首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The most effective protein purification method of low picomole amounts for sequence analysis involves polyacrylamide gel electrophoresis followed by electroblotting to polyvinylidene difluoride (PVDF) membranes. Since a critical factor in this procedure is the protein recovery at the blotting step, different types of PVDF membranes were systematically evaluated for their ability to bind proteins during electrotransfer. Differences in electroblotting recoveries occurred between types of PVDF membranes for some proteins. Some variability persisted even when optimized electroblotting procedures were used which reduce the sodium dodecyl sulfate (SDS) concentration in the gel and improve protein-PVDF binding. The membranes which were evaluated could be grouped as either "high retention" membranes (ProBlott, Trans-Blot, and Immobilon-PSQ) or "low retention" membranes (Immobilon-P and Westran). The high retention membranes showed higher protein recoveries under most conditions tested, especially for small proteins or peptides. These high retention membranes were also less sensitive to the exact electroblotting conditions, especially those factors which affect the amount of SDS present during either electrotransfer or direct adsorption from protein solutions. High retention PVDF membranes are therefore preferred in most cases for optimal protein or peptide recovery prior to direct sequence analysis. In contrast, low retention membranes are preferred for procedures where subsequent extraction of the proteins from the membranes is required. Even under identical conditions, substantial protein-to-protein variation for both adsorption and subsequent extraction is routinely observed for both groups of membranes, indicating that the nature of protein-PVDF interactions is more complex than simple hydrophobic interactions.  相似文献   

2.
The combination of high-resolution Tricine-Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (H. Sch?gger and G. von Jagow (1987) Anal. Biochem. 166, 368-379) and electroblotting onto polyvinylidene difluoride (PVDF) membranes represents a powerful technique for the isolation of small amounts of peptides and protein fragments (Mr 1000-20,000) in a suitable form for amino acid sequencing, directly on the blotting membrane. Conditions for electrophoresis and electroblotting were optimized with respect to high transfer yield and suitability for both amino acid analysis and sequence determination of stained PVDF-bound peptides. Transfer yields were 50-80%, amino acid compositions including Cys were correct, and picomole quantities were sequenced with initial and repetitive yields as high as those we normally obtain for peptides in solution. The method was used for peptide mapping of polymorphic forms of human complement component C3.  相似文献   

3.
In this report we describe the use of a novel, experimental, polyvinylidene fluoride-based membrane with a cationic surface for the isolation by electroblotting of small amounts of proteins separated by gel electrophoresis for further characterization by protein fragmentation for internal sequence analysis. The membrane is characterized by a surface that mediates primarily ionic protein/membrane interactions and that allows the recovery of adsorbed proteins at high yields under relatively mild conditions. In electroblotting experiments, the novel membrane has a binding capacity that is at least equivalent to that of standard polyvinylidene fluoride membranes and is compatible with both chemical and enzymatic fragmentation of blotted proteins in situ. Intact electroblotted proteins, or fragments thereof, were eluted at high yields. Further structural analysis is demonstrated using reverse-phase high-performance liquid chromatography or gel electrophoresis to separate cleavage fragments for either pulsed-liquid- or solid-phase automated sequence analysis.  相似文献   

4.
We have quantitatively examined the various parameters affecting the electrotransfer and sequence analysis of proteins from sodium dodecyl sulfate (SDS) gels to derivatized glass fiber paper or to polyvinyldifluoride (PVDF) membranes. Transfer yields in the range of 90-95% can be obtained for proteins in the molecular weight range of 10-90 kDa for transfer from 12% SDS gels to glass fiber paper derivatized with either QAPS (N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride) or APS (aminopropyltriethoxysilane). In order to achieve these yields, it was necessary to modify the conditions described by R. Aebersold et al. (J. Biol. Chem. 261, 4229-4238, 1986). We activated the glass fiber paper with dilute ammonia water and derivatized the activated glass fiber paper with QAPS and APS in anhydrous solvents which were allowed to slowly absorb moisture during the derivatization process. The transfer yield varied with transfer time versus molecular weight of the protein for a given percentage gel. Shorter transfer times and higher yields were obtained for higher molecular weight proteins on 8% gels. Lower molecular weight protein gave higher yields from 12% gels under similar transfer conditions. Sequencing yields of the transferred proteins were in the range of 40-80%, but a number of background peaks were observed on HPLC analysis of the phenylthiohydantoin amino acid derivatives. Transfer yields in the range of 85-95% were observed for similar experiments with PVDF membranes. In order to achieve these yields, it was necessary to modify the conditions described by P. Matsudaira (J. Biol. Chem. 262, 10035-10038, 1987). A lower voltage and longer transfer times gave higher transfer yields. In order to achieve consistently high transfer yields, it was also necessary to precoat the PVDF membranes with Polybrene. The PVDF membranes were cut into approximately 1-mm-wide strips and inserted into a continuous flow reactor (J. E. Shively, P. Miller, and M. Ronk, Anal. Biochem. 163, 517-525, 1987) for sequence analysis. Overall yields of samples loaded onto gels, electrotransferred to Polybrene-coated PVDF membranes, and sequenced ranged from 50-60% for beta-lactoglobin (10-50 pmol loaded onto SDS gels) to 20-30% for bovine serum albumin and soybean trypsin inhibitor (50 pmol loaded onto SDS gels). A comparison of the two methods shows clear advantages for the PVDF membranes over the derivatized glass fiber paper, including the ability to directly sequence the Coomassie blue-stained PVDF membranes, and the lower backgrounds observed on subsequent sequence analysis.  相似文献   

5.
Small amounts (7-250 pmol) of myoglobin, beta-lactoglobulin, and other proteins and peptides can be spotted or electroblotted onto polyvinylidene difluoride (PVDF) membranes, stained with Coomassie Blue, and sequenced directly. The membranes are not chemically activated or pretreated with Polybrene before usage. The average repetitive yields and initial coupling of proteins spotted or blotted into PVDF membranes ranged between 84-98% and 30-108% respectively, and were comparable with the yields measured for proteins spotted onto Polybrene-coated glass fiber discs. The results suggest that PVDF membranes are superior supports for sequence analysis of picomole quantities of proteins purified by gel electrophoresis.  相似文献   

6.
The oxidative modification of proteins has been shown to play a major role in a number of human diseases. However, the ability to identify specific proteins that are most susceptible to oxidative modifications is difficult. Separation of proteins using polyacrylamide gel electrophoresis (PAGE) offers the analytical potential for the recovery, amino acid sequencing, and identification of thousands of individual proteins from cells and tissues. We have developed a method to allow underivatized proteins to be electroblotted onto PVDF membranes before derivatization and staining. Since both the protein and oxidation proteins are quantifiable, the specific oxidation index of each protein can be determined. The optimal sequence and conditions for the staining process are (a) electrophoresis, (b) electroblotting onto PVDF membranes, (c) derivatization of carbonyls with 2,4-DNP, (d) immunostaining with anti DNP antibody, and (e) protein staining with colloidal gold.  相似文献   

7.
《Analytical biochemistry》1997,247(2):310-318
Mass spectrometric techniques for the identification of proteins either by amino acid sequencing or by correlation of mass spectral data with sequence databases are becoming increasingly sensitive and are rapidly approaching the limit of detection achieved by the staining of proteins in gels or, after electroblotting, on membranes. Here we present a technique for the sensitive staining of proteins electroblotted onto nitrocellulose or polyvinylidene difluoride membranes and enzymatic cleavage conditions for such proteins to achieve optimal recovery of peptides. The technique is based on the deposition of colloidal silver on the membrane-bound proteins. Peptide mixtures generated by proteolysis on the membrane were recovered at high yields and were compatible with analysis by reverse-phase chromatography and on-line electrospray ionization mass spectrometry. This simple and rapid colloidal silver staining procedure allowed the visualization of less than 5 ng of protein in a band and thus approached the sensitivity of silver staining in gels. We demonstrate that this method allows the detection of subpicomole amounts of electroblotted proteins and their identification by high-performance liquid chromatography–electrospray ionization tandem mass spectrometry.  相似文献   

8.
Methods were developed for high yield covalent attachment of peptides and proteins to isothiocyanate and arylamine-derivatized poly(vinylidene difluoride) membranes for solid-phase sequence analysis. Solutions of protein or peptide were dried onto 8-mm membrane disks such that the functional groups on the surface and the polypeptide were brought into close proximity. In the case of the isothiocyanate membrane, reaction between polypeptide amino groups and the surface isothiocyanate moieties was promoted by application of aqueous N-methylmorpholine. Attachment of proteins and peptides to the arylamine surface was achieved by application of water-soluble carbodiimide in a pH 5.0 buffer. Edman degradation of covalently bound polypeptides was accomplished with initial and repetitive sequence yields ranging from 33 to 75% and 88.5 to 98.5%, respectively. The yields were independent of the sample load (20 pmol to greater than 1 nmol) for either surface. Significant loss of material was not observed when attachment residues were encountered during sequence runs. Application of bovine beta-lactoglobulin A chain, staphylococcus protein A, or the peptide melittin to the isothiocyanate membrane allowed for extended N-terminal sequence identification (35 residues from 20 pmol of beta-lactoglobulin). A number of synthetic and naturally occurring peptides were sequenced to the C-terminal residue following attachment to the arylamine surface. In one example, 10 micrograms of bovine alpha-casein was digested with staphylococcal protease V8 and the peptides were separated by reverse-phase chromatography. Peptide fractions were then directly applied to arylamine membrane disks for covalent sequence analysis. From as little as 2 pmol of initial signal it was possible to determine substantial sequence information (greater than 10 residues).  相似文献   

9.
With recent advances in protein microchemistry, compatible methods for the preparation and quantitation of proteins and peptides are required. Fluorescamine, a reagent which reacts with primary amino groups has been used successfully to detect amino acids, peptides, and proteins in various micromethods. This article discusses these methods which include (1) amino acid analysis of protein and peptide hydrolysates with postcolumn fluorescamine derivatization; (2) purification and characterization of proteins and peptides by reversed-phase HPLC with postcolumn fluorescamine derivatization; (3) purification of peptides by two-dimensional chromatography and electrophoresis on thin-layer cellulose with fluorescamine staining; and (4) electroblotting of protein bands from SDS-PAGE to glass fiber filters and polyvinylidene difluoride (PVDF) membranes with fluorescamine staining. In addition, this article also compares a postcolumn fluorescamine detection system with a UV detection system in the applications of amino acid analysis and reversed-phase HPLC protein/peptide analysis.  相似文献   

10.
A procedure for the generation and isolation of internal peptide fragments for less than 10 micrograms of protein bound to either polyvinylidene difluoride (PVDF) or nitrocellulose membranes after electrophoretic transfer from sodium dodecyl sulfate-polyacrylamide gels (SDS-PAGE) is presented. This technique has produced internal sequence data for 120 peptides, with an average initial yield of 20 pmol. Membrane-bound proteins were enzymatically digested with either trypsin or endoproteinase Lys-C in the presence of 1% hydrogenated Triton X-100/10% acetonitrile/100 mM Tris-HCl, pH 8.0, for 24 h at 37 degrees C. The eluted peptides were then directly isolated by microbore HPLC for subsequent sequence analysis. One percent hydrogenated Triton X-100 did not inhibit enzymatic activity, distort HPLC resolution of peptides, or contain uv-absorbing contaminants that could interfere with peptide identification. Reproducible peptide maps and consistent recoveries are presented for standard proteins (3.5-8.0 micrograms) bound to either membrane, with higher recoveries for PVDF-bound proteins. Ninety percent of the proteins analyzed by this technique have produced results; representative peptide maps and sequence data are presented. This technique has a wide range of applications, particularly for proteins with blocked amino termini or those that can only be purified by SDS-PAGE or 2D isoelectric focusing SDS-PAGE.  相似文献   

11.
Ino Y  Hirano H 《The FEBS journal》2011,278(20):3807-3814
In the 1990s, a technique was developed to transfer proteins from electrophoresis gels onto poly(vinylidene difluoride) (PVDF) membranes, digest the proteins on the membranes with proteases such as trypsin and analyze the resulting peptides on the membranes directly by mass spectrometry to identify the proteins. This technique, based on gel electrophoresis, is particularly useful for analyzing protein isoforms, splicing variants and post-translationally modified proteins. Previously, the low ionization efficiency of peptides immobilized on the membranes often rendered this technique useless. However, this technique has been improved by the use of PVDF membranes with a small pore size, which has enabled highly efficient and effective electroblotting and mass spectrometric analyses. Here, the advantage of this technique is discussed.  相似文献   

12.
A new method was developed for generating peptide fragments for amino acid sequence analysis from polyacrylamide-gel separated proteins. This method involves in situ CNBr treatment of proteins in the polyacrylamide gel after their separation by electrophoresis. Pure CNBr peptides were recovered either by solvent extraction followed by microbore column reversed-phase HPLC or, alternatively, by a second electrophoretic separation step (SDS-PAGE) followed by electrotransfer of the peptides onto polyvinylidene difluoride (PVDF) membranes. These approaches yielded sequence data at subnanomole levels for a wide range of CNBr fragments recovered from gel-separated proteins.  相似文献   

13.
We report the first direct method for the identification of the vitamin K-dependent Ca2+ binding amino acid, gamma-carboxyglutamic acid (Gla), in the sequencing of proteins. The carboxyl groups on the protein are first converted to methyl esters with methanolic HCl, a procedure that reduces the polarity of the resulting ATZ derivative of dimethyl-Gla and so greatly improves its extraction from the polybrene-treated glass fiber filter. After conversion to the PTH derivative in methanolic HCl, the resulting dimethyl ester of PTH Gla can be identified directly by a simple modification of the standard HPLC program for the separation of PTH derivatives. This methylation procedure can be used to identify Gla residues in proteins bound to PVDF membranes, as we demonstrate for matrix Gla protein and prothrombin, and to evaluate directly the degree of partial gamma-carboxylation at given glutamic acid residues, as we demonstrate for the 50% gamma-carboxylation of residue 17 in human bone Gla protein.  相似文献   

14.
We report a new and facile extraction method of proteins and polypeptides in the range of 100 to 1 kDa previously separated by high-resolution SDS/polyacrylamide-gel electrophoresis. Proteins and polypeptides obtained by chemical or proteolytic cleavage of proteins can directly be applied to high-sensitivity N-terminal amino-acid sequence analysis by gas-phase sequencing. The Coomassie Blue-stained protein bands are eluted from the gel slices with 0.1 M sodium acetate buffer, pH 8.5, 0.1% SDS in high yield and directly applied to the filter disc of the gas-phase sequencer. The superior efficiency for the isolation of proteins and polypeptides from polyacrylamide gels for microsequencing has been documented by a quantitative comparison of the procedure described here and the favoured electroblot-transfer method using 14C-labeled marker proteins. This highly efficient isolation has been successfully reproduced and applied to the analysis of a variety of proteins and peptides with rather divergent physical properties, particularly to hydrophobic peptides isolated from SDS/polyacrylamide gels. The electrophoretic transfer onto activated glass filters. Immobilon membranes (polyvinylidene-difluoride membranes), siliconized or chemically activated glass fiber supports can be omitted. The method considerably simplifies and speeds up the isolation, and improves the sensitivity as compared to the electroblotting procedures due to the reproducibly high recoveries.  相似文献   

15.
The Association of Biomolecular Resource Facilities 2003 Edman Sequencing Research Group (ABRF-ESRG’03) sample is the 15th in a series of studies designed to allow participating members to evaluate their abilities to analyze the N-terminus of a protein or peptide using automated Edman degradation chemistry. It is a follow-up study to the ESRG’02 sample, which was a single protein with a heterogeneous N-terminus. Both the 2002 and 2003 samples were obtained from the same protein complex and were resolved by SDS-PAGE followed by electrophoretic transfer to PVDF membrane. The ABRF-ESRG’03 sample had an apparent molecular weight of 49 kDa and a single N-terminus, with initial yields of approximately 2 pmol. Participants were asked to sequence 25 residues and return their results to the ESRG for analysis along with two completed surveys and an area/pmol table for repetitive and initial yield calculations. Data for 46 responses are presented which include initial yields, repetitive yields, sequencer performance, and ability to identify the protein.  相似文献   

16.
Protein isolation by microbore HPLC is compared with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)/electroblotting methods for several major proteins from rabbit muscle. Although single-mode HPLC or SDS-PAGE/electroblotting provides excellent speed and sensitivity for submicrogram-level protein purification, neither one alone has adequate resolution for separating such a complex protein mixture. Tandem procedures, utilizing two different modes of HPLC in separate steps or a combination of single HPLC separation and SDS-PAGE/electroblotting, offer the necessary versatility. One of the major concerns in this investigation was to evaluate electroblotting techniques for microsequencing. The Aebersold et al. procedure (R.H. Aebersold, D.B. Teplow, L.E. Hood, and S.B.H. Kent (1986) J. Biol. Chem. 261, 4229-4238) was substantially modified and improved; the details of this work will be published elsewhere. These changes significantly improve repetitive yields at the low microgram level without producing high backgrounds. At lower levels the recovery of sequenceable protein currently limits our ability to obtain useful results. Starting with 250-750 micrograms of rabbit muscle crude extract, several proteins (15-70 kDa) were isolated by tandem microbore LC and PAGE/electroblotting for amino-terminal sequence analysis. It appears that the combination of electroblotting and microbore LC represents a powerful approach for microsample preparation.  相似文献   

17.
Levels of contaminants in the parts-per-billion range can adversely affect amino acid microsequence analysis (low-nanomole to subnanomole range) in two ways; (a) contaminants in solvents used in the purification of proteins and peptides can derivatize reactive amino acids to form unusual products or react with free α-NH2 groups to effectively prevent sequence analysis, and (b) contaminants in the reagents and solvents used in Edman chemistry can give spurious peaks on HPLC analysis of amino acid phenythiohydantoin derivatives or react with the phenylthiocarbamylpeptidyl derivatives to give lower initial and repetitive yields of the subsequent phenylthiohydantoin derivatives. Practical examples of these problems and their solutions are described. With proper care in the preparation of solvents and reagents for sample purification and Edman chemistry, microsequence analysis in the low-nanomole to subnanomole range can be made routine.  相似文献   

18.
A rapid and simple method for the quantitation of stained proteins bound to polyvinylidene difluoride (PVDF) membranes via the elution of Coomassie brilliant blue R-250 is described. A mixture of standard proteins was resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electroblotted onto PVDF membranes. Spectrophotometric analysis of dye eluted from protein bands in the range of 0.5-10 micrograms gave a linear change in the absorbance at 595 nm. Maximal absorbance readings were attained following 5 min of dye elution, and the readings remained unchanged for elution times up to 60 min. The method requires no unusual reagents or equipment, is suitable for the analysis of multiple samples, and does not consume the protein in the process of quantitation. This technique provides a useful means for the quantitation of proteins bound to PVDF membranes prior to amino acid sequence determination, immunological analysis, or other biochemical characterizations.  相似文献   

19.
Identification of the 329 spots visible in 2D gels of plant mitochondrial proteins is a challenge. This paper describes a 2D mini-gel protocol involving free-radical scavengers and purified reagents to make it compatible with protein sequencing, and evaluates its performance. The paper also describes a “FastBlot” sequencing cycle with the cycle time for protein sequencing from PVDF membranes reduced to less than 29 min with femtomole sensitivity. Other benefits of the cycle include reduced lag, reduced background, reduced loss of labile residues, and increased initial and repetitive yields. The procedure gave excellent results with maize mitochondrial proteins: of six protein spots that we tried to sequence, only one was blocked. The other spots yielded considerable sequence information. One spot was identified from the sequence as superoxide dismutase, while another spot corresponded to an unidentified cDNA from rice. The results of these experiments show that modifications of our previous procedures can provide good N-terminal protein sequencing from individual spots on 2D gels. The technique makes it possible to obtain sequence data, prepare gene probes, and identify many of the polypeptides in the 2D-gel map for plant mitochondria.  相似文献   

20.
A census of protein repeats.   总被引:20,自引:0,他引:20  
In this study, we analyzed all known protein sequences for repeating amino acid segments. Although duplicated sequence segments occur in 14 % of all proteins, eukaryotic proteins are three times more likely to have internal repeats than prokaryotic proteins. After clustering the repetitive sequence segments into families, we find repeats from eukaryotic proteins have little similarity with prokaryotic repeats, suggesting most repeats arose after the prokaryotic and eukaryotic lineages diverged. Consequently, protein classes with the highest incidence of repetitive sequences perform functions unique to eukaryotes. The frequency distribution of the repeating units shows only weak length dependence, implicating recombination rather than duplex melting or DNA hairpin formation as the limiting mechanism underlying repeat formation. The mechanism favors additional repeats once an initial duplication has been incorporated. Finally, we show that repetitive sequences are favored that contain small and relatively water-soluble residues. We propose that error-prone repeat expansion allows repetitive proteins to evolve more quickly than non-repeat-containing proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号