首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Optical immunosensors and sensing systems are biosensors which produce a quantitative measure of the amount of antibody, antigen or hapten present in a complex sample such as serum or whole blood. The market needs for such devices and their associated instrumentation are reviewed. A brief history of the development of optical immunosensors is presented and the performance of the most well-developed optical immunosensors for meeting these market needs is reviewed. One device, the fluorescent capillary fill device (FCFD) is reviewed in detail with respect to it fulfilling the market needs for an optical immunosensor. Areas for the future development of such sensing systems are also discussed.  相似文献   

3.
A continuous flow polymerase chain reaction (CF-PCR) device comprises a single fluidic channel that is heated differentially to create spatial temperature variations such that a sample flowing through it experiences the thermal cycling required to induce amplification. This type of device can provide an effective means to detect the presence of a small amount of nucleic acid in very small sample volumes. CF-PCR is attractive for global health applications due to its less stringent requirements for temperature control than for other designs. For mass production of inexpensive CF-PCR devices, fabrication via thermoplastic molding will likely be necessary. Here we study the optimization of a PCR assay in a polymeric CF-PCR device. Three channel designs, with varying residence time ratios for the three PCR steps (denaturation, annealing, and extension), were modeled, built, and tested. A standardized assay was run on the three different chips, and the PCR yields were compared. The temperature gradient profiles of the three designs and the residence times of simulated DNA molecules flowing through each temperature zone were predicted using computational methods. PCR performance predicted by simulation corresponded to experimental results. The effects of DNA template size and cycle time on PCR yield were also studied. The experiments and simulations presented here guided the CF-PCR chip design and provide a model for predicting the performance of new CF-PCR designs prior to actual chip manufacture, resulting in faster turn around time for new device and assay design. Taken together, this framework of combined simulation and experimental development has greatly reduced assay development time for CF-PCR in our lab.  相似文献   

4.
One of the most widely used analytical techniques for sensitive detection of biologically and clinically significant analytes is the immunoassay. In recent years direct immunoprobes allowing label-free detection of the interaction between the antibody and the target analyte have proved their capabilities as fast, simple, and nevertheless highly sensitive methods. Cloned enzyme donor immunoassay (CEDIA) homogeneous assay is based on the bacterial enzyme beta-galactosidase, which has been genetically engineered into two inactive fragments, enzyme donor and enzyme acceptor. Reassociation of the fragments in the assay forms active enzyme, which acts on substrate to generate a colored product. A comprehensive kinetic model of CEDIA is developed to aid in understanding this method and to facilitate development of a truly homogeneous version, potentially applicable to a dipstick-type multianalyte point of care analytical device (ChemChip). Although the standard assay involves a two-step process, we also chose to model a single-combined process, which would be simpler to apply in a ChemChip device. From the modeling simulation, we obtain the time courses of the amounts of product and active enzyme, from which the dynamic ranges can be obtained as 10(-6)-10(-7) and 10(-5)-10(-7)M analyte concentration for two-step and single-combined processes under the conditions of the assumed parameters, respectively. A simple one-step immunoassay has the merit of reducing time and cost and has an improved dynamic range.  相似文献   

5.
An automated, handheld biosensor for aflatoxin   总被引:11,自引:0,他引:11  
A new immunoaffinity fluorometric biosensor has been developed for detecting and quantifying aflatoxins, a family of potent fungi-produced carcinogens that are commonly found in a variety of agriculture products. They have also been cited as a biological agent under weapons development. The handheld, self-contained biosensor is fully automatic, highly sensitive, quick, quantitative, and requires no special storage. Approximately 100 measurements can be made before refurbishment is required, and concentrations from 0.1 parts per billion (ppb) to 50 ppb can be determined in <2 min with a 1 ml sample volume. The device operates on the principles of immunoaffinity for specificity and fluorescence for a quantitative assay. The analytic procedure is flexible so that other chemical and biological analytes could be detected with minor modifications to the current device. Advances in electro-optical components, electronics, and miniaturized fluidics were combined to produce this reliable, small, and versatile instrument.  相似文献   

6.
In the last few years, fluorescence polarization (FP) has been applied to the development of robust, homogeneous, high throughput assays in molecular recognition research, such as ligand-protein interactions. Recently, this technology has been applied to the development of homogeneous tyrosine kinase assays, since there are high-affinity anti-phosphotyrosine antibodies available. Unlike tyrosine kinases, application of FP to assay development for serine/threonine kinases has been impeded because of lack of high-affinity anti-phosphoserine/threonine antibodies. In the present study, we report the discovery of a high-affinity, monoclonal anti-phosphoserine antibody, 2B9, with a Kd of 250 +/- 34 pM for a phosphoserine-containing peptide tracer, fluorescein-RFARKGS(PO(4))LRQKNV. Our data suggest that 2B9 is selective for fluorescein-RFARKGS(PO(4))LRQKNV. The antibody and tracer have been used for the development of a competitive FP assay for protein kinase C (PKC) in 384-well plates. Phosphatidylserine, which enhances the kinase activity of PKC in a Ca(2+)-dependent manner and has a structure similar to that of phosphoserine, did not interfere with binding of the peptide tracer to the antibody in the FP assay. The data indicate that the FP assay is more sensitive and robust than the scintillation proximity assay for PKC. The FP assay developed here can be used for rapid screening of hundreds of thousands of compounds for discovery of therapeutic leads for PKC-related diseases.  相似文献   

7.
AIMS: To use molecular beacon based nucleic acid sequence-based amplification (NASBA) to develop a rapid, sensitive, specific detection method for norovirus (NV) genogroupII (GII). METHODS AND RESULTS: A method to detect NV GII from environmental samples using real-time NASBA was developed. This method was routinely sensitive to 100 copies of target RNA and intermittent amplification occurred with as few as 10 copies. Quantitative estimates of viral load were possible over at least four orders of magnitude. CONCLUSIONS: The NASBA method described here is a reliable and sensitive assay for the detection of NV. This method has the potential to be linked to a handheld NASBA device that would make this real-time assay a portable and inexpensive alternative to bench-top, lab-based assays. SIGNIFICANCE AND IMPACT OF THE STUDY: The development of the real-time NASBA assay described here has resulted in a simple, rapid (<1 h), convenient testing format for NV. To our knowledge, this is the first example of a molecular beacon based NASBA assay for NV.  相似文献   

8.
A flow injection analysis (FIA) device has been developed, which is able to assay successfully for biomass in a microalga bioreactor. The device is fully computerized and is operated via diluting small aliquots of the culture followed by measuring optical density (OD); this figure is then accurately correlated with biomass, in terms of both cell number and ash-free dry weight, during the entire culture time. Furthermore, the device is not expensive, is highly versatile, and is easy to operate owing to specifically developed, user-friendly software. The growth rate and biomass productivity of Pavlova lutheri, cultivated under batch and semicontinuous modes, were monitored as experimental testing model.  相似文献   

9.
Here, we report the development of an electrochemical detection method for endotoxin based on the Limulus amebocyte lysate (LAL) assay. A mixture of LAL reagent and endotoxin sample solution was incubated for 1 h. The endotoxin activated a cascade reaction of zymogens contained in the LAL to generate p-nitroaniline (pNA) which was then electrochemically detected by differential pulse voltammetry (DPV). The generated pNA gave a clear peak at -0.75 V vs. silver/silver chloride (Ag/AgCl), which increased with the concentration of endotoxin in the LAL assay solution. This DPV detection was performed using an electrode chip device fabricated from a diamond-like carbon-coated glass substrate. This chip device could detect as low as 10 endotoxin units l(-1) at room temperature within 1 h. This novel electrochemical method for the detection of endotoxin appears promising for the development of compact, low-cost and easy-to-use sensors for on-site monitoring of potentially contaminated medical supplies, including dialysis fluid, transplanted tissue and culture medium for assisted reproduction.  相似文献   

10.
The behavior of directional cell migration under a direct current electric-field (dcEF) is referred to as electrotaxis. The significant role of physiological dcEF in guiding cell movement during embryo development, cell differentiation, and wound healing has been demonstrated in many studies. By applying microfluidic chips to an electrotaxis assay, the investigation process is shortened and experimental errors are minimized. In recent years, microfluidic devices made of polymeric substances (e.g., polymethylmethacrylate, PMMA, or acrylic) or polydimethylsiloxane (PDMS) have been widely used in studying the responses of cells to electrical stimulation. However, unlike the numerous steps required to fabricate a PDMS device, the simple and rapid construction of the acrylic microfluidic chip makes it suitable for both device prototyping and production. Yet none of the reported devices facilitate the efficient study of the simultaneous chemical and dcEF effects on cells. In this report, we describe our design and fabrication of an acrylic-based multichannel dual-electric-field (MDF) chip to investigate the concurrent effect of chemical and electrical stimulation on lung cancer cells. The MDF chip provides eight combinations of electrical/chemical stimulations in a single test. The chip not only greatly shortens the required experimental time but also increases accuracy in electrotaxis studies.  相似文献   

11.
In this article, we report the design and development of a plastic modular chip suitable for one-shot human papillomavirus (HPV) diagnostics, namely detection of the viral presence and relative genotyping, by two sequential steps performed directly on the same device. The device is composed of two modular and disposable plastic units that can be assembled or used separately. The first module is represented by a polydimethylsiloxane (PDMS) microreactor that is exploited for real-time polymerase chain reaction (PCR) and, thus, is suitable for detecting the presence of virus. The second unit is a PDMS microwell array that allows virus genotyping by a colorimetric assay, based on DNA hybridization technology developed on plastic, requiring simple inspection by the naked eye. The two modules can be easily coupled to reusable hardware, enabling the heating/cooling processes and the real-time detection of HPV. By coupling real-time assay and colorimetric genotyping on the same chip, the assembled device may provide a low-cost tool for HPV diagnostics, thereby favoring the prediction of cancer risk in patients.  相似文献   

12.
BACKGROUND: Rapid-mix flow cytometry has emerged as a powerful tool for mechanistic analysis of ligand binding, cell response, and molecular assembly. Although progress has come from improving sample delivery capabilities, little attention has been paid to the volumetric requirements associated with precious biological reagents. METHODS: By using programmable syringes, valves, and other fluidic components, we created a modular, precisely regulated rapid-mix device for the delivery of small-volume samples to the flow cytometer. The device was tested using a bead-based assay in which the binding kinetics between native biotin and fluorescein biotin-bearing beads were characterized. RESULTS: Bead suspensions and reagents paired in 35- to 45-microl aliquots were efficiently mixed by the device and delivered to the flow cytometer. Kinetic data associated with the fluorescein biotin beads were analyzed and used to calibrate the performance characteristics of the device in terms of sample delivery and mixing efficiency. CONCLUSION: The rapid-mix device is capable of detecting subsecond kinetics of biological reactions using microliter volume of samples. Dimensions of the device have been minimized, and the quantitative aspects of sample delivery and analysis have been optimized. Further, the modular design has been optimized for adaptation to a variety of experimental protocols.  相似文献   

13.
Rapid profiling of signaling pathways has been a long sought after goal in biological sciences and clinical medicine. To understand these signaling pathways, their protein components must be profiled. The protein components of signaling pathways are typically profiled with protein immunoblotting. Protein immunoblotting is a powerful technique but has several limitations including the large sample requirements, high amounts of antibody, and limitations in assay throughput. To overcome some of these limitations, we have designed a microfluidic protein immunoblotting device to profile multiple signaling pathways simultaneously. We show the utility of this approach by profiling inflammatory signaling pathways (NFκB, JAK-STAT, and MAPK) in cell models and human samples. The microfluidic immunoblotting device can profile proteins and protein modifications with 5380-fold less antibody compared to traditional protein immunoblotting. Additionally, this microfluidic device interfaces with commonly available immunoblotting equipment, has the ability to multiplex, and is compatible with several protein detection methodologies. We anticipate that this microfluidic device will complement existing techniques and is well suited for life science applications.  相似文献   

14.
A simple rapid piezoelectric immunoagglutination assay (PEIA) technique with antibody-modified liposome has been developed for direct quantitative detection of human immunoglobulin G (hIgG). This technique is based on specific agglutination of antibody-coated liposome particles in the presence of the corresponding antigen, which can be monitored by the frequency shift of a piezoelectric device. Compared with conventional piezoelectric assays, this liposome-based PEIA does not require the immobilization of antigen or antibody on the quartz crystal surface, making the developed technique especially useful for rapid and renewable immunochemical determination. To alleviate non-specific adsorption of serum proteins, modification of the quartz crystal surface by different protocols and the composition of the assay medium have been investigated. The results indicate that the background interference can be substantially minimized through modifying the quartz crystal surface with a bovine serum albumin (BSA) layer and introducing an appropriate amount of BSA in the assay medium. The effects of the liposome composition, the liposome concentration and the concentration of poly(ethylene glycol) (PEG) in the assay medium, have also been investigated. The frequency responses of the liposome-based PEIA are linearly correlated to hIgG concentration in the range of 0.05-6 microg mL(-1) with a detection limit of 50 ng mL(-1).  相似文献   

15.
White spot syndrome virus (WSSV) causes large economic losses to the shrimp aquaculture industry, and thus far there are no efficient therapeutic treatments available against this lethal virus. In this study, we present the development of a novel real time isothermal recombinase polymerase amplification (RPA) assay for WSSV detection on a small ESEQuant Tube Scanner device. The RPA sensitivity, specificity and rapidity were evaluated by using a plasmid standard as well as viral and shrimp genomic DNAs. Compared with qPCR, the RPA assay revealed more satisfactory performance. It reached a detection limit up to 10 molecules in 95% of cases as determined by probit analysis of 8 independent experiments within 6.41±0.17 min at 39°C. Consequently, this rapid RPA method has great application potential for field use or point of care diagnostics.  相似文献   

16.
A new electrochemical assay for the detection of secreted alkaline phosphatase (SEAP) from transfectant HeLa cells is proposed using a microarray device and scanning electrochemical microscopy (SECM). The assay consists of two steps: the first is the incubation of a transfected cell in a microarray culture device covered with a substrate modified with anti-SEAP under physiological conditions without any additives. The array device consists of a 4 × 4 array of microwells having a size of 100 μm × 100 μm (diameter × depth). The second step is SECM measurement of secreted SEAP at the antibody-immobilized substrate. This assay ensures accuracy and intactness because the undesired influence of endogeneous ALP is eliminated and the transfected cells are incubated in a culture device under suitable conditions. We successfully detected the expression of SEAP from intact cells at the single-cell level using this assay. The system is useful as a cell-based gene-expression assay.  相似文献   

17.
Ertapenem is a new once-a-day antibiotic with excellent coverage of common community gram negative and gram positive aerobes and anaerobes. It demonstrates nonlinear protein binding in human plasma (about 94% bound). An assay for unbound drug was developed to study the pharmacokinetics of unbound ertapenem in plasma. Unbound drug is separated from plasma samples (1.0 ml) by ultrafiltration using a Centrifree((R)) centrifugal filter device. Ertapenem (vulnerable to hydrolysis of the beta-lactam moiety) is stabilized in the filtrate by adding an equal volume of 0.1 M MES buffer, pH 6.5 and then is analyzed by reversed-phase high-performance liquid chromatography (HPLC) with ultraviolet (UV) absorbance detection (300 nm). Non-specific binding to the Centrifree((R)) device is <3%. A suitable internal standard is not available. The assay is specific and linear over the concentration range of 0.25 to 100 microgram/ml in plasma filtrate. The lower limit of quantitation (LLOQ) is 0.25 microgram/ml. Intra-day precision is C.V.<10% and accuracy ranges from 97 to 101% of nominal concentration. Inter-day precision and accuracy were determined using quality control samples (QCs) prepared in plasma ultrafiltrate at 0.5, 12 and 80 microgram/ml and stored at -70 degrees C with stabilizer. Inter-day assay accuracy and precision ranged from 100 to 111% of nominal concentration and 1.8 to 5.3% C.V. (n=40), respectively. The assay has been used to analyze plasma samples from subjects receiving 500 and 2000 mg i.v. doses of ertapenem (30 min infusion).  相似文献   

18.
Recently, a new technology for high-throughput screening has been developed, called IMAP(patent pending). IMAP technology has previously been implemented in an assay for cyclic nucleotide phosphodiesterases (PDE). The authors describe the development of a homogeneous, non-antibody-based fluorescence polarization (FP) assay for a variety of protein kinases. In this assay, fluorescently labeled peptide substrate phosphorylated by the kinase is captured on modified nanoparticles through interactions with immobilized metal (M(III)) coordination complexes, resulting in a change from low to high polarization values. This assay is applicable to protein kinases that phosphorylate serine, threonine, or tyrosine residues. The IMAP platform is very compatible with high-throughput robotics and can be applied to the 1536-well format. As there are hundreds of different kinases coded for in the human genome, the assay platform described in this report is a valuable new tool in drug discovery.  相似文献   

19.
Detection of analytes in complex biological samples, such as milk and blood, normally requires sample pretreatment. These pretreatment regimes reduce assay throughput and increase testing costs. Technologies that make it possible to eliminate sample pretreatment are of great industrial interest. Here we report the development of a dual-signal flow injected analysis device which eliminates the need for sample pretreatment. The device employs thermal traducers to measure the signal from an enzyme and a reference column. This makes it possible to independently monitor and correct for non-specifically generated heat, thereby eliminating the need for sample pretreatment. The ability of the dual-signal device to determine urea and lactate in milk samples without any prior treatment was evaluated. The spiked milk samples, the urea assay had a linear range from 0.1 to 50mM (R=0.996), and the lactate assay had a linear range from 0.025 to 5.0mM (R=0.9998). The linear regression values for urea and lactate for 0.5%, 1.5% and 3.0% fat milk were at least 0.990. The dual-signal design improves assay reproducibility, accuracy and sensitivity. Addition benefits are shorter assay times and lowers costs, as well as reducing equipment and training requirements. The potential application of the technology for multi-analyte analysis in point of care and decentralized diagnostic testing in healthcare, agriculture and environmental areas is discussed.  相似文献   

20.
A novel high-throughput strand transfer assay has been developed, using Microarray Compound Screening (microARCS) technology, to identify inhibitors of human immunodeficiency virus (HIV) integrase. This technology utilizes agarose matrices to introduce a majority of the reagents throughout the assay. Integration of biotinylated donor DNA with fluorescein isothiocyanate (FITC)-labeled target DNA occurs on a SAM membrane in the presence of integrase. An anti-FITC antibody conjugated to alkaline phosphatase (AP) was used to do an enzyme-linked immunosorbent assay with the SAM. An agarose gel containing AttoPhos, a substrate of AP, was used for detection of the integrase reactions on the SAM. For detection, the AttoPhos gel was separated from the SAM after incubation and then the gel was imaged using an Eagle Eye II closed-circuit device camera system. Potential integrase inhibitors appear as dark spots on the gel image. A library of approximately 250,000 compounds was screened using this HIV integrase strand transfer assay in microARCS format. Compounds from different structural classes were identified in this assay as novel integrase inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号