首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Laccase enzymes were investigated for their potential to catalyze the oxidation of trilinolein and methyl linoleate. This study demonstrates that laccase enzymes can oxidize unsaturated fatty acid esters and their associated lipids. The reaction products resulting from laccase-catalyzed reactions with trilinolein were analyzed using combined reversed-phase high-performance liquid chromatography and mass spectrometry via an atmospheric pressure chemical ionization source. The dominant oxidation products detected were monohydroperoxides, bishydroperoxides, and epoxides. This paper presents the first detailed investigation into the interaction between laccase enzymes and lipids containing unsaturated fatty acids.  相似文献   

4.
5.
Degradation of polysaccharides and lignin by ruminal bacteria and fungi   总被引:1,自引:0,他引:1  
Bermudagrass (Cynodon dactylon) leaf blades and whole cordgrass (Spartina alterniflora) fiber were evaluated for degradation of cell walls by microbial groups in ruminal fluid. The groups were selected by the addition of antibiotics to the inoculum as follows: (i) whole ruminal fluid (WRF), no antibiotics; (ii) cycloheximide (C) to inhibit fungi, thus showing potential bacterial activity; (iii) streptomycin and penicillin (S,P) to inhibit fiber-degrading bacteria, showing potential fungal activity; (iv) streptomycin, penicillin, and chloramphenicol (S,P,CAM) to inhibit all bacteria including methanogens; (v) streptomycin, penicillin, and cycloheximide (S,P,C) to inhibit all microbial activity as a control; and (vi) autoclaved ruminal fluid (ARF) to inhibit all biological activity as a second control. Scanning electron microscopy of tissue degradation indicated that tissues not giving a positive histological reaction for lignin were more readily degraded. Cordgrass was more highly lignified, with more tissues resisting degradation than in bermudagrass. Patterns of degradation due to treatment resulted in three distinct groups of data based on the extent of fiber or component losses: WRF and C greater than S,P and S,P,CAM greater than S,P,C and ARF. Therefore, bacterial activity was responsible for most of the fiber loss. Fiber degradation by anaerobic fungi was significantly less (P = 0.05). Cupric oxide oxidation of undigested and digested bermudagrass fiber indicated that phenolic constituents differed in their order of resistance to removal or solubilization. Vanillyl and syringyl components of lignin were the most resistant to decomposition, whereas ferulic acid was readily solubilized from fiber in the absence of microbial activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Bermudagrass (Cynodon dactylon) leaf blades and whole cordgrass (Spartina alterniflora) fiber were evaluated for degradation of cell walls by microbial groups in ruminal fluid. The groups were selected by the addition of antibiotics to the inoculum as follows: (i) whole ruminal fluid (WRF), no antibiotics; (ii) cycloheximide (C) to inhibit fungi, thus showing potential bacterial activity; (iii) streptomycin and penicillin (S,P) to inhibit fiber-degrading bacteria, showing potential fungal activity; (iv) streptomycin, penicillin, and chloramphenicol (S,P,CAM) to inhibit all bacteria including methanogens; (v) streptomycin, penicillin, and cycloheximide (S,P,C) to inhibit all microbial activity as a control; and (vi) autoclaved ruminal fluid (ARF) to inhibit all biological activity as a second control. Scanning electron microscopy of tissue degradation indicated that tissues not giving a positive histological reaction for lignin were more readily degraded. Cordgrass was more highly lignified, with more tissues resisting degradation than in bermudagrass. Patterns of degradation due to treatment resulted in three distinct groups of data based on the extent of fiber or component losses: WRF and C greater than S,P and S,P,CAM greater than S,P,C and ARF. Therefore, bacterial activity was responsible for most of the fiber loss. Fiber degradation by anaerobic fungi was significantly less (P = 0.05). Cupric oxide oxidation of undigested and digested bermudagrass fiber indicated that phenolic constituents differed in their order of resistance to removal or solubilization. Vanillyl and syringyl components of lignin were the most resistant to decomposition, whereas ferulic acid was readily solubilized from fiber in the absence of microbial activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Mutants of Rhizobium meliloti SU47 with defects in the production of the Calcofluor-binding expolysaccharide succinoglycan failed to gain entry into alfalfa root nodules. In order to define better the polysaccharide phenotypes of these exo mutants, we analyzed the periplasmic oligosaccharide cyclic (1-2)-beta-D-glucan and lipopolysaccharide (LPS) in representative mutants. The exoC mutant lacked the glucan and had abnormal LPS which appeared to lack a substantial portion of the O side chain. The exoB mutant had a spectrum of LPS species which differed from those of both the wild-type parental strain and the exoC mutant. The presence of the glucan and normal LPS in the exoA, exoD, exoF, and exoH mutants eliminated defects in these carbohydrates as explanations for the nodule entry defects of these mutants. We also assayed for high- and low-molecular-weight succinoglycans. All of the exo mutants except exoD and exoH completely lacked both forms. For the Calcofluor-dim exoD mutant, the distribution of high- and low-molecular-weight forms depended on the growth medium. The haloless exoH mutant produced high-molecular-weight and only a trace of low-molecular-weight succinoglycan; the succinyl modification was missing, as was expected from the results of previous studies. The implications of these observations with regard to nodule entry are discussed.  相似文献   

8.
Experiments were carried out on dextran–dextranase systems to test the prediction of a mechanistic model recently proposed by us, for the synergistic effect of combined exo/endo enzymic action in the degradation of polymeric substrate. Soluble forms of the substrate were used. Preliminary experiments with an insoluble form of the substrate were also carried out to demonstrate the applicability of the analytical techniques to these cases. Molecular weight distributions of the degradation products were determined (by gel-permeation chromatography) and the rates of production of glucose and of other reducing sugars were also measured. It was found that the exodextranase alone had very little effect on the molecular weight distributions compared to a significant shift towards lower molecular weight obtained with the endodextranase which was synergistically enhanced by the action of the combined enzymes. Glucose was produced more rapidly by the exoenzyme compared to the endoenzyme, but combinations of the two enzymes gave a rate enhancement greater than the linear sum of the effects of the two individual enzymes. In comparing the degradation indices and polydispersities of the various degradation products, similar synergistic effects of the combined enzymes in accordance with the theoretical predictions, were observed. The practical implications of these findings to the design of fermentation processes which depend on the action of endo- and exoenzyme mixtures are noted.  相似文献   

9.
Degradation of glyphosate and other pesticides by ligninolytic enzymes   总被引:1,自引:0,他引:1  
The ability of pure manganese peroxidase (MnP), laccase, lignin peroxidase (LiP) and horseradish peroxidase (HRP) to degrade the widely used herbicide glyphosate and other pesticides was studied in separate in vitro assays with addition of different mediators. Complete degradation of glyphosate was obtained with MnP, MnSO4 and Tween 80, with or without H2O2. In the presence of MnSO4, with or without H2O2, MnP also transformed the herbicide, but to a lower rate. Laccase degraded glyphosate in the presence of (a) 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), (b) MnSO4 and Tween 80 and (c) ABTS, MnSO4 and Tween 80. The metabolite AMPA was detected in all cases where degradation of glyphosate occurred and was not degraded. The LiP was tested alone or with MnSO4, Tween 80, veratryl alcohol or H2O2 and in the HRP assay the enzyme was added alone or with H2O2 in the reaction mixture. However, these enzymes did not degrade glyphosate. Further experiments using MnP together with MnSO4 and Tween 80 showed that the enzyme was also able to degrade glyphosate in its commercial formulation Roundup® Bio. The same enzyme mixture was tested for degradation of 22 other pesticides and degradation products present in a mixture and all the compounds were transformed, with degradation percentages ranging between 20 and 100%. Our results highlight the potential of ligninolytic enzymes to degrade pesticides. Moreover, they suggest that the formation of AMPA, the main metabolite of glyphosate degradation found in soils, can be a result of the activity of lignin-degrading enzymes.  相似文献   

10.
11.
When an enzyme is incubated with its substrate, the rate of catalysis will decline with time due to the combined effects of substrate utilization and product accumulation. These effects will be superimposed upon a progressive loss of catalytic activity if the enzyme is unstable, either spontaneously or as a result of an added reagent. In this report, the effect of enzyme inactivation on the progress curve for an enzyme-catalyzed reaction is considered. It is shown that under most circumstances catalysis will stop before the substrate is totally exhausted and that the amount of substrate remaining is related to the inactivation rate constants for various intermediates on the catalytic pathway. A graphical method for estimating these inactivation rate constants is suggested for several situations, including one which encompasses the effect of a suicide substrate. Expressions for the half time of the reaction are also given for some special cases.  相似文献   

12.
The serologically and structurally related Escherichia coli capsular polysaccharides (K antigens) K13, K20, and K23 were found to be depolymerized by the bacteriophages ΦK13 and ΦK20 to almost similar oligomer profiles as shown by polyacrylamide gel electrophoresis. The phage-polysaccharide interactions were followed by an increase of reducing 2-keto-3-deoxyoctulosonic acid due to a phage-associated glycanase that catalyzed the hydrolytic cleavage of common β-ketopyranosidic 2-keto-3-deoxyoctulosonic acid linkages. The related E. coli K antigens K18, K22, and K100 as well as the Haemophilus influenzae type b capsular polysaccharide were degraded by bacteriophage ΦK100 with different efficacy. It is suggested that ΦK100 enzymatically cleaves ribitol-5-phosphate bonds as the only structural feature present in all the polysaccharides investigated.  相似文献   

13.
14.
A simple kinetic model is proposed for a hysteretic enzyme with an inflow of substrate (or transported ion). There can be two steady states of activity, with an abrupt transition to the lower level. The duration of the first, activated state rather than its height is determined by the effective substrate (ion) concentration, while oscillatory switchover between states is an intrinsic property of hysteretic enzymes. With plasma membrane Ca-ATPase as an example, it is shown that the magnitude of the input calcium signal can be translated into the time span for which the enzyme persists in the activated state.  相似文献   

15.
16.
A method of enzyme immobilization by graft copolymerization on polysaccharides is reported. Glycidylmethacrylate was used as a vinylating reagent and the reaction product with enzymes (HRP, GOD, Am, ChT) was copolymerized with different matrices (cellulose, Sepharose, Sephadex, Starch). Various factors affect the final activity of copolymers; these include the redox system, the type of support, and the quantity and type of vinyl monomer added. Using a fixed quantity of enzyme and support (3 mg enzyme, 100 mg support), the coupling efficiency varied from 2 to 50%. The most important characteristics in these immobilized systems were tested (stability in continuous washing, kinetic characteristics, storage, thermal, and lyophilization stability). Immobilized-enzyme graft copolymers have very similar kinetic behavior to that of the free enzyme. Diffusion is not seriously limited, as shown by kinetic parameters and energy activation values, and this indicates that the immobilization reaction does not alter the enzymatic activity.  相似文献   

17.
Ozonation has been considered as a method for the pretreatment of plant biomass to obtain cellulose and monosaccharides. Ozone consumption by aspen wood with various moisture contents has been investigated. We have considered the gradual transformation of the substrate: wood to ozonated wood to cellulose-containing product (CP) to holocelluloze (HC) and to cellulose. Yields of ozonated wood (OW), the (CP), water-soluble ozonation products, HC, and cellulose have been determined. The lignin content in the CP has been estimated. Both HC and cellulose samples have been studied by IR spectroscopy. The degree of polymerization and molecular mass distribution of cellulose obtained from ozonated wood have been determined. It has been shown that wood destruction by ozone is accompanied by degradation of lignin, hemicelluloses, and cellulose.It has been found that physicochemical properties of cellulose obtained from ozonated wood can be regulated by the variation of the initial moisture content in the substrate. Both molecular ozone and radical species, which are generated in the course of ozone reactions with water present in the substrate structure, participate in wood destruction.  相似文献   

18.
The immobilization of pullulanase and beta-amylase on soluble polysaccharides (dextrans and amylose) has been carried out. The method used for coupling the enzymes to the carbohydrate support involves limited periodate oxidation of the polysaccharide followed by reductive alkylation with sodium cyanoborohydride or borohydride. The influence of the degree of functionalization of the carbohydrate, the incubation time, the nature of the reducing agent and, for the dextrans studied, their molecular weight, on the properties of the conjugate were studied. We have observed an apparent correlation between the molecular weight of the glycoprotein conjugates formed and their thermal stability, resistance to urea denaturation and their kinetic parameters. By selecting the proper experimental conditions leading to conjugates with maximum thermal stabilities, it has also been shown that beta-amylase conjugates can hydrolyze starch at a temperature 20 degrees C higher than the corresponding value for the native enzyme. This result demonstrates that conjugation may result in modified enzymes leaving a high operational stability at elevated temperatures. We suggest that the immobilization method presented in this article represents an approach to the stabilization of enzymes employed at an industrial level, which may be of general application.  相似文献   

19.
The biochemical and morphological characteristics of polysaccharides synthesized from sucrose by extracellular enzymes from D-glucose-grown Streptococcus mutans representing serotypes a-g were compared. The polysaccharides synthesized by the enzymes from serotypes a, d, and g formed visible aggregates and firmly adhered to glass surfaces, whereas those formed by the enzymes from serotypes b, c, e, and f floated homogeneously and were poorly adherent. The enzymes of serotypes a, d, and g produced large amounts of water-insoluble polysaccharides (IPs, D-glucans), and those of serotypes b, c, e, and f water-soluble polysaccharides (SPs, D-glucans and D- fructans ). As compared with the IPs of serotypes b, c, e, and f, the IPs of serotypes a, d, and g (a) contained a higher proportion of (1----3)-alpha-D-glucosidic linkages and alpha-D-(1----3,6) branch linkages; (b) showed higher susceptibility to (1----3)-alpha-D-glucanase (serotype a excepted) and lower (1----6)-alpha-D-glucanase sensitivity; (c) contained larger amounts of high-molecular-weight fractions; (d) showed higher intrinsic viscosities (serotype b excepted); and (e) had lower S. mutans cell-agglutination activities. On electron-microscope observation, the IPs of all serotypes showed two fibrillar components; a double-stranded fibril, with short, fluffy protrusions extending out of its periphery, and a fine, single-stranded fibril. Thus, the serotypes could be divided into two major groups: a, d, and g; and b, c, e, and f. No similar grouping of serotypes was indicated by the chemical and morphological properties of SPs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号