 101.2 PFU of the virus when challenged 7 weeks later. Thus repeated infections characteristic of human influenza C can be produced in rats under the restricted conditions.  相似文献   

11.
Preparation of Poliovirus Labeled with Phosphorus-33   总被引:1,自引:1,他引:0       下载免费PDF全文
Phosphorus-33 ((33)P), a weak (0.25 Mev) beta-emitting isotope of phosphorus with a half-life of 25 days, has been used to label poliovirus in cell culture. HeLa cell monolayers were depleted of phosphate and then labeled by incubating at 37 C in a medium (LM) containing about 10 muCi of (33)P as orthophosphate per ml. Labeled cells were infected at a high multiplicity with poliovirus type 1 and incubated for 8 hr in LM medium. Virus from infected cells was then concentrated and purified. Virus purity was confirmed by comparison of virus infectivity and radioactivity after CsCl density gradient centrifugation and by observing purified virus preparations with electron microscopy. With the method described, yields of about 10(10) to 5 x 10(10) plaque-forming units (PFU) of highly purified poliovirus with specific activities of about 3 x 10(-4) to 10(-3) disintegrations per min per PFU have been obtained from 1.5 x 10(8) to 3.0 x 10(8) HeLa cells.  相似文献   

12.
We recently identified a packaging signal in the neuraminidase (NA) viral RNA (vRNA) segment of an influenza A virus, allowing us to produce a mutant virus [GFP(NA)-Flu] that lacks most of the NA open reading frame but contains instead the gene encoding green fluorescent protein (GFP). To exploit the expanding knowledge of vRNA packaging signals to establish influenza virus vectors for the expression of foreign genes, we studied the replicative properties of this virus in cell culture and mice. Compared to wild-type virus, GFP(NA)-Flu was highly attenuated in normal cultured cells but was able to grow to a titer of >10(6) PFU/ml in a mutant cell line expressing reduced levels of sialic acid on the cell surface. GFP expression from this virus was stable even after five passages in the latter cells. In intranasally infected mice, GFP was detected in the epithelial cells of nasal mucosa, bronchioles, and alveoli for up to 4 days postinfection. We attribute the attenuated growth of GFP(NA)-Flu to virion aggregation at the surface of bronchiolar epithelia. In studies to test the potential of this mutant as a live attenuated influenza vaccine, all mice vaccinated with >/==" BORDER="0">10(5) PFU of GFP(NA)-Flu survived when challenged with lethal doses of the parent virus. These results suggest that influenza virus could be a useful vector for expressing foreign genes and that a sialidase-deficient virus may offer an alternative to the live influenza vaccines recently approved for human use.  相似文献   

13.
Antiviral activity of methylated β-lactoglobulin (Met-BLG) against H3N2 infected into MDCK cell lines depended on concentration of Met-BLG, viral load, and duration of infection. IC50% of the hemagglutination activity for 1 and 0.2 MOI (multiplicity of infection) after 24 h of incubation at 37 °C in the presence of 5% CO2 were 20 ± 0.8 and 17 ± 0.7 μg mL?1 Met-BLG, respectively. Longer incubation period (4 days) was associated with low IC50% of the hemagglutination activity (7.1 ± 0.3 μg mL?1 Met-BLG) and low IC50% of immuno-fluorescence of viral nucleoproteins (9.7 ± 0.4 μg mL?1 Met-BLG) when using 0.2 and 0.1 MOI, respectively. A concentration of 25 μg mL?1 of Met-BLG reduced the amount of replicating virus by about 2 and 1.3 logs when the viral load was 0.01 and 0.1 MOI, respectively, while higher concentrations reduced it by about 5–6 logs. Antiviral action of Met-BLG was coupled with a cellular protective action, which reached 100% when using 0.01 and 0.1 MOI and 83% when using 1.0 MOI. The time of Met-BLG addition after the viral infection was determinant for its antiviral efficacy and for its protection of the infected MDCK cell lines. Anti-hemagglutination action and cell protective action decreased gradually and in parallel with the delay in the time of Met-BLG addition to disappear totally after 10 h delay.  相似文献   

14.
Cells can be persistently infected with human parainfluenza virus type 3 (HPF3) by using a high multiplicity of infection (MOI) (> or = 5 PFU per cell). The persistently infected cells exhibit no cytopathic effects and do not fuse with each other, yet they readily fuse with uninfected cells. We have previously shown that the failure of the persistently infected cells to fuse with each other is due to the lack of a receptor on these cells for the viral hemagglutinin-neuraminidase glycoprotein, and we have established that both fusion and hemagglutinin-neuraminidase proteins are needed for cell fusion mediated by HPF3. We then postulated that the generation of persistent infection and the failure of cells infected with HPF3 at high MOI to form syncytia are both due to the action of viral neuraminidase in the high-MOI inoculum. In this report, we describe experiments to test this hypothesis and further investigate the receptor requirements for HPF3 infection and cell fusion. A normally cytopathic low-MOI HPF3 infection can be converted into a noncytopathic infection by the addition of exogenous neuraminidase, either in the form of a purified enzyme or as UV-inactivated HPF3 virions. Evidence is presented that the receptor requirements for an HPF3 virus particle to infect a cell are different from those for fusion between cells. By treating infected cells in culture with various doses of neuraminidase, we demonstrate that virus spreads from cell to cell in the complete absence of cell-cell fusion. We compare the outcome of HPF3 infection in the presence of excess neuraminidase with that of another paramyxovirus (simian virus 5) and provide evidence that these two viruses differ in their receptor requirements for mediating fusion.  相似文献   

15.
Autographa californica nuclear polyhedrosis virus (AcNPV) produced in Trichoplusia ni (TN-368) cells was used to infect other cell cultures. Methods were developed to recover and obtain high titers of virus from infected cells for subsequent use as inocula. To release cell-associated nucleocapsids, the cells were lysed by sonication and freeze-thawing. The infectivity of enveloped nucleocapsids was greatly reduced by freeze-thawing, while sonication was not as detrimental. The titer of plaque-forming units (pfu) was reduced about 12-fold when passed through 0.45-μm filters. The virus and cells were manipulated to determine the most efficient methods for inoculating cells while yielding the highest numbers of polyhedra. The viral inocula may be left on cells during virus replication, and cells may be centrifuged at 380 g prior to exposure to virus without affecting the yield of polyhedra. The production of polyhedra is affected by cell density, and, of the densities tested, 7.65 × 105 cells/ml yielded the maximum number of polyhedra per cell (142). However, the highest number of polyhedra per milliliter of culture (2.2 × 108) was obtained with 3.8 × 106 cells/ml. The numbers of polyhedra per cell did not vary when cells were taken from fermentor cultures at 0–144 hr and were infected with virus.  相似文献   

16.
Sheep pox virus initially adapted to replicate in primary lamb kidney cells was adapted to Vero cells by serial passages in monolayer cultures. After nine passages the virus was able to correctly replicate in Vero cells, virus titer achieved was 105.875 TCID50 (median tissue culture infective dose) ml−1.To optimize the production process, the effects of MOI (multiplicity of infection), TOI (time of infection) and the culture medium were investigated. Cell infection at a MOI of 0.005 concurrently with cell seeding showed the best results in terms of specific virus productivity. The effect of MEM enrichment with several components was investigated using the experimental design approach. 67 experiments were performed in 6-well plates to select the best combination. The highest titer was achieved when MEM was supplemented with 5 mM glucose, 5 mM fructose and 25 mM sucrose. Spinner culture confirms these data; virus titer was 107.375 TCID50 ml−1.In addition Vero cells were cultivated in a 7-l bioreactor in batch mode on 3 g l−1 Cytodex1, and infected at cell seeding at a MOI of 0.005. Maximal virus titer was 107.275 TCID50 ml−1. This corresponds to 44-fold factor enhancement compared to spinner cultures conducted in MEM + 2% FCS.  相似文献   

17.
Although no detectable interferon was produced when L cells were infected with wild-type VSV (VSV-o), considerable amounts of interferon were produced when cells were infected with UV-irradiated VSV-o at a multiplicity equivalent to 10 PFU/cell. Treatment of VSV-o with UV-light resulted in the marked reduction of the RNA synthesizing capacity and cytotoxity of the virus, and the UV-irradiated virus had neither infectivity nor interfering activity against homologous viruses. The amount of interferon induced by UV-VSV-o was markedly influenced by multiplicity of infection and incubation temperature. Less-virulent temperature-sensitive mutants (VSV-mp and VSV-sp) derived from L cells persistently infected with VSV induced interferon in L cells without treatment of the viruses with UV-light, but these viruses could not induce interferon if the infected cells were incubated at nonpermissive temperature, or if cells were infected at multiplicities of more than 10 PFU/cell. On the other hand, it was shown that treatment of cells with cycloheximide (100 μg/ml) delayed the expression of cell damage caused by non-irradiated VSV-o and resulted in the production of interferon when cycloheximide was removed from the cultures. These results indicate that VSV has intrinsically interferon-inducing capacity in L cells and can induce interferon if the induction is carried out under such condition that cell damage caused by VSV are suppressed or delayed. Furthermore, the effect of pretreatment of cells by interferon and undiluted passage of VSV-o on interferon induction was discussed in relation to persistent infection.  相似文献   

18.
We have previously shown that replication of foot-and-mouth disease virus (FMDV) is highly sensitive to alpha/beta interferon (IFN-alpha/beta). In the present study, we constructed recombinant, replication-defective human adenovirus type 5 vectors containing either porcine IFN-alpha or IFN-beta (Ad5-pIFNalpha or Ad5-pIFNbeta). We demonstrated that cells infected with these viruses express high levels of biologically active IFN. Swine inoculated with 10(9) PFU of a control Ad5 virus lacking the IFN gene and challenged 24 h later with FMDV developed typical signs of foot-and-mouth disease (FMD), including fever, vesicular lesions, and viremia. In contrast, swine inoculated with 10(9) PFU of Ad5-pIFNalpha were completely protected when challenged 24 h later with FMDV. These animals showed no clinical signs of FMD and no viremia and did not develop antibodies against viral nonstructural proteins, suggesting that complete protection from infection was achieved.  相似文献   

19.
20.
We studied BHK-21 cells growth in a 2-l bioreactor and investigated the effects of microcarrier concentration, type of growth medium, culture mode and serum concentration. The highest cell density reached was equal to 4x10(6) cells/ml and was achieved in minimum essential medium supplemented with Hanks' salts, non-essential amino acids and 5% fetal calf serum, using a perfusion culture mode and a microcarrier concentration of 4 g Cytodex 3/l. We studied rabies virus production (PV/BHK-21 strain) by BHK-21 cells grown at the optimal conditions determined previously. We analyzed the effects of multiplicity of infection (MOI) and type of medium used for virus multiplication in spinner-flasks and showed that the highest virus titer reached (when the cells were infected at a MOI of 0.3) in M199 medium supplemented with 0.2% of bovine serum albumin was equal to 8.2x10(7) Fluorescent Focus Units (FFU)/ml. When we grew the cells in a 2-l perfused bioreactor, we obtained a maximal virus titer of 3x10(8) FFU/ml. In addition, we scaled-up to a 20-l bioreactor and obtained similar results for cell density and virus titer. The experimental vaccine we developed meets WHO requirements for vaccine potency. Each run yielded about 40,000 doses of potent vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号