首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several patients with X chromosome structural abnormalities have been more severely affected clinically than expected. Since bends at Xq13-21 have been associated with inactivation, the authors scored bends retrospectively in 62 patients with X chromosome aneuploidy and 21 cases with structural abnormalities of the X chromosome. They found that patients with 2 X inactivation sites where one X was structurally abnormal had significantly fewer cells with X bends than normal 46,XX. In addition, these patients also showed X bends on the normal X more often than would be expected if non-random X inactivation of the abnormal X chromosome was occurring. Five of the 6 patients with a short or long arm deletion or paracentric inversion of Xq were mentally retarded or had other congenital anomalies not usually associated with Turner syndrome. This suggests to them that these clinical findings may be related to interference with X inactivation patterns in cells with a structurally abnormal X chromosome.  相似文献   

2.
Although familial recurrences of Rett syndrome (RTT) comprise only approximately 1% of the reported cases, it is these cases that hold the key for the understanding of the genetic basis of the disorder. Families in which RTT occurs in mother and daughter, aunt and niece, and half sisters are consistent with dominant inheritance and variable expressivity of the phenotype. Recurrence of RTT in sisters is likely due to germ-line mosaicism in one of the parents, rather than to recessive inheritance. The exclusive occurrence of classic RTT in females led to the hypothesis that it is X-linked and may be lethal in males. In an X-linked dominant disorder, unaffected obligate-carrier females would be expected to show nonrandom or skewed inactivation of the X chromosome bearing the mutant allele. We investigated the X chromosome inactivation (XCI) patterns in the female members of a newly identified family with recurrence of RTT in a maternal aunt and a niece. Skewing of XCI is present in the obligate carrier in this family, supporting the hypothesis that RTT is an X-linked disorder. However, evaluation of the XCI pattern in the mother of affected half sisters shows random XCI, suggesting germ-line mosaicism as the cause of repeated transmission in this family. To determine which regions of the X chromosome were inherited concordantly/discordantly by the probands, we genotyped the individuals in the aunt-niece family and two previously reported pairs of half sisters. These combined exclusion-mapping data allow us to exclude the RTT locus from the interval between DXS1053 in Xp22.2 and DXS1222 in Xq22.3. This represents an extension of the previous exclusion map.  相似文献   

3.
Discrepant unbalanced structural chromosome aberrations between placental and fetal tissue, both involving the short arm of chromosome 4, were found in two human fetuses affected with Wolf-Hirschhorn syndrome. In the first instance, placental chromosome examination revealed a del(4) (p14), whereas fetal fibroblast chromosomes showed an unbalanced der(4)t(4;13)(p14;q11) translocation. In the second instance, placental karyotyping revealed a 4p+ chromosome, while amniocytes showed a submicroscopic deletion at 4p16.3. Since confirmation of structural aberrations from placental tissue is mostly not sought if the phenotype of the fetus is abnor- mal, discrepancies between karyotypes obtained from placental tissue and amniocytes or fetal tissues might be more frequent than the rare reports published so far would suggest. It is unclear whether the simple deletion or the more complex rearrangement is the primary aberration from which the other derived. Structural chromosome aberrations often have a much more complex mechanism of formation than the end product would suggest, and secondary rearrangements of a given aberration in the zygote are more frequent than expected.  相似文献   

4.
A significant skewing in the sex ratio in favour of females has been reported for the families of homosexual men such that there are fewer maternal uncles than aunts. This finding is repeated for a large series of transsexual families in this study. Four hundred and seventeen male-to-female transsexuals and 96 female-to-male transsexuals were assessed. Male-to-female transsexuals have a significant excess of maternal aunts vs. uncles. No differences from the expected parity were found for female-to-male transsexuals or on the paternal side. A posited explanation for these findings invokes X inactivation and genes on the X chromosome that escape inactivation but may be imprinted. Our hypothesis incorporates the known familial traits in the families of homosexuals and transsexuals by way of retention of the grand parental epigenotype on the X chromosome. Generation one would be characterized by a failure to erase the paternal imprints on the paternal X chromosome. Daughters of this second generation would produce sons that are XpY and XmY. Since XpY expresses Xist, the X chromosome is silenced and half of the sons are lost at the earliest stages of pregnancy because of the normal requirement for paternal X expression in extra-embryonic tissues. Females survive by virtue of inheriting two X chromosomes, and therefore the possibility of X chromosome counting and choice during embryonic development. In generation three, sons inheriting the paternal X after its second passage through the female germline survive, but half would inherit the feminizing Xp imprinted genes. These genes could pre-dispose the sons to feminization and subsequent development of either homosexuality or transsexualism.  相似文献   

5.
《Gender Medicine》2007,4(2):97-105
At every age, males have a higher risk of mortality than do females. This sex difference is most often attributed to the usual suspects: differences in hormones and life experiences. However, the fact that XY males have only one X chromosome undoubtedly contributes to this vulnerability, as any mutation that affects a gene on their X chromosome will affect their only copy of that gene. On the other hand, cellular mosaicism created by X inactivation provides a biologic advantage to females. There are 1100 genes on the X chromosome, and most of them are not expressed from the Y chromosome. Therefore, sex differences in the expression of these genes are likely to underlie many sex differences in the expression of diseases affected by these genes. In fact, this genetic biology should be considered for any disease or phenotype that occurs in one sex more than the other, because the disease mechanism may be influenced directly by an X-linked gene or indirectly through the consequences of X inactivation.  相似文献   

6.
The observation that LINE-1 transposable elements are enriched on the X in comparison to the autosomes led to the hypothesis that LINE-1s play a role in X chromosome inactivation. If this hypothesis is correct, loss of LINE-1 activity would be expected to result in species extinction or in an alternate pathway of dosage compensation. One such alternative pathway would be to evolve a karyotype that does not require dosage compensation between the sexes. Two of the three extant species of the Ryukyu spiny rat Tokudaia have such a karyotype; both males and females are XO. We asked whether this karyotype arose due to loss of LINE-1 activity and thus the loss of a putative component in the X inactivation pathway. Although XO Tokudaia has no need for dosage compensation, LINE-1s have been recently active in Tokudaia osimensis and show higher density on the lone X than on the autosomes.  相似文献   

7.
Rock wallabies, Petrogale, exhibit chromosome diversity that is exceptional in marsupials, with 20 distinct chromosome races being recognized. Many of the karyotypic changes identified within Petrogale appear to be recent, although the rate of chromosome evolution varies between taxa. While the patchy distribution of Petrogale and their social structure would facilitate the fixation of novel rearrangements, these factors alone do not explain the pattern of chromosome evolution shown in this group. The chromosome changes that have come to characterize each taxon may offer selective advantages in the particular areas occupied, or it may be that these rearrangements play an important role in reproductive isolation. In Petrogale, the taxa with the largest number of chromosome rearrangements are those that are sympatric, or have multiple zones of parapatry, with other members of the genus. Male hybrids from a variety of chromosomal admixtures were found to be sterile, but with those heterozygous for the least complex rearrangements being least affected. As expected, equivalent female hybrids were less severely affected. Chromosomal and genic changes both appear important in these processes.  相似文献   

8.
Thirty-five new, unique, DNA probes have been isolated and each has been assigned to one of five regions on chromosome 22. The distribution of probes along the chromosome is what would be expected based on the estimated size of each region with the exception of the short arm (22p). RFLP analysis was performed using 13 different restriction enzymes and over 50% of the probes were found to have useful polymorphisms. Probes mapping to 22q11 were further characterized by pulsed-field gel analysis and it has been possible to link several on large restriction fragments. These 35 new probes will be useful reagents for producing genetic and physical maps of chromosome 22.  相似文献   

9.
The mammalian epigenetic phenomena of X inactivation and genomic imprinting are incompletely understood. X inactivation equalizes X-linked expression between males and females by silencing genes on one X chromosome during female embryogenesis. Genomic imprinting functionally distinguishes the parental genomes, resulting in parent-specific monoallelic expression of particular genes. N-ethyl-N-nitrosourea (ENU) mutagenesis was used in the mouse to screen for mutations in novel factors involved in X inactivation. Previously, we reported mutant pedigrees identified through this screen that segregate aberrant X-inactivation phenotypes and we mapped the mutation in one pedigree to chromosome 15. We now have mapped two additional mutations to the distal chromosome 5 and the proximal chromosome 10 in a second pedigree and show that each of the mutations is sufficient to induce the mutant phenotype. We further show that the roles of these factors are specific to embryonic X inactivation as neither genomic imprinting of multiple genes nor imprinted X inactivation is perturbed. Finally, we used mice bearing selected X-linked alleles that regulate X chromosome choice to demonstrate that the phenotypes of all three mutations are consistent with models in which the mutations have affected molecules involved specifically in the choice or the initiation of X inactivation.  相似文献   

10.
Duchenne muscular dystrophy (DMD) is a severe, progressive, X-linked muscle-wasting disorder with an incidence of approximately 1/3,500 male births. Females are also affected, in rare instances. The manifestation of mild to severe symptoms in female carriers of dystrophin mutations is often the result of the preferential inactivation of the X chromosome carrying the normal dystrophin gene. The severity of the symptoms is dependent on the proportion of cells that have inactivated the normal X chromosome. A skewed pattern of X inactivation is also responsible for the clinical manifestation of DMD in females carrying X;autosome translocations, which disrupt the dystrophin gene. DMD may also be observed in females with Turner syndrome (45,X), if the remaining X chromosome carries a DMD mutation. We report here the case of a karyotypically normal female affected with DMD as a result of homozygosity for a deletion of exon 50 of the dystrophin gene. PCR analysis of microsatellite markers spanning the length of the X chromosome demonstrated that homozygosity for the dystrophin gene mutation was caused by maternal isodisomy for the entire X chromosome. This finding demonstrates that uniparental isodisomy of the X chromosome is an additional mechanism for the expression of X-linked recessive disorders. The proband's clinical presentation is consistent with the absence of imprinted genes (i.e., genes that are selectively expressed based on the parent of origin) on the X chromosome.  相似文献   

11.
12.
X chromosome inactivation and DNA methylation are reviewed, with emphasis on the contributions of Susumu Ohno and the predictions made in my 1975 paper (Riggs, 1975), in which I proposed the "maintenance methylase" model for somatic inheritance of methylation patterns and suggested that DNA methylation would be involved in mammalian X chromosome inactivation and development. The maintenance methylase model is discussed and updated to consider methylation patterns in cell populations that have occasional, stochastic methylation changes by de novo methylation or demethylation, either active or passive. The "way station" model for the spread of X inactivation by LINE-1 elements is also considered, and some recent results from my laboratory are briefly reviewed.  相似文献   

13.
14.
There is substantial evidence indicating that moderate-intensity static magnetic fields (SMF) are capable of influencing a number of biological systems, particularly those whose function is closely linked to the properties of membrane channels. Most of the reported moderate SMF effects may be explained on the basis of alterations in membrane calcium ion flux. The mechanism suggested to explain these effects is based on the diamagnetic anisitropic properties of membrane phospholipids. It is proposed that reorientation of these molecules during moderate SMF exposure will result in the deformation of imbedded ion channels, thereby altering their activation kinetics. Channel inactivation would not be expected to be influenced by these fields because this mechanism is not located within the intramembraneous portion of the channel. Patch-clamp studies of calcium channels have provided support for this hypothesis, as well as demonstrating a temperature dependency that is understandable on the basis of the membrane thermotropic phase transition. Additional studies have demonstrated that sodium channels are similarly affected by SMFs, although to a lesser degree. These findings support the view that moderate SMF effects on biological membranes represent a general phenomenon, with some channels being more susceptible than others to membrane deformation.  相似文献   

15.
Karyotypes and X chromosome inactivation were studied in embryos obtained from female mice carrying T(X;4)37H translocation on day 6 to 8 of gestation by a BrdU-acridine orange method. A total of 18 different karyotypes were found in 477 embryos examined: 90.0% embryos were products expected from 2:2 alternate or adjacent 1 disjunction. 3:1 and adjacent 2 disjunctions accounted for approximately 8.0% and 0.7% conceptuses, respectively. In the embryo proper of balanced T37H/ + conceptuses, inactivation was random with respect to the normal X and the larger translocation X (4x) chromosome. In all the cells with the 4x inactive, the late replication apparently did not spread to the attached autosomal portion, although black/brown coat variegation implies spreading of inactivation into the autosomal region. The X chromosome segment deprived of the inactivation center remained active in all the cells examined and it exerted deleterious effects on embryonic or fetal development. Observation in embryos having two maternally derived X chromosomes showed that they were indeed resistant to inactivation in early extraembryonic cell lineages, and two copies of active X chromosomes in the trophectoderm fatally affected embryonic development due to inability to form the extraembryonic ectoderm and ectoplacental cone from the polar trophectoderm. In unbalanced X aneuploids the X chromosomes with the deletion were preferentially inactivated due to strong selection against nullisomy X.  相似文献   

16.
X Chromosome Inactivation during Drosophila Spermatogenesis   总被引:1,自引:1,他引:0  
Genes with male- and testis-enriched expression are under-represented on the Drosophila melanogaster X chromosome. There is also an excess of retrotransposed genes, many of which are expressed in testis, that have “escaped” the X chromosome and moved to the autosomes. It has been proposed that inactivation of the X chromosome during spermatogenesis contributes to these patterns: genes with a beneficial function late in spermatogenesis should be selectively favored to be autosomal in order to avoid inactivation. However, conclusive evidence for X inactivation in the male germline has been lacking. To test for such inactivation, we used a transgenic construct in which expression of a lacZ reporter gene was driven by the promoter sequence of the autosomal, testis-specific ocnus gene. Autosomal insertions of this transgene showed the expected pattern of male- and testis-specific expression. X-linked insertions, in contrast, showed only very low levels of reporter gene expression. Thus, we find that X linkage inhibits the activity of a testis-specific promoter. We obtained the same result using a vector in which the transgene was flanked by chromosomal insulator sequences. These results are consistent with global inactivation of the X chromosome in the male germline and support a selective explanation for X chromosome avoidance of genes with beneficial effects late in spermatogenesis.  相似文献   

17.
We have examined the population genetic consequences of the model of Laird (Genetics 117:587-599, 1987) in which the fragile-X syndrome is caused by "imprinting" of a mutant chromosome. The imprinting event in this model results from a block to reactivation of an inactive X chromosome prior to oogenesis. If it is assumed that males carrying the imprinted chromosome never reproduce, the frequencies of females and males carrying the imprinted chromosome are expected to be equal. When a mutation-selection balance is established, there are expected to be somewhat more than twice as many females carrying the nonimprinted fragile X as carry the imprinted fragile-X chromosome, the excess depending on the fertility of fragile-X females. Nonpenetrant (transmitting) males, i.e., those with the nonimprinted fragile-X chromosome, are expected to be present at about the same frequency as are males with the syndrome. More than one-third of the nonimprinted chromosomes in the population are expected to be newly arisen in each generation. We have considered possible alternatives to the model of a mutation-selection balance. Nonimprinted carrier females would need to have 100% fertility excess to avoid postulating a high mutation rate to account for the very high prevalence of the syndrome.  相似文献   

18.
In any partially inbred population, 'junctions' are the loci that form boundaries between segments of ancestral chromosomes. Here we show that the expected number of junctions per Morgan in such a population is linearly related to the inbreeding coefficient of the population, with a maximum in a completely inbred population corresponding to the prediction given by Stam (1980). We further show that high-density marker maps (fully informative markers with average densities of up to 200 per cM) will fail to detect a significant proportion of the junctions present in highly inbred populations. The number of junctions detected is lower than that which would be expected if junctions were distributed randomly along the chromosome, and we show that junctions are not, in fact randomly spaced. This non-random spacing of junctions significantly increases the number of markers that is required to detect 90% of the junctions present on any chromosome: a marker count of at least 12 times the number of junctions present will be needed to detect this proportion.  相似文献   

19.
It has been hypothesised that the massive accumulation of L1 transposable elements on the X chromosome is due to their function in X inactivation, and that the accumulation of Alu elements near genes is adaptive. We tested the possible selective advantage of these two transposable element (TE) families with a novel method, interruption analysis. In mammalian genomes, a large number of TEs interrupt other TEs due to the high overall abundance and age of repeats, and these interruptions can be used to test whether TEs are selectively neutral. Interruptions of TEs, which are beneficial for the host, are expected to be deleterious and underrepresented compared with neutral ones. We found that L1 elements in the regions of the X chromosome that contain the majority of the inactivated genes are significantly less frequently interrupted than on the autosomes, while L1s near genes that escape inactivation are interrupted with higher frequency, supporting the hypothesis that L1s on the X chromosome play a role in its inactivation. In addition, we show that TEs are less frequently interrupted in introns than in intergenic regions, probably due to selection against the expansion of introns, but the insertion pattern of Alus is comparable to other repeats.  相似文献   

20.
Genes with male- and testis-enriched expression are under-represented on the Drosophila melanogaster X chromosome. There is also an excess of retrotransposed genes, many of which are expressed in testis, that have “escaped” the X chromosome and moved to the autosomes. It has been proposed that inactivation of the X chromosome during spermatogenesis contributes to these patterns: genes with a beneficial function late in spermatogenesis should be selectively favored to be autosomal in order to avoid inactivation. However, conclusive evidence for X inactivation in the male germline has been lacking. To test for such inactivation, we used a transgenic construct in which expression of a lacZ reporter gene was driven by the promoter sequence of the autosomal, testis-specific ocnus gene. Autosomal insertions of this transgene showed the expected pattern of male- and testis-specific expression. X-linked insertions, in contrast, showed only very low levels of reporter gene expression. Thus, we find that X linkage inhibits the activity of a testis-specific promoter. We obtained the same result using a vector in which the transgene was flanked by chromosomal insulator sequences. These results are consistent with global inactivation of the X chromosome in the male germline and support a selective explanation for X chromosome avoidance of genes with beneficial effects late in spermatogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号