首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exposure of DNA to methylene blue and visible or ultraviolet light causes guanine-specific modification, and subsequent treatment with piperidine leads to chain cleavage at each guanine residue. Treatment of DNA with osmium tetraoxide in dilute pyridine leads to thymidine-specific modification, and subsequent treatment with piperidine leads to chain cleavage at the modified thymidine residues. Both reactions can be used in conjunction with other base specific modifications described by Maxam and Gilbert (1) for the determination of the nucleotide sequence in DNA.  相似文献   

2.
N Okawa  Y Suyama    A Kaji 《Nucleic acids research》1985,13(21):7639-7645
When the Maxam and Gilbert DNA sequencing method which is modified by Bencini et al. (Biotechniques Jan/Feb pp4-5, 1984) is applied to DNA containing methylated adenine in a GATC sequence, the cleavage reaction by sodium hydroxide is found to be greatly reduced in comparison to that of non-methylated adenine. Thus, a faint band in A greater than C reaction suggests a methyl adenine and can be used for its detection. That the faint band corresponds to a methyladenine was confirmed by Sanger sequencing of the same fragment and further by Maxam and Gilbert sequencing of the complementary strand of DNA, which was replicated in an E. coli strain either having or lacking methylation enzymes.  相似文献   

3.
Sites of gamma radiation-induced DNA strand breaks after alkali treatment   总被引:2,自引:0,他引:2  
When DNA is gamma-irradiated in aerated aqueous solution, strand breaks are produced during irradiation or the next few hours. Subsequent piperidine treatment gives rise to further DNA strand ruptures at alkali-labile sites. These different types of DNA chain breaks provoked by gamma-irradiation have been studied with oligonucleotides having defined sequences. The breaks selectively developed inside the DNA chain at alkali-labile sites by piperidine treatment appeared at lower doses preferentially at guanine positions and the order G greater than A greater than T greater than or equal to C was observed. The total contribution of the direct DNA chain ruptures, formed during irradiation and the next few hours, and those obtained by piperidine treatment was studied at doses ranging from 10 to 120 Gy. The chain breaks appeared preferentially at thymine positions and the order T greater than G greater than A greater than or equal to C was shown for the higher doses.  相似文献   

4.
The ligation-mediated PCR was used to map DNA alkylation sites induced by altromycin B at nucleotide resolution in genomic DNA purified from cultured human colon carcinoma. Altromycin B, one of the pluramycin group of antitumor antibiotics, is characterized as intercalator with the added ability to alkylate N7 guanine. DNA adducts formed in genomic DNA were cleaved into DNA strand breaks by hot piperidine treatment, and fragments containing ligatable breaks were then amplified in a single-sided, ligation-mediated PCR. The alkylation sites observed in exon 9 of the p53 gene revealed that the most high reactivity sites for altromycin B were found to be N7 of guanine in a 5-AG* sequence. Determination of the DNA alkylation sites in naked radiolabeled plasmid DNA also showed that altromycin B preferred N7 of guanine in a 5-AG* sequence. Thus, it can be concluded that the sequence selective DNA adduct formation induced by the intercalating alkylator, altromycin B, in genomic DNA is similar to that observed in naked plasmid DNA.  相似文献   

5.
6.
7.
A solid-phase method for DNA sequencing has been developed which involves immobilization of the terminally labeled DNA fragment on the DEAE-paper followed by chemical modification and cleavage at G, A + G, C + T, and C sites. As compared to the Maxam and Gilbert method, the new technique is more rapid and less laborious, being of the same efficiency.  相似文献   

8.
The nucleotide sequence of the simian virus 40 (SV40) genome region between the cleavage sites for restriction endonucleases EcoRI (map position 0) and HindII (map position 0.05) has been determined mainly by the partial chemical DNA degradation procedure of Maxam and Gilbert. This fragment represents 5.3% of the genome of SV40 and is located in the late region, internally in the VP1 gene. The message strand shows only one open reading frame for translation into protein, which connects to the one for the preceding fragment. On this basis part of the amino acid sequence of the VP1 protein is presented.  相似文献   

9.
In vitro and in vivo DNA bonding by the CC-1065 analogue U-73975   总被引:1,自引:0,他引:1  
K L Weiland  T P Dooley 《Biochemistry》1991,30(30):7559-7565
CC-1065, a cyclopropylpyrroloindole (CPI), is a highly potent antitumor DNA-alkylating agent. We have devised a simple method to detect CPI bonding sites on double-stranded DNA (dsDNA). The technique utilizes a modified form of bacteriophage T7 polymerase, Sequenase, to synthesize a radiolabeled nascent strand from dsDNA that has been reacted in vitro with the CC-1065 analogue U-73975 (adozelesin). The reaction products were electrophoresed on sequencing gels containing 8 M urea and visualized by autoradiography. The transit of this DNA polymerase is inhibited at the sites where CPIs are bound to the template strand. Thus, the enzyme stalls or stops at the nucleotide immediately adjacent to the modified base, resulting in the accumulation of DNA strands at these sites and in diminished read-through beyond these sites in a set of CPI-treated DNA molecules. The precise positions of polymerase inhibition can be determined by comparison of CPI-treated and unreacted DNA reactions. This modified dideoxynucleotide sequencing technique has been used to establish the sequence selectivity of U-73975. Approximately 1 kilobase of dsDNA has been analyzed to derive a consensus canonical bonding sequence, 5'(T/A)-T/A-T-A*-(C/G)-(G), where A* is the site of U-73975 alkylation and parentheses denote deoxynucleotide preferences. Noncanonical sites were also found at poly(A) sites. This technique yielded a consensus sequence for U-73975 bonding that is similar to, but not identical with, the published consensus obtained for CC-1065 by a modified Maxam and Gilbert sequencing technique. We have also examined the bonding of [3H]U-73975 to the DNA of viable cultured mammalian cells, using gel electrophoresis and autoradiographic techniques.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
A redoxyendonuclease from calf thymus was purified to apparent homogeneity. The redoxyendonuclease recognized and induced cleavage of DNA damaged by ultraviolet light. The enzyme preparation produced a single band of a relative molecular mass of approximately 34 kDa upon SDS/PAGE. The apurinic/apyrimidinic endonuclease and the DNA glycosylase activities remained associated in the apparently homogeneous preparation of the enzyme. The redoxyendonuclease activity displayed a broad pH optimum between pH 5.0-8.5 and exhibited no requirement for divalent cations. By application of FPLC columns Mono-S, Mono-Q and Mono-P, the isoelectric point (pI) of the enzyme was found to be approximately 8.0. Using the DNA sequencing procedure of Maxam and Gilbert [Maxam, A. M. & Gilbert, W. (1980) Methods Enzymol. 65, 499-560] the purified enzyme was found to incise ultraviolet-light-irradiated DNA at pyrimidine sites as observed previously with a more crude form of the enzyme. While the most frequently cleavaged sites for the crude preparation were at cytosine residues, the apparently homogeneous enzyme preparation frequently induced cleavage sites at both cytosine and guanine residues. Predominant incision induced by the apparently homogeneous preparation was observed at guanine residues when a particular DNA sequence was used as substrate. Furthermore, the 16 N-terminal amino acid residues of the purified enzyme were identified. The sequence did not show any significant similarity to other known proteins.  相似文献   

11.
X-ray-induced DNA base damage can be detected using endonuclease III and formamidopyrimidine-glycosylase, which create DNA strand breaks at enzyme-sensitive sites. Strand breaks can then be measured with excellent sensitivity using the alkaline comet assay, a single-cell gel electrophoresis method that detects DNA damage in individual cells. In using this approach to measure the oxygen enhancement ratio (OER) for radiation-induced base damage, we observed that the number of enzyme-sensitive sites increased with dose up to 4 Gy in air and 12 Gy in hypoxic WIL2NS cells. After rejoining of radiation-induced strand breaks, base damage was detected more easily after higher doses. The number of radiation-induced enzyme-sensitive sites was similar under both air and nitrogen. Base damage produced by hydrogen peroxide and 4-nitroquinoline-N-oxide (4NQO) was also measured. Results with hydrogen peroxide (20 min at 4 degrees C) were similar to those observed for X rays, indicating that enzyme-sensitive sites could be detected most efficiently when few direct strand breaks were present. Removing DNA-associated proteins before irradiation did not affect the ability to detect base damage. Base damage produced by 4NQO (30 min at 37 degrees C) was readily apparent after treatment with low concentrations of the drug when few 4NQO-induced strand breaks were present, but the detection sensitivity decreased rapidly as direct strand breaks increased after treatment with higher concentrations. We conclude that: (1) the OER for base damage is approximately 1.0, and (2) the presence of direct DNA strand breaks (>2000-4000 per cell) prevents accurate detection of base damage measured as enzyme-sensitive sites with the alkaline comet method.  相似文献   

12.
A 3-azidoproflavine derivative was covalently linked to the 5'-end of an octathymidylate synthesized with the [alpha]-anomers of the nucleoside. Two target nucleic acids were used for this substituted oligo-[alpha]-thymidylate: a 27-mer single-stranded DNA fragment containing an octadeoxyadenylate sequence and a 27-mer duplex containing eight contiguous A.T base pairs with all adenines on the same strand. Upon visible light irradiation the octa-[alpha]-thymidylate was photocrosslinked to the single-stranded 27-mer. Chain breaks were induced at the crosslinked sites upon piperidine treatment. From the location of the cleavage sites on the 27-mer sequence it was concluded that a triple helix was formed by the azidoproflavine-substituted oligo-[alpha]-thymidylate with its complementary oligodeoxyadenylate sequence. When the 27-mer duplex was used as a substrate cleavage sites were observed on both strands after piperidine treatment of the irradiated sample. They were located at well defined positions which indicated that the octathymidylate was bound to the (dA)8.(dT)8 sequence in parallel orientation with respect to the (dA)8-containing strand. Specific binding of the [alpha]-octathymidylate involved local triple strand formation with the duplex (dA)8.(dT)8 sequence. This result shows that it is possible to synthesize sequence-specific molecules which specifically bind oligopurine-oligopyrimidine sequences in double-stranded DNA via recognition of the major groove hydrogen bonding sites of the purines.  相似文献   

13.
It has been proposed that the modern immune system has evolved from a transposon in an ancient vertebrate. While much is known about the mechanism by which bacterial transposable elements catalyze double-strand breaks at their ends, less is known about how eukaryotic transposable elements carry out these reactions. We have examined the mechanism by which mariner, a eukaryotic transposable element, performs DNA cleavage. We show that the nontransferred strand is cleaved initially, unlike prokaryotic transposons which cleave the transferred strand first. First strand cleavage is not tightly coupled to second strand cleavage and can occur independently of synapsis, as happens in V(D)J recombination but not in transposition of prokaryotic transposons. Unlike V(D)J recombination, however, second strand cleavage of mariner does not occur via a hairpin intermediate.  相似文献   

14.
The co-genotoxic effects of cadmium are well recognized and it is assumed that most of these effects are due to the inhibition of DNA repair. We used the comet assay to analyze the effect of low, non-toxic concentrations of CdCl2 on DNA damage and repair-induced in Chinese hamster ovary (CHO) cells by UV-radiation, by methyl methanesulfonate (MMS) and by N-methyl-N-nitrosourea (MNU). The UV-induced DNA lesions revealed by the comet assay are single-strand breaks which are the intermediates formed during nucleotide excision repair (NER). In cells exposed to UV-irradiation alone the formation of DNA strand breaks was rapid, followed by a fast rejoining phase during the first 60 min after irradiation. In UV-irradiated cells pre-exposed to CdCl2, the formation of DNA strand breaks was significantly slower, indicating that cadmium inhibited DNA damage recognition and/or excision. Methyl methanesulfonate and N-methyl-N-nitrosourea directly alkylate nitrogen and oxygen atoms of DNA bases. The lesions revealed by the comet assay are mainly breaks at apurinic/apyrimidinic (AP) sites and breaks formed as intermediates during base excision repair (BER). In MMS treated cells the initial level of DNA strand breaks did not change during the first hour of recovery; thereafter repair was detected. In cells pre-exposed to CdCl2 the MMS-induced DNA strand breaks accumulated during the first 2h of recovery, indicating that AP sites and/or DNA strand breaks were formed but that further steps of BER were blocked. In MNU treated cells the maximal level of DNA strand breaks was detected immediately after the treatment and the breaks were repaired rapidly. In CdCl2 pre-treated cells the formation of MNU-induced DNA single-strand breaks was not affected, while the repair was slower, indicating inhibition of polymerization and/or the ligation step of BER. Cadmium thus affects the repair of UV-, MMS- and MNU-induced DNA damage, providing further evidence, that inhibition of DNA repair is an important mechanism of cadmium induced mutagenicity and carcinogenicity.  相似文献   

15.
A synthetic DNA fragment was constructed to determine the effect of 5' and 3' neighbors of guanine runs on the binding of chemical carcinogens. Determinations were made on the relative intensity of reactivity between aflatoxin B1 or benzo(a)pyrene and methylnitrosourea or 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea with various guanine positions in an endlabeled DNA fragment of known sequence. After reaction, the fragments were depurinated to produce strand breaks to allow Maxam and Gilbert sequencing for guanine positions. Relative reaction intensities were compared densitometrically. 3' neighbors exerted greater influence on carcinogen binding than did 5' neighbors, the influence extended only to the adjacent guanine and depended upon the chemical nature of the carcinogen. In addition, the presence of one carcinogen adduct in the guanine run influenced the formation of a subsequent adduct when the DNA was exposed to a second carcinogen, and this effect also depended on the nature of the second carcinogen. The results suggest that DNA adduct formation in the presence of multiple carcinogens is more complicated than an additive mechanism would suggest.  相似文献   

16.
By use of the chemical modification technique of Maxam and Gilbert (1977), the first 180 base pairs at both termini of the human adenovirus 7 genome have been determined. The results show that adenovirus 7 DNA contains a perfect inverted terminal repetition of 136 base pairs.  相似文献   

17.
Liu X  Lu J  Liu S 《Mutation research》1999,440(1):109-117
Chromium(VI) compounds and cigarette smoke are known human carcinogens. We found that K2Cr2O7 and cigarette smoke solution synergistically induced DNA single-strand breaks (0.23+/-0.04 breaks per DNA molecule) in pUC118 plasmid DNA. K2Cr2O7 alone or cigarette smoke solution alone induced much less strand breaks (0.03+/-0.01 or 0.07+/-0.02 breaks per DNA molecule, respectively). The synergistic effect was prevented by catalase and by hydroxyl radical scavengers such as deferoxamine, dimethylsulfoxide, d-mannitol, and Tris, but not by superoxide dismutase. Ascorbic acid enhanced the synergism. Glutathione inhibited strand breakage only at high concentrations. Electron spin resonance (ESR) studies using a hydroxyl radical trap demonstrated that hydroxyl radicals were generated when DNA was incubated with K2Cr2O7 and cigarette smoke solution. Hydroxyl radical adduct decreased dose-dependently when strand breakage was prevented by catalase, deferoxamine, dimethylsulfoxide, d-mannitol or Tris, but not significantly by superoxide dismutase. We also used ESR spectroscopy to study the effects of different concentration of ascorbic acid and glutathione. The results showed that hydroxyl radical, which is proposed as a main carcinogenic mechanism for both chromium(VI) compounds and cigarette smoke solution was mainly responsible for the DNA breaks they induced.  相似文献   

18.
Abasic sites are the most commonly formed DNA lesions in the cell and are produced by numerous endogenous and environmental insults. In addition, they are generated by the initial step of base excision repair (BER). When located within a topoisomerase II DNA cleavage site, "intact" abasic sites act as topoisomerase II poisons and dramatically stimulate enzyme-mediated DNA scission. However, most abasic sites in cells are not intact. They exist as processed BER intermediates that contain DNA strand breaks proximal to the damaged residue. When strand breaks are located within a topoisomerase II DNA cleavage site, they create suicide substrates that are not religated readily by the enzyme and can generate permanent double-stranded DNA breaks. Consequently, the effects of processed abasic sites on DNA cleavage by human topoisomerase IIalpha were examined. Unlike substrates with intact abasic sites, model BER intermediates containing 5'- or 3'-nicked abasic sites or deoxyribosephosphate flaps were suicide substrates. Furthermore, abasic sites flanked by 5'- or 3'-nicks were potent topoisomerase II poisons, enhancing DNA scission approximately 10-fold compared with corresponding nicked oligonucleotides that lacked abasic sites. These findings suggest that topoisomerase II is able to convert processed BER intermediates to permanent double-stranded DNA breaks.  相似文献   

19.
A nucleotide sequence of 61 nucleotides at the left end and 117 nucleotides at the right end of DNA from bacteriophage lambdacI857Sam7 was determined by the Maxam and Gilbert method. A perfect inverted repeat sequence of 10 nucleotides is near the left end, and one of 15 nucleotides is near the right end. DNA from another closely related lambda strain, lambdacI857prm116Sam7, has about 10% divergence in the sequence of the first 110 nucleotides at the right end and has a 17-member perfect inverted repeat sequence.  相似文献   

20.
We report here the nucleotide sequence of the simian virus 40 DNA region that lies between the EcoRII restriction endonuclease cleavage sites at map positions 0.214 and 0.281. The sequence was determined by partial chemical degradation of terminally labeled DNA fragments according to the procedure of Maxam and Gilbert. This region represents 6.7% of the SV40 genome and is located in the middle of HindII + III restriction fragment B. It is expressed as part of the early 19-S messenger RNA, which codes for the large-T antigen protein. Only one open reading frame for translation can be deduced from the message strand of the DNA and this reading frame connects in phase with the one of both neighboring fragments. This publication is the last in a series of papers about the T-antigen gene, and several properties of this gene and its product are discussed. The non-randomness of codon usage is similar to that previously discussed for the late part of the genome. Moreover, it appears that the choice of a third letter can be determined by the nature of the following codon; some codons which start with a pyrimidine are almost never preceded by an adenosine and some ANN-type codons are almost never preceded by a guanosine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号