首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The method of synchronizing cells by means of mitotic selection has been adapted to the human line NHIK 3025. Increase in cell number as a function of time in asynchronous and synchronous populations was studied as well as mitotic index as a function of time after selection of synchronized populations. Phase durations of the cell cycle of synchronous populations were determined by 3 H-thymidine incorporation and scintillation counting. The relative phase durations of exponentially growing asynchronous populations were determined by mathematical analysis of DNA-histograms recorded by flow cytofluorimetry. Both the generation time and the various phase durations of the cell cycle were found to be the same in asynchronous and synchronous populations. It was found that NHIK 3025 cells are damaged by cooling to 4 and 0°C so that cooling of selected cells in order to increase the yield would reduce the quality of the synchronized populations.  相似文献   

2.
Using synchronous populations obtained by selectively detaching mitotic cells from cultures grown in monolayer, we demonstrate here that Chinese hamster ovary (CHO) cells exhibit a differential sensitivity to mutation induction by UV as a function of position in the cell cycle. When mutation induction to 6-thioguanine (TG) resistance is monitored, several maxima and minima are displayed during cell-cycle traverse, with a major maximum occurring in early S phase. Although cells in S phase are more sensitive to UV-mediated cell lethality than those in G1 or G2/M phases, there is not a strict correlation with induced mutation frequency. Fluence-response curves obtained at several times during the cell cycle yield Dq values approximating 6 J/m2. The primary survival characteristic which varies with cell cycle position is D0, ranging from 2.5 J/m2 at 6 h after mitotic selection to 5.5 J/m2 at 11 h afterward. Based on studies with asynchronous, logarithmically growing populations, as well as those mitotically selected to be synchronous, the optimum phenotypic expression time for induced TG resistance is 7–9 days and is essentially independent of both UV fluence and position in the cell cycle. All isolated mutants have altered hypozanthine—guanine phosphoribosyl transferase (HGPRT) activity, and no difference in the residual level of activity was detected among isolated clones receiving UV radiation during G1, S, or late S/G2 phases of the cell cycle. Changes in cellular morphology during cell-cycle traverse do not contribute to the differential susceptibility to UV-induced mutagenesis.  相似文献   

3.
The sensitivity of HeLa S3 cells to 220 kv X-rays was measured in terms of cell survival (colony development) during the G2 phase of the cell generation cycle, employing two procedures designed to free G2 cultures from contaminating cells from other phases of the cycle. Treatment of synchronous cultures (obtained initially by mitotic selection) with high specific activity tritiated thymidine (HSA-3HTdR) selectively eliminated S phase cells, while addition of vinblastine permitted removal of cells as they entered mitosis. It was found that HeLa S3 cells become increasingly sensitive as they progress through G2. The pattern of sensitivity fluctuations observed in synchronous HeLa S3 populations selected by the foregoing method was compared with that found in synchronous cultures prepared by the HSA-3HTdR method of Whitmore. The latter method had been used previously with mouse L cells, which were found to undergo a different pattern of sensitivity fluctuations. The two methods yield similar results for HeLa cells in the S and G2 phases of the cycle. It may be concluded, therefore, that the discrepancies between HeLa and mouse L cells do not arise from methodological factors, but represent fundamental differences between the cell types.  相似文献   

4.
The method of synchronizing cells by means of mitotic selection has been adapted to the human line NHIK 3025. Increase in cell number as a function of time in asynchronous and synchronous populations was studied as well as mitotic index as a function of time after selection of synchronized populations. Phase durations of the cell cycle of synchronous populations were determined by 3H-thymidine incorporation and scintillation counting. The relative phase durations of exponentially growing asynchronous populations were determined by mathematical analysis of DNA-histograms recorded by flow cytofluorimetry. Both the generation time and the various phase durations of the cell cycle were found to be the same in asynchronous and synchronous populations. It was found that NHIK 3025 cells are damaged by cooling to 4 and 0 degrees C so that cooling of selected cells in order to increase the yield would reduce the quality of the synchronized populations.  相似文献   

5.
Summary— The involvement of genome portions replicating at different times of the S phase in the control of cell cycle events was analysed in Allium cepa L meristematic cells. 5-Azacytidine (5-azaC) was incorporated into discrete replicating DNA portions in synchronous cells. Cells treated with 5-azaC during the late S phase went through normal cell cycles while cells treated with 5-azaC during the early S phase were able to go through the immediately succeeding mitosis, as well as to begin the subsequent S phase. However, they were unable to enter a second mitosis. Thus, sequences replicating in the early S phase appear to code for a mitotic inhibitor which represses the emergence of a positive mitotic signal. This inhibition took place in the first half of the interphase (ie during G1) and resulted in a cell cycle blockage in G2.  相似文献   

6.
Differentiation of trophoblast giant cells in the rodent placenta is accompanied by exit from the mitotic cell cycle and onset of endoreduplication. Commitment to giant cell differentiation is under developmental control, involving down-regulation of Id1 and Id2, concomitant with up-regulation of the basic helix-loop-helix factor Hxt and acquisition of increased adhesiveness. Endoreduplication disrupts the alternation of DNA synthesis and mitosis that maintains euploid DNA content during proliferation. To determine how the mammalian endocycle is regulated, we examined the expression of the cyclins and cyclin-dependent kinases during the transition from replication to endoreduplication in the Rcho-1 rat choriocarcinoma cell line. We cultured these cells under conditions that gave relatively synchronous endoreduplication. This allowed us to study the events that occur during the transition from the mitotic cycle to the first endocycle. With giant cell differentiation, the cells switched cyclin D isoform expression from D3 to D1 and altered several checkpoint functions, acquiring a relative insensitivity to DNA-damaging agents and a coincident serum independence. The initiation of S phase during endocycles appeared to involve cycles of synthesis of cyclins E and A, and termination of S was associated with abrupt loss of cyclin A and E. Both cyclins were absent from gap phase cells, suggesting that their degradation may be necessary to allow reinitiation of the endocycle. The arrest of the mitotic cycle at the onset of endoreduplication was associated with a failure to assemble cyclin B/p34cdk1 complexes during the first endocycle. In subsequent endocycles, cyclin B expression was suppressed. Together these data suggest several points at which cell cycle regulation could be targeted to shift cells from a mitotic to an endoreduplicative cycle.  相似文献   

7.
Using mitotic selection, synchronous populations of passage 25 and passage 50 WI38 cells were obtained. Thymidine incorporation, mitotic index, and labeling index were determined. No great differences could be seen in the organization of the cell cycle of low passage and high passage cells. Although labeling indices for passage 25 and passage 50 exponential cells were 83% and 37%, respectively, 75% of all mitotically selected cells were found to enter S phase, regardless of passage number. Thus, the loss of late passage diploid cell cultures does not occur from alteration of the cell cycle in the majority of rapidly proliferating cells.  相似文献   

8.
EMT6 mouse mammary tumors were treated in vivo with 5 mg/mouse of hydroxyurea (HU) or 300 rads of X-rays. the proliferation of the tumor cells was followed for 28 hr after treatment. Changes in the 3H-TdR labeling index, the mitotic index, the specific activity of the 3H-TdR-labeled DNA, and the proportion of suspended, clonogenic cells in the S phase of the cell cycle were examined and compared. Evidence was found for reassortment of the surviving cells in treated tumors into partially synchronous cohorts. the partial synchrony in the proliferation of the surviving cells was not accurately predicted by the changes in the labeling index and the mitotic index. the changes in DNA specific activity proved unacceptable as an indicator of cell proliferation in solid EMT6 tumors treated with low doses of radiation or HU.  相似文献   

9.
Cell cycle analysis through utilization of the mithramycin/flow microfluorometric technique combines simplicity (one-step cell preparation) with speed (results available within 20 min after removal of a sample from a culture). Furthermore, the technique is useful in many situations in which standard 3H-thymidine autoradiography and mitotic accumulation are unsatisfactory. Examples are provided which demonstrate a continuous monitoring of experiments in progress, including analysis of populations devoid of cells in S or M phases, analysis of arrested or slowly progressing populations resulting from exposure to toxic agents, detection of abnormalities in mitosis such as nondisjunction and polyploidization, and localization within the cell cycle of dying cells in cultures exposed to toxic agents.  相似文献   

10.
The cytostatic and cytolytic effects of dexamethasone were studied as functions of cell cycle position in mouse L1210 leukemia cells. To this end, the cells were separated according to size by sedimentation at unit gravity in a specially designed sedimentation chamber. The fractions were analyzed by radioautography and flow cytophotometry. The size-distributions obtained by 1g sedimentation coincided with cell-cycle age distribution. With increasing fraction number, samples highly enriched in G1, S, and G2/M cells, respectively were obtained: the smallest cells being in early G1 and the largest in mitosis. In the presence of dexamethasone (10?6-10?5 M), growth slowed down after a few cell cycles and the cells accumulated in early G1 phase. Lytic cell kill by continued exposure to the drug was confined to the fractions containing the small, early G1-phase cells. These fractions were also enriched in noncycling cells that were not labeled by prolonged exposure to 3H-thymidine. After removal of dexamethasone, the cells in S and G2/M phase completed cell cycle traverse but were retarded again in the G1 and early S phase of the next division cycle. The data suggest a memory effect for previous drug exposure. It is concluded that the cytostatic and cytolytic effects of dexamethasone are separate, though not unrelated events. Cytolysis is confined to the noncycling cells that in untreated populations can exit from the dividing compartment during a transitional phase of about 60 minutes subsequent to mitotic division. The cytostatic effects potentiate cytolysis by accumulating the cells in the early G1 phase and thus increasing the probability of their transit to the G0 compartment, sensitive for drug-mediated cytolysis.  相似文献   

11.
The cell membrane potential of cultured Chinese hamster cells is known to increase at the start of the S phase. The putative role of the cell membrane potential as a regulator of cell proliferation was examined by following the cell cycle traverse of synchronized Chinese hamster cells in the presence or absense of high exogenous levels of potassium. An increase in external potassium levels results in a depressed membrane potential and a reduced rate of cell proliferation. A potassium concentration of 115 mM was used in experiments with synchronized cells since at that level cell proliferation is almost completely halted, recovery of growth is rapid and complete, and the membrane potential is reduced to a level well below that normally found in cells in the G1 phase. A mitotic population was divided into four aliquots and plated in either control medium or medium containing 115 mM K+. Cells placed directly into high K+ medium were retarded in their exit from mitosis and displayed a delayed and abnormal entry into the S phase. If control medium was added after two hours, cell cycle traverse was normal, but delayed by two hours compared to control cells. If the mitotic cells were plated directly into control medium and two hours later were shifted to high K+ medium, the cells entered the S phase in the absence of the normally observed increase in membrane potential and proceeded to the next mitosis normally. It was concluded that the increase in membrane potential observed at the start of the S phase in isolated synchronized cells is not a requirement for the initiation of DNA synthesis. In addition, sensitivity to the high potassium regimen was found at two different times during the cell cycle. In one case, cells were impeded in their transit through mitosis. Such cells displayed an altered chromosome structure which may account for the partial mitotic block. In the second case, synchronized cells displayed a sensitivity to the high potassium regimen in early G1 which appeared to be separate from the block in mitosis and independent of a change in the membrane potential.  相似文献   

12.
Synchronization by Lovastatin arrests many cell types reversibly in the G1 phase of the cell cycle. Here we show that Lovastatin (10 µM) mediates cell cycle arrest in human breast cancer cells, MCF-7 and MDA-MB-231, where 85% of cells accumulate in the G1 phase of the cell cycle. Addition of mevalonate (at 100X the Lovastatin concentration) releases the cells from the G1 arrest and allows for synchronous entry into late G1, S and G2/M phases of the cell cycle. The expressions of different cyclins as a marker for different phases of the cell cycle are detected by western blot analysis and indicative of synchronous transition into each of cell cycle phases following the initial G1 arrest. Due to its level of synchrony and high yield of synchronous populations of cells, Lovastatin method of cell synchronization can be used for examining gene expression patterns in a variety of different cell lines.  相似文献   

13.
CELLULAR AND NUCLEAR VOLUME DURING THE CELL CYCLE OF NHIK 3025 CELLS   总被引:7,自引:0,他引:7  
The distribution of cellular and nuclear volume in synchronous populations of NHIK 3025 cells, which derive from a cervix carcinoma, have been measured by electronic sizing during the first cell cycle after mitotic selection. Cells given an X-ray dose of 580 rad in G1, were also studied. During the entire cell cycle the volume distribution of both cells and nuclei is an approximately Gaussian peak with a relative width at half maximum of about 30%. About half of this width is due to imperfect synchrony whereas the rest is associated with various time invariant factors. During S the mean volume of the cells grows exponentially whereas the nuclear volume increases faster than for exponential kinetics. Hence, although cellular and nuclear volumes are closely correlated, their ratio does not remain constant during the cell cycle. Volume growth during the first half of G1 is negligible especially for nuclei where the growth appears to be closely associated with DNA-synthesis. For unirradiated cells the growth of cellular and nuclear volume is negligible also during G2+ M. In contrast, the X-irradiated cells continue to grow during the 6 hr mitotic delay with a rate that is constant and about half of that observed in late S. Hence, radiation induced mitotic delay does not appear merely as a lengthening of an otherwise normal G2. During G1 and S the irradiated cells were identical to unirradiated ones with respect to all the parameters measured.  相似文献   

14.
The synthesis of chromosomal proteins and the incorporation of labelled proteins into chromosomes in the mitotic cell cycle ofHaplopappus gracilis, 2n=4, were traced autoradiographically with3H-arginine,3H-lysine, and3H-tryptophane. The duration of the mitotic cell cycle in the root tip cells was determined by3H-thymidine autoradiography and was measured to be 13.0 hr (G1 1.3 hr, S 6.5 hr, G2 3.8 hr and M 1.4 hr).3H-arginine labelled proteins which were synthesized at S and G2 were found to be incorporated into chromosomes to a greater extent than proteins which were synthesized either at G1, at the transition phase from late S to early G2, or at the mitotic phase. Such varied incorporation was also found in3H-lysine labelled proteins, but not in3H-tryptophane labelled proteins. These findings indicate that the chromosomal proteins are synthesized mainly at S and G2. Some of the3H-arginine labelled proteins which were synthesized during the first mitotic cell cycle, were found to be incorporated into the chromosomes of the second mitotic cell cycle. The incorporation of the proteins synthesized at one stage of the mitotic cell cycle was found to occur locally in some regions of the chromosomes, while the pattern of incorporation was observed to be similar between euchromatic and heterochromatic regions.  相似文献   

15.
Information on the cell cycle of progenitor cells in haemopoietic tissue is useful for understanding population control under physiological and abnormal conditions. Unfortunately, methods that have been developed for measuring cell cycle parameters are applicable only to cells of homogenous populations and not to morphologically non-recognizable progenitor cells such as colony forming units (CFU) that are present at low frequency in a heterogenous population. to circumvent this difficulty, a method was developed to measure CFU cell cycle parameters based on specific killing of cells in S phase by [3H]thymidine ([3H]TdR). This was done by estimating the number of CFU killed following exposure of the cell suspension to [3H]TdR for various time periods. Since cycling CFU are continuously entering S phase, a linear curve relating the percentage CFU-kill to the length of exposure of the cells to [3H]TdR in culture can be obtained. the slope of the curve (percentage kill/hr) indicates the rate that CFU enter the S phase and travel through the cell cycle. the inverse of this value will then represent a time period for CFU to move through a complete cell cycle (generation time). the length of S phase can then be obtained by multiplying generation time by the fraction of cells in S phase at time zero. This method has been used to measure generation time and length of S phase of three kinds of haemopoietic progenitor cells: mouse granulocyte-macrophage CFU, human T lymphocyte CFU and CFU from regenerating mouse spleens. This method should be applicable to any normal or neoplastic clonogenic cell populations and the latter could be either of haematological or of solid tumour origin.  相似文献   

16.
The mitotic cell selection technique was used to monitor the effect of cordycepin and/or 100 rad of X-rays on the entry of asynchronous or synchronous Chinese hamster ovary cells into mitosis. Continuous exposure of asynchronous cells to 5–50 μg/ml of cordycepin caused a rapid increase in the relative numbers of cells entering mitosis. In irradiated cells, cordycepin also reduced a 120-min mitotic delay by about 80 min and shifted the X-ray transition point about 10 min farther away from mitosis. Further studies showed that synchronous cells, treated continuously with 15 μg/ml of cordycepin starting at mid-to-late S phase, proceeded into mitosis approx. 40 min ahead of controls. This acceleration was associated with a 30-min lengthening of S phase and a reduction in the length of G2 from 80 to about 10 min. Furthermore, cordycepin reduced the 70-min mitotic delay observed for cells irradiated in S phase by 20 min. In contrast to the results for treatment at mid-S phase, continuous treatment during G2 of unirradiated synchronous cells with 15 μg/ml of cordycepin had little effect on accelerating cells into mitosis, yet did reduce by about 60 min the 170-min mitotic delay observed for cells irradiated in G2. Unirradiated synchronous cells treated with cordycepin starting before mid-S did not reach mitosis. Thus, there are the following transition points or intervals for cordycepin: for treatment prior to mid-S phase, cell cycle progression through S is blocked; for treatment between mid-S and late S, progression through S continues but progression through G2 is accelerated; and for treatment during G2, the rate of progression in accelerated only if the cells have been irradiated. These results are discussed in relation to the synthesis during late S and G2 of critical protein molecules essential for mitosis.  相似文献   

17.

Background

Obtaining synchronous cell populations is essential for cell-cycle studies. Methods such as serum withdrawal or use of drugs which block cells at specific points in the cell cycle alter cellular events upon re-entry into the cell cycle. Regulatory events occurring in early G1 phase of a new cell cycle could have been overlooked.

Methodology and Findings

We used a robotic mitotic shake-off apparatus to select cells in late mitosis for genome-wide gene expression studies. Two separate microarray experiments were conducted, one which involved isolation of RNA hourly for several hours from synchronous cell populations, and one experiment which examined gene activity every 15 minutes from late telophase of mitosis into G1 phase. To verify synchrony of the cell populations under study, we utilized methods including BrdU uptake, FACS, and microarray analyses of histone gene activity. We also examined stress response gene activity. Our analysis enabled identification of 200 early G1-regulated genes, many of which currently have unknown functions. We also confirmed the expression of a set of genes candidates (fos, atf3 and tceb) by qPCR to further validate the newly identified genes.

Conclusion and Significance

Genome-scale expression analyses of the first two hours of G1 in naturally cycling cells enabled the discovery of a unique set of G1-regulated genes, many of which currently have unknown functions, in cells progressing normally through the cell division cycle. This group of genes may contain future targets for drug development and treatment of human disease.  相似文献   

18.
Cell Synchrony Techniques. I. A Comparison of Methods   总被引:3,自引:0,他引:3  
Abstract Selected cell synchrony techniques, as applied to asynchronous populations of Chinese hamster ovary (CHO) cells, have been compared. Aliquots from the same culture of exponentially growing cells were synchronized using mitotic selection, mitotic selection and hydroxyurea block, centrifugal elutriation, or an EPICS V cell sorter. Sorting of cells was achieved after staining cells with Hoechst 33258. After synchronization by the various methods the relative distribution of cells in G1 S, or G2+ M phases of the cell cycle was determined by flow cytometry. Fractions of synchronized cells obtained from each method were replated and allowed to progress through a second cell cycle. Mitotic selection gave rise to relatively pure and unperturbed early G1 phase cells. While cell synchrony rapidly dispersed with time, cells progressed through the cell cycle in 12 hr. Sorting with the EPICS V on the modal G1 peak yielded a relatively pure but heterogeneous G1 population (i.e. early to late G1). Again, synchrony dispersed with time, but cell-cycle progression required 14 hr. With centrifugal elutriation, several different cell populations synchronized throughout the cell cycle could be rapidly obtained with a purity comparable to mitotic selection and cell sorting. It was concluded that, either alone or in combination with blocking agents such as hydroxyurea, elutriation and mitotic selection were both excellent methods for synchronizing CHO cells. Cell sorting exhibited limitations in sample size and time required for synchronizing CHO cells. Its major advantage would be its ability to isolate cell populations unique with respect to selected cellular parameters.  相似文献   

19.
A mutant of the MPC-11 mouse myeloma cell line which grows as a monolayer has been used to study the synthesis and secretion of IgG in relation to the cell cycle. The mitotic detachment method has been used to obtain a pure population of mitotic cells which were then allowed to progress through the G1, S, and G2 phases of the cell cycle. The synthesis and the rate of secretion of IgG have been studied in each phase of the cycle by incubation of cells with 14C-amino acids, followed by immunoprecipitation and quantitation of synthesized and secreted IgG2b. The data are consistent with the idea that synthesis and secretion of Ig are not a cell cycle dependent event in myeloma cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号