首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of cholesterol depletion of the human erythrocyte membrane on the lateral diffusion rate of a fluorescent lipid probe is reported. At low temperatures (?5 to 5°C), the diffusion of the probe is 50% slower in the cholesterol-depleted membrane than in non-depleted membrane. At high temperatures (30 to 40° C), probe mobility is not affected by cholesterol depletion. These results suggest that cholesterol suppresses aspects of phospholipid phase changes in animal cells in a manner consistent with its behavior in artificial bilayers and multilayers.Whole erythrocytes were depleted of 30–50% of their cholesterol by incubation with a sonicated dispersion of dipalmitoyl phosphatidylcholine. Cells were then labeled with 3,3′-dioctadecylindocarbocyanine (diI), a phospholipid-like fluorescent dye, and hemolyzed into spherical ghosts. The rate of lateral motion of diI was measured by observing the fluorescence recovery after local photobleaching with a focused laser spot.The diffusion rate of the lipid probe in both control and cholesterol-depleted erythrocyte membrane is substantially smaller than in any cell or model membrane previously measured.  相似文献   

2.
Rapid prototyping (RP) of microfluidic channels in liquid photopolymers using standard lithography (SL) involves multiple deposition steps and curing by ultraviolet (UV) light for the construction of a microstructure layer. In this work, the conflicting effect of oxygen diffusion and UV curing of liquid polyurethane methacrylate (PUMA) is investigated in microfabrication and utilized to reduce the deposition steps and to obtain a monolithic product. The conventional fabrication process is altered to control for the best use of the oxygen presence in polymerization. A novel and modified lithography technique is introduced in which a single step of PUMA coating and two steps of UV exposure are used to create a microchannel. The first exposure is maskless and incorporates oxygen diffusion into PUMA for inhibition of the polymerization of a thin layer from the top surface while the UV rays penetrate the photopolymer. The second exposure is for transferring the patterns of the microfluidic channels from the contact photomask onto the uncured material. The UV curing of PUMA as the main substrate in the presence of oxygen is characterized analytically and experimentally. A few typical elastomeric microstructures are manufactured. It is demonstrated that the obtained heights of the fabricated structures in PUMA are associated with the oxygen concentration and the UV dose. The proposed technique is promising for the RP of molds and microfluidic channels in terms of shorter processing time, fewer fabrication steps and creation of microstructure layers with higher integrity.  相似文献   

3.
Various types of thin-film glucose biosensors based on the use of the enzyme glucose oxidase (GOx) have been developed. The luminescent oxygen probe Ru(dpp)--whose emission is quenched by oxygen--is used to measure the consumption of oxygen. Three different combinations of oxygen transducer and sol-gel immobilized GOx were tested. In the first, GOx was sandwiched between a sol-gel layer doped with Ru(dpp) and a second sol-gel layer composed of pure sol-gel (the 'sandwich' configuration). In the second, a sol-gel layer doped with Ru(dpp) was covered with sol-gel entrapped GOx (the 'two-layer configuration'). In the third, both GOx and a sol-gel powder containing GOx were incorporated into a single sol-gel phase (the 'powder configuration'). In all cases, it was found to be essential to add sorbitol which results in a more porous sol-gel in which diffusion is not impaired. The sandwich configuration provides the highest enzyme activity and the largest dynamic range (0.1-15 mM), but suffers from a distinct decrease in sensitivity upon prolonged use. The two-layer configuration has the fastest response time (t90 = 50 s), while the 'powder configuration' provides the best operational lifetime. The storage stability of all configurations exceeds 4 months if stored at 4 degrees C. In an Appendix, equations are derived which describe the response of such sensors, how the effect of varying oxygen supply can be compensated for by making use of two sensors, one sensitive to oxygen only, the other to both oxygen and glucose, and how such sensors can be calibrated using two calibrators only.  相似文献   

4.
Macromolecular crowding and size effects on probe microviscosity   总被引:1,自引:0,他引:1  
Development of biologically relevant crowding solutions necessitates improved understanding of how the relative size and density of mobile obstacles affect probe diffusion. Both the crowding density and relative size of each co-solute in a mixture will contribute to the measured microviscosity as assessed by altered translational mobility. Using multiphoton fluorescent correlation spectroscopy, this study addresses how excluded volume of dextran polymers from 10 to 500 kDa affect microviscosity quantified by measurements of calmodulin labeled with green fluorescent protein as the diffusing probe. Autocorrelation functions were fit using both a multiple-component model with maximum entropy method (MEMFCS) and an anomalous model. Anomalous diffusion was not detected, but fits of the data with the multiple-component model revealed separable modes of diffusion. When the dominant mode of diffusion from the MEMFCS analysis was used, we observed that increased excluded volume slows probe mobility as a simple exponential with crowder concentration. This behavior can be modeled with a single parameter, β, which depends on the dextran size composition. Two additional modes of diffusion were observed using MEMFCS and were interpreted as unique microviscosities. The fast mode corresponded to unhindered free diffusion as in buffer, whereas the slower agreed well with the bulk viscosity. At 10% crowder concentration, one finds a microviscosity approximately three times that of water, which mimics that reported for intracellular viscosity.  相似文献   

5.
We propose a simple model for the distribution of position and orientation and the diffusion of a hydrophobic probe molecule embedded in a membrane. The molecule experiences both a Maier-Saupe orienting potential as well as an enclosing potential of repulsion from the membrane walls. A statistical thermodynamics treatment of the model provides predictions of the location and orientation of the molecule within the membrane. In particular, we evaluate the order parameter of the molecule in terms of the model constants. The diffusivity of the probe is studied by Brownian dynamics simulation. For rotational diffusion, we check an available analytical approximate treatment that allows for the prediction of the dynamics in terms of equilibrium quantities. We also pay attention to quantities related to the initial and mean reorientational rate of the probe. For translational diffusion, we use the simulation results to analyze some general aspects of lateral and transversal diffusion.  相似文献   

6.
Although most of enzyme catalytic reactions are specific, the amperometric detection of the enzymatic reaction products is largely nonselective. How to improve the detection selectivity of the enzyme-based electrochemical biosensors has to be considered in the sensor fabrication procedures. Herein, a highly selective amperometric glucose biosensor based on the concept of diffusion layer gap electrode pair which we previously proposed was designed. In this biosensor, a gold tube coated with a conductive layer of glucose oxidase/Nafion/graphite was used to create an interference-free region in its diffusion layer by electrochemically oxidizing the interfering electroactive species at proper potentials. A Pt probe electrode was located in this diffusion layer of the tube electrode to selectively detect hydrogen peroxide generated from the enzyme catalytic oxidation of glucose in the presence of oxygen in the solution. In practical performance of the microdevice, parameters influencing the interference-removing efficiency, including the tip-tube opening distance, the tube electrode potential and the electrolyzing time had been investigated systematically. Results showed that glucose detection free from interferents could be achieved at the electrolyzing time of 30s, the tip-tube opening distance of 3mm and the tube electrode potential of 0.4V. The electrochemical response showed linear dependence on the concentration of glucose in the range of 1 x 10(-5) to 4 x 10(-3) M (the correlation coefficient: 0.9936, without interferents; 0.9995, with interferents). In addition, the effectiveness of this device was confirmed by numerical simulation using a model system of a solution containing interferents. The simulated results showed good agreement with the experimental data.  相似文献   

7.
P F Almeida  W L Vaz  T E Thompson 《Biochemistry》1992,31(29):6739-6747
The technique of fluorescence recovery after photobleaching is used to perform an extensive study of the lateral diffusion of a phospholipid probe in the binary mixture dimyristoylphosphatidylcholine/cholesterol, above the melting temperature of the phospholipid. In the regions of the phase diagram where a single liquid phase exists, diffusion can be quantitatively described by free volume theory, using a modified Macedo-Litovitz hybrid equation. In the liquid-liquid immiscibility region, the temperature dependence of the diffusion coefficient is in excellent agreement with current theories of generalized diffusivities in composite two-phase media. A consistent interpretation of the diffusion data can be provided based essentially on the idea that the primary effect of cholesterol addition to the bilayer is to occupy free volume. On this basis, a general interpretation of the phase behavior of this mixture is also proposed.  相似文献   

8.
Diffusion of lipids and proteins within the cell membrane is essential for numerous membrane-dependent processes including signaling and molecular interactions. It is assumed that the membrane-associated cytoskeleton modulates lateral diffusion. Here, we use a minimal actin cortex to directly study proposed effects of an actin meshwork on the diffusion in a well-defined system. The lateral diffusion of a lipid and a protein probe at varying densities of membrane-bound actin was characterized by fluorescence correlation spectroscopy (FCS). A clear correlation of actin density and reduction in mobility was observed for both the lipid and the protein probe. At high actin densities, the effect on the protein probe was ∼3.5-fold stronger compared to the lipid. Moreover, addition of myosin filaments, which contract the actin mesh, allowed switching between fast and slow diffusion in the minimal system. Spot variation FCS was in accordance with a model of fast microscopic diffusion and slower macroscopic diffusion. Complementing Monte Carlo simulations support the analysis of the experimental FCS data. Our results suggest a stronger interaction of the actin mesh with the larger protein probe compared to the lipid. This might point toward a mechanism where cortical actin controls membrane diffusion in a strong size-dependent manner.  相似文献   

9.
Human low-density lipoprotein (LDL) was labelled with the excimeric fluorescent phospholipid analogue 1-palmitoyl-2-(1'-pyreneoctanoyl)-sn-glycero-3-phosphocholine by using phosphatidylcholine-specific transfer protein for the probe insertion. The lateral diffusivity of the probe in the phospholipid/cholesterol surface monolayer of LDL was determined from the measured dependence of the pyrene monomer fluorescence yield on probe concentration. The data were analyzed by the milling-crowd model (J. Eisinger et al. (1986) Biophys. J. 49, 987-1001] to obtain the short-range lateral diffusivity of the probe. The lateral mobility of the probe in LDL was compared to that in model lipid systems, i.e. in protein-free LDL-like lipid particles and in small unilamellar vesicles, with a phospholipid/cholesterol composition characteristic of LDL. This analysis with the probability PE = 1 for excimer production between nearest-neighbour probes gives the lower limits for f, the frequency of translational lipid--lipid exchanges of the probe of 0.62 x 10(8), 0.19 x 10(8) and 0.19 x 10(8)s-1 in LDL, LDL-like lipid particles, and small unilamellar vesicles, respectively. The lower limits for the corresponding lateral diffusion constants are 16, 5 and 5 microns 2 s-1. The results suggest that the translational mobility of phospholipid molecules in the lipid--protein surface of LDL is not constrained by the apolipoprotein B-100 moiety or the neutral lipid core of the lipoprotein. Instead, the protein moiety may perturb the lipid order with the lipid--associating peptide domains and thus fluidize the amphiphilic surface monolayer of LDL relative to the protein-free model systems. In general, lateral diffusivity of the pyrenyl phospholipid probe in LDL and the model lipid systems is comparable to the lateral mobility of lipid analogue probes in a variety of model and biological membranes.  相似文献   

10.
Cholesterol tagged with the BODIPY fluorophore via the central difluoroboron moiety of the dye (B-Chol) is a promising probe for studying intracellular cholesterol dynamics. We synthesized a new BODIPY-cholesterol probe (B-P-Chol) with the fluorophore attached via one of its pyrrole rings to carbon-24 of cholesterol (B-P-Chol). Using two-photon fluorescence polarimetry in giant unilamellar vesicles and in the plasma membrane (PM) of living intact and actin-disrupted cells, we show that the BODIPY-groups in B-Chol and B-P-Chol are oriented perpendicular and almost parallel to the bilayer normal, respectively. B-Chol is in all three membrane systems much stronger oriented than B-P-Chol. Interestingly, we found that the lateral diffusion in the PM was two times slower for B-Chol than for B-P-Chol, although we found no difference in lateral diffusion in model membranes. Stimulated emission depletion microscopy, performed for the first time, to our knowledge, with fluorescent sterols, revealed that the difference in lateral diffusion of the BODIPY-cholesterol probes was not caused by anomalous subdiffusion, because diffusion of both analogs in the PM was free but not hindered. Our combined measurements show that the position and orientation of the BODIPY moiety in cholesterol analogs have a severe influence on lateral diffusion specifically in the PM of living cells.  相似文献   

11.
Lateral diffusion of CO(2) was investigated in photosynthesizing leaves with different anatomy by gas exchange and chlorophyll a fluorescence imaging using grease to block stomata. When one-half of the leaf surface of the heterobaric species Helianthus annuus was covered by 4-mm-diameter patches of grease, the response of net CO(2) assimilation rate (A) to intercellular CO(2) concentration (C(i)) indicated that higher ambient CO(2) concentrations (C(a)) caused only limited lateral diffusion into the greased areas. When single 4-mm patches were applied to leaves of heterobaric Phaseolus vulgaris and homobaric Commelina communis, chlorophyll a fluorescence images showed dramatic declines in the quantum efficiency of photosystem II electron transport (measured as F(q)'/F(m)') across the patch, demonstrating that lateral CO(2) diffusion could not support A. The F(q)'/F(m)' values were used to compute images of C(i) across patches, and their dependence on C(a) was assessed. At high C(a), the patch effect was less in C. communis than P. vulgaris. A finite-volume porous-medium model for assimilation rate and lateral CO(2) diffusion was developed to analyze the patch images. The model estimated that the effective lateral CO(2) diffusion coefficients inside C. communis and P. vulgaris leaves were 22% and 12% of that for free air, respectively. We conclude that, in the light, lateral CO(2) diffusion cannot support appreciable photosynthesis over distances of more than approximately 0.3 mm in normal leaves, irrespective of the presence or absence of bundle sheath extensions, because of the CO(2) assimilation by cells along the diffusion pathway.  相似文献   

12.
The residence time of a sinking particle in the euphotic layer is usually defined as the time taken by this particle to reach for the first time the bottom of the euphotic layer. According to this definition, the concept of residence time does not take into account the fact that many cells leaving the euphotic layer at some time can re-enter the euphotic layer at a later time. Therefore, the exposure time in the surface layer, i.e. the total time spent by the particles in the euphotic layer irrespective of their possible excursions outside the surface layer, is a more relevant concept to diagnose the effect of diffusion on the survival of phytoplankton cells sinking through the water column.While increasing the diffusion coefficient can induce both a decrease or an increase of the residence time, the exposure time in the euphotic layer increases monotonically with the diffusion coefficient, at least when the settling velocity does not increase with depth. Turbulence is therefore shown to increase the total time spent by phytoplankton cells in the euphotic layer.The generalization of the concept of exposure time to take into account the variations of the light intensity with depth or the functional response of phytoplankton cells to irradiance leads to the definition of the concepts of light exposure and effective light exposure. The former provides a measure of the total light energy received by the cells during their cycling through the water column while the latter diagnose the potential growth rate.The exposure time, the light exposure and the effective light exposure can all be computed as the solution of a differential problem that generalizes the adjoint approach introduced by Delhez et al. (2004) for the residence time. A general analytical solution of the 1D steady-state version of this equation is derived from which the properties of the different diagnostic tools can be obtained.  相似文献   

13.
Cholesterol tagged with the BODIPY fluorophore via the central difluoroboron moiety of the dye (B-Chol) is a promising probe for studying intracellular cholesterol dynamics. We synthesized a new BODIPY-cholesterol probe (B-P-Chol) with the fluorophore attached via one of its pyrrole rings to carbon-24 of cholesterol (B-P-Chol). Using two-photon fluorescence polarimetry in giant unilamellar vesicles and in the plasma membrane (PM) of living intact and actin-disrupted cells, we show that the BODIPY-groups in B-Chol and B-P-Chol are oriented perpendicular and almost parallel to the bilayer normal, respectively. B-Chol is in all three membrane systems much stronger oriented than B-P-Chol. Interestingly, we found that the lateral diffusion in the PM was two times slower for B-Chol than for B-P-Chol, although we found no difference in lateral diffusion in model membranes. Stimulated emission depletion microscopy, performed for the first time, to our knowledge, with fluorescent sterols, revealed that the difference in lateral diffusion of the BODIPY-cholesterol probes was not caused by anomalous subdiffusion, because diffusion of both analogs in the PM was free but not hindered. Our combined measurements show that the position and orientation of the BODIPY moiety in cholesterol analogs have a severe influence on lateral diffusion specifically in the PM of living cells.  相似文献   

14.
Lindblom G  Orädd G  Rilfors L  Morein S 《Biochemistry》2002,41(38):11512-11515
Lipid lateral diffusion coefficients have been directly determined by pulsed field gradient NMR spectroscopy on macroscopically aligned, fully hydrated lamellar phases containing dimyristoylphosphatidylcholine and total lipid extracts from Acholeplasma laidlawii and Escherichia coli. The temperature dependence of the diffusion coefficient was of the Arrhenius type in the temperature interval studied. The sharp increase in the diffusion coefficient at the growth temperature of E. coli obtained by FRAP measurements, using a fluorescent probe molecule (Jin, A. J., Edidin, M., Nossal, R., and Gershfeld, N. L. (1999) Biochemistry 38, 13275-13278), was not observed. Thus, we conclude that the lipid structural properties (i.e., those affecting the lipid phase behavior), rather than the lipid dynamics, are involved in the adjustment of the membrane lipid composition. Further support for this conclusion is given by the finding that lipid extracts from A. laidlawii grown at different temperatures have about the same diffusion coefficients. Finally, the lipid lateral diffusion in bilayers of phospholipids was found to be much faster than that in bilayers of mainly glucolipids, which can be understood in terms of a free volume theory for the diffusion process.  相似文献   

15.
The lateral mobility of pyrenyl phospholipid probes in dimyristoylphosphatidylcholine (DMPC) vesicles was determined from the dependence of the pyrene monomeric and excimeric fluorescence yields on the molar probe ratio. The analysis of the experimental data makes use of the milling crowd model for two-dimensional diffusivity and the computer simulated random walks of probes in an array of lipids. The fluorescence yields for 1-palmitoyl-2-(1'-pyrenedecanoyl)phosphatidylcholine (py10PC) in DMPC bilayers are well fitted by the model both below and above the fluid-gel phase transition temperature (Tc) and permit the evaluation of the probe diffusion rate (f), which is the frequency with which probes take random steps of length L, the host membrane lipid-lipid spacing. The lateral diffusion coefficient is then obtained from the relationship D = fL2/4. In passing through the fluid-gel phase transition of DMPC (Tc = 24 degrees C), the lateral mobility of py10PC determined in this way decrease only moderately, while D measured by fluorescence photobleaching recovery (FPR) experiments is lowered by two or more orders of magnitude in gel phase. This difference in gel phase diffusivities is discussed and considered to be related either to (a) the diffusion length in FPR experiments being about a micrometer or over 100 times greater than that of excimeric probes (approximately 1 nm), or (b) to nonrandomicity in the distribution of the pyrenyl probes in gel phase DMPC. At 35 degrees C, in fluid DMPC vesicles, the diffusion rate is f = 1.8 x 10(8) s-1, corresponding to D = 29 microns2 s-1, which is about three times larger than the value obtained in FPR experiments. The activation energy for lateral diffusion in fluid DMPC was determined to be 8.0 kcal/mol.  相似文献   

16.
The long-range diffusion coefficients of isoprenoid quinones in a model of lipid bilayer were determined by a method avoiding fluorescent probe labeling of the molecules. The quinone electron carriers were incorporated in supported dimyristoylphosphatidylcholine layers at physiological molar fractions (<3 mol%). The elaborate bilayer template contained a built-in gold electrode at which the redox molecules solubilized in the bilayer were reduced or oxidized. The lateral diffusion coefficient of a natural quinone like UQ10 or PQ9 was 2.0 +/- 0.4 x 10(-8) cm2 s(-1) at 30 degrees C, two to three times smaller than the diffusion coefficient of a lipid analog in the same artificial bilayer. The lateral mobilities of the oxidized or reduced forms could be determined separately and were found to be identical in the 4-13 pH range. For a series of isoprenoid quinones, UQ2 or PQ2 to UQ10, the diffusion coefficient exhibited a marked dependence on the length of the isoprenoid chain. The data fit very well the quantitative behavior predicted by a continuum fluid model in which the isoprenoid chains are taken as rigid particles moving in the less viscous part of the bilayer and rubbing against the more viscous layers of lipid heads. The present study supports the concept of a homogeneous pool of quinone located in the less viscous region of the bilayer.  相似文献   

17.
The lateral diffusion coefficient of ganglioside GM1 incorporated into preformed dimyristoylphosphatidylcholine (DMPC) vesicles has been investigated under a variety of conditions using the technique of fluorescence photobleaching recovery. For these studies the fluorescent probe 5-(((2-Carbohydrazino)methyl)thio)acetyl) amino eosin was covalently attached to the periodate-oxidized sialic acid residue of ganglioside GM1. This labeled ganglioside exhibited a behavior similar to that of the intact ganglioside, and was able to bind cholera toxin. The lateral diffusion coefficient of the ganglioside was dependent upon the gel-liquid crystalline transition of DMPC. Above Tm the lateral diffusion coefficient of the ganglioside was 4.7 X 10(-9) cm2 s-1 (with greater than 80% fluorescence recovery). This diffusion coefficient is significantly slower than the one previously observed for phospholipids in DMPC bilayers. The addition of increasing amounts of ganglioside, up to a maximum of 10 mol %, did not have a significant effect on the lateral diffusion coefficient or in the percent recovery. At 30 degrees C, the lateral mobility of ganglioside GM1 was not affected by the presence of 5 mM Ca2+, suggesting that, at least above Tm, Ca2+ does not induce a major perturbation in the lateral organization of the ganglioside molecules. The addition of stoichiometric amounts of cholera toxin to samples containing either 1 or 10 mol % ganglioside GM1 produced only a small decrease in the measured diffusion coefficient. The fluorescence recovery after photobleaching experiments were complemented with excimer formation experiments using pyrene-phosphatidylcholine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
When a dissolved oxygen (DO) probe is submerged in an air-saturated cell culture medium the thickness of the liquid film that exists outside the membrane of a DO probe changes with hydrodynamic shear. The response of the DO probe thus varies with the hydrodynamic shear environment near the DO probe in cell culture reactors. The thickness of the liquid film was estimated by using a three-layer model, which describes the flow of DO molecules through the liquid layer, the membrane, and the electrolyte, to the cathode of a DO probe. According to the three-layer model, the current output of the DO probe was a strong function of thickness of the liquid film outside the membrane of the DO probe. A correlation between shear rates on the surface of the probe and the DO saturation reading was obtained by using two concentric cylinders with a rotating inner cylinder. This correlation was then used to characterize the local hydrodynamic shear environment in a cell culture reactor. (c) 1993 John Wiley & Sons, Inc.  相似文献   

19.
The pressure and temperature dependence of the lateral and rotational fluidity of erythrocyte membranes was investigated by inserting the excimeric membrane probe 1'-pyrenedodecanoic acid (PDA) into the membranes of intact cells and measuring the probe excimer formation rate and the steady-state polarization of the monomer at pressures up to 2000 atm (2 kbar). At that pressure the lateral diffusivity of PDA was found to decrease by a factor of 10 and its emission anisotropy by a factor of 5 at 22 degrees C. At atmospheric pressure, the local lateral diffusion coefficient of PDA at 2 and 33 degrees C is 1.5 and 4.3 x 10(-8) cm2 s-1, respectively. The activation energy for probe translation was found to decrease from 6 to 3 kcal M-1 in going from atmospheric pressure to 2 kbar, while the entropy decreased by approx. 15 cal M-1 K-1, indicating greater lipid order at the high pressure. The experimental data are consistent with a 'free-area' model for the membrane, analogous to the free-volume model for nonassociated liquids. The lateral diffusivity of PDA was found to be proportional to the free membrane area and linear extrapolation to zero diffusivity indicates that at atmospheric pressure, the fractional free area of the erythrocyte membrane is 6%.  相似文献   

20.
A new model for lateral diffusion, the milling crowd model (MC), is proposed and is used to derive the dependence of the monomeric and excimeric fluorescence yields of excimeric membrane probes on their concentration. According to the MC model, probes migrate by performing spatial exchanges with a randomly chosen nearest neighbor (lipid or probe). Only nearest neighbor probes, one of which is in the excited state, may form an excimer. The exchange frequency, and hence the local lateral diffusion coefficient, may then be determined from experiment with the aid of computer simulation of the excimer formation kinetics. The same model is also used to study the long-range lateral diffusion coefficient of probes in the presence of obstacles (e.g., membrane proteins). The dependence of the monomeric and excimeric fluorescence yields of 1-pyrene-dodecanoic acid probes on their concentration in the membranes of intact erythrocytes was measured and compared with the prediction of the MC model. The analysis yields an excimer formation rate for nearest neighbor molecules of approximately 1 X 10(7) s-1 and an exchange frequency of approximately greater than 2 X 10(7) s-1, corresponding to a local diffusion coefficient of greater than 3 X 10(-8) cm2 s-1. This value is several times larger than the long-range diffusion coefficient for a similar system measured in fluorescence photobleaching recovery experiments. The difference is explained by the fact that long-range diffusion is obstructed by dispersed membrane proteins and is therefore greatly reduced when compared to free diffusion. The dependence of the diffusion coefficient on the fractional area covered by obstacles and on their size is derived from MC simulations and is compared to those of other theories lateral diffusibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号