首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A protease with staphylolytic activity from Pseudomonas aeruginosa PAKS I   总被引:1,自引:0,他引:1  
The supernatant from broth cultures of Pseudomonas aeruginosa PAKS I contains two different enzymes with staphylolytic activity. One of them, namely staphylolytic enzyme, seems to be specific for glycine-rich cross-links present in the cell wall of different Gram-positive bacteria and has been previously characterized. In addition to the staphylolytic activity, the second protein which we propose to be a staphylolytic protease, has proteolytic activity against casein. This enzyme is approximately 33 kDa, has an isoelectric point ranging from 7.3 to 8.1 and an optimum pH value of 8.0 for casein hydrolysis. Staphylolytic protease was detected in the extracellular medium after 12 h of cell growth. Immunocytochemical studies suggest that the protease is located within the periplasmic space of P. aeruginosa.  相似文献   

2.
AIMS: The present study was conducted by screening soil bacteria in an attempt to isolate a bacterium that produced extracellular alkaline protease, and for purification and characterization of the protease. METHODS AND RESULTS: Soil bacteria were screened by growth on casein as the sole carbon source. Characterization of a strain isolated from soil of Abashiri, Japan indicated a taxonomic affiliation to Stenotrophomonas maltophilia, and was named S-1 strain. The purified S-1 protease, designed S. maltophilia Protease-1 (SmP-1), exhibited an optimal pH of 12.0, optimal reaction temperature of 50 degrees C and a molecular mass of approximately 40 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The cleavage sites of the oxidized-insulin B chain by SmP-1 were identified as Leu6-Cys7, Cys7-Gly8, Tyr16-Leu17 and Leu17-Val18. The N-terminal amino acid sequence of the purified alkaline protease was determined as NH2-SASAPMVSGVAALVLE. CONCLUSION: A novel extracellular alkaline serine protease was isolated from S. maltophilia strain S-1. The optimal pH of the proteolytic activity was pH 12.0. SIGNIFICANCE AND IMPACT OF THE STUDY: The extremely high optimal pH and heat stability of the alkaline serine protease SmP-1 might make it widely applicable to food and other industries.  相似文献   

3.
AIMS: The present study was conducted by screening zein-degrading bacteria in an attempt to obtain zein-degrading protease. METHODS AND RESULTS: Soil bacteria were screened by formation of a clear zone on zein plates. Characterization of a zein-degrading bacterium indicated a taxonomic affiliation to Bacillus pumilus, and was named MS-1 strain. The strain produced two different types of extracellular proteases, BPP-A and BPP-B. In this study, we purified and characterized BPP-A because it exhibited a higher ability to hydrolyze zein than BPP-B. When casein was used as the substrate, the optimal pH for BPP-A was 11.0. In BPP-A, zein was better substrate than casein at pH 13.0, whereas casein was better one than zein at pH 11.0. The bppA gene encoded a 383-amino acid pre-pro form of BPP-A, and mature BPP-A contained 275 amino acid residues. It was concluded that BPP-A belonged to the subtilisin family. CONCLUSION: A zein-degrading bacterium assigned to B. pumilus produced two different types of extracellular proteases, BPP-A and BPP-B. BPP-A exhibited an ability to hydrolyze zein in an extreme alkaline condition. SIGNIFICANCE AND IMPACT OF THE STUDY: This is a first report on screening for zein-degrading micro-organisms. The subtilisin-like protease BPP-A is possible to utilize as an industrial enzyme for the production of zein hydrolysates.  相似文献   

4.
An extracellular protease from Flavobacterium arborescens has been purified to an apparent homogeneity and characterized. The enzyme is most active at pH 8-10.5, requires no metal cofactor, and is inhibited by diisopropyl fluorophosphate. The protease is nonspecific, is active at temperatures up to 60 degrees C, and is completely free of nucleases. The ease of purification and freedom from nucleolytic contaminants make the protease a useful deproteinizing agent in DNA and RNA manipulations.  相似文献   

5.
Pseudomonas aeruginosa secretes multiple proteases that have been implicated as virulence factors and the detection of each specific enzyme can be difficult to determine. Unlike the three Pseudomonas enzymes that have been well characterized (elastase A, elastase B, and alkaline protease), the activity of protease IV in multiple assays has yet to be described. This study defines new assays for Pseudomonas proteases and compares protease IV activity to the activities of elastase A, elastase B, and alkaline protease. Six in vitro assays were studied: zymography, elastin congo red assay, staphylolytic assay, colorimetric peptide assay, solid-phase colorimetric peptide assay, and poly-l-lysine degradation. Casein zymography distinguished protease IV from elastase B and alkaline protease, and gelatin zymography differentiated all four proteases. The elastin congo red assay detected mainly elastase B while the staphylolytic assay was specific for elastase A. Protease IV activity was assayed specifically by the colorimetric assay and two new assays, the solid-phase colorimetric assay and degradation of poly-L-lysine in the presence of EDTA. Alkaline protease could be specifically assayed by poly-L-lysine degradation in the presence of N-alpha-p-tosyl-L-lysine chloromethyl ketone. The results identified three specific assays for protease IV, a new assay specific for alkaline protease, and showed that protease IV has a distinct enzymatic specificity relative to the three other Pseudomonas proteases.  相似文献   

6.
An extracellular lipase (triacylglycerol acylhydrolase, EC 3.1.1.3) from Pseudomonas aeruginosa KKA-5 hydrolyzed castor oil by 90%. Purification of this castor oil-hydrolyzing lipase included ammonium sulfate precipitation and successive hydroxylapatite column chromatography. The enzyme was purified 518-fold. It was homogeneous electrophoretically and its molecular weight was estimated to be 30 kDa. The enzyme was stable up to 45°C and retained its activity in the alkaline pH range. Lipase was highly stable in the presence of aqueous organic solvents like methanol and ethanol. It was weakly inhibited in the presence of acetone. The anionic surfactant, sodium dodecyl sulfate, was inhibitory while the cationic surfactants, Triton X-100 and Tween-80 appreciably enhanced activity. Lipase was stabilized significantly by Ca2+. Inactivation of the enzyme by EDTA was overcome by sequential CaCl2 treatment. This finding suggests the existence of a calcium-binding site in Pseudomonas aeruginosa KKA-5 lipase. Received 22 January 1998/ Accepted in revised form 27 April 1998  相似文献   

7.
Fish powders and fish protein hydrolysates (FPH) from sardinella (Sardinella aurita) were prepared and tested as growth media for alkaline protease production by Pseudomonas aeruginosa MN7. Cultivated in fish substrate as carbon source, the strain exhibited a slightly greater protease production (about 7800 U ml–1) than that obtained with commercial peptones (about 7222 U ml–1). Furthermore, P. aeruginosa MN7 produced the same amount of protease when cultivated in medium containing only fish substrate or that containing all ingredients, indicating that the strain can obtain its carbon and nitrogen requirements directly from whole fish proteins. Moreover, it was found that extensive hydrolysis of fish proteins did not increase protease formation. Protease production in media containing only FPH prepared by Alcalase was about 70% of those obtained with MN7 protease digest of fish protein or with meat-fish powder. These results indicate that sardinella substrates are an excellent carbon and nitrogen source for the growth of P. aeruginosa MN7 and the production of protease.  相似文献   

8.
短小芽孢杆菌2080碱性蛋白酶的纯化与性质   总被引:1,自引:0,他引:1  
短小芽孢杆菌(Bacillus pumilus)2080碱性蛋白酶的发酵液经超滤、硫酸铵沉淀、CM Sepharose Fast Flow和DEAE Sepharose Fast Flow离子交换层析得到了纯化的组分。SDS-PAGE电泳分析显示其分子量约为61kDa。酶学性质研究表明,该纯化酶的最适pH为10.5,最适温度为50℃。  相似文献   

9.
铜绿假单胞菌产蛋白酶的发酵条件优化   总被引:2,自引:0,他引:2  
【目的】鉴定一株来源于酱油曲能够分泌蛋白酶的铜绿假单胞菌CAU342A,优化其产蛋白酶的发酵条件。【方法】采用形态学观察、16S r RNA基因序列比对和生理生化方法鉴定菌株CAU342A;通过碳源、氮源、初始pH、温度、表面活性剂及发酵时间的单因素优化和正交试验获得最适发酵条件。【结果】菌株CAU342A被鉴定为铜绿假单胞菌(Pseudomonas aeruginosa),其最适发酵产酶条件为(质量体积比):3%酒糟,1.5%酵母浸提物,0.05%吐温-80,0.5%NaCl,0.7%K_2HPO_4,0.3%KH_2PO_4,0.04%MnSO_4,培养基初始pH 7.5,30°C培养72 h。在最适发酵条件下,该菌株最大产酶水平达到2 653.5 U/m L。蛋白酶酶谱分析表明该菌株能够产生至少4种具有蛋白酶活性的同工酶,其中两个主要酶谱带对应分子量分别为32 k D和50 k D。【结论】铜绿假单胞菌CAU342A高产蛋白酶,具有很大的工业应用潜力。  相似文献   

10.
Pseudomonas aeruginosa UW-1 produced 17–24 g L−1 rhamnolipid in vegetable oil-containing media in shake flask cultures in 13 days. In time course studies of growth and rhamnolipid production in a salts medium containing 6% canola oil, total bacterial count reached 2.6 × 1010 CFU ml−1 after 48 h and a maximum rhamnolipid yield of 24.3 g L−1 was obtained after 9 days. Rhamnolipid components were purified and separated by chloroform-methanol extraction and TLC chromatography. The major rhamnolipid components were characterised as L-rhamnosyl-β-hydroxydecanoyl-β-hydroxydecanoate and L-rhamnosyl-L-rhamnosyl-β-hydroxydecanoyl-β-hydroxydecanoate by nuclear magnetic resonance and mass spectrometry. The components were separated preparatively by silica gel column chromatography. The recovered monorhamnosyl fraction contained no dirhamnosyl moiety while the recovered dirhamnosyl fraction contained 5% of the monorhamnosyl moiety when analyzed by HPLC. The ratio of mono- to dirhamnosyl components produced by P. aeruginosa UW-1 was determined by HPLC to be 4 : 1 by weight. Purified mono- and dirhamnosyl components had the same CMC value of 40 μg ml−1 and decreased the surface tension of water to 27.7 and 30.4 dynes cm−1, respectively. Received 04 April 1997/ Accepted in revised form 15 July 1997  相似文献   

11.
地衣芽孢杆菌JF-UN122碱性蛋白酶的分离纯化与性质   总被引:4,自引:0,他引:4  
地衣芽孢杆菌JF—UN122的发酵液,以硫酸铵分段盐析得粗酶,再经DEAE—Sephadex A—50吸附色素、CM—Sephadex C-50离子交换及Sephadex G—75柱层析等步骤获得电泳纯的碱性蛋白酶。SDS-PAGE测得其分子量为31.6KDa。以酪蛋白为底物时,酶的Km为5.26μg/min,Vm为20.8μg/min。酶的最适pH为9.0,最适温度为55℃,pH5~11,55℃以下酶较稳定,对1mol/LH2O2具有一定的耐氧化性。PMSF对酶抑制,二硫苏糖醇(DTT)有保护作用,钙离子、EDTA、SDS、尿素等对酶无明显影响。  相似文献   

12.
13.
Our results demonstrated that Pseudomonas aeruginosa serine protease IV degraded apolipophorin III from the haemolymph of Galleria mellonella larvae. ApoLp-III protein was degraded in a stepwise manner. Four intermediate forms of 15, 13.3, 11.9 and 9.5 kDa were detected after 30 min digestion while only one of 5.6 kDa was released after 1-h incubation time. N-terminal amino acid sequence analysis of 5.6 kDa peptide revealed that it was released from apoLp-III after cleavage between lysine 70 and 71. ApoLp-III degradation by protease IV was inhibited by 1 mM TLCK but not 1 mM EDTA, additionally demonstrating that digestion was catalysed by a serine protease. Our data also indicated apoLp-III degradation in vivo during P. aeruginosa infection of G. mellonella larvae.  相似文献   

14.
An extracellular serine alkaline protease of Bacillus clausii GMBAE 42 was produced in protein-rich medium in shake-flask cultures for 3 days at pH 10.5 and 37°C. Highest alkaline protease activity was observed in the late stationary phase of cell cultivation. The enzyme was purified 16-fold from culture filtrate by DEAE-cellulose chromatography followed by (NH4)2SO4 precipitation, with a yield of 58%. SDS-PAGE analysis revealed the molecular weight of the enzyme to be 26.50 kDa. The optimum temperature for enzyme activity was 60°C; however, it is shifted to 70°C after addition of 5 mM Ca2+ ions. The enzyme was stable between 30 and 40°C for 2 h at pH 10.5; only 14% activity loss was observed at 50°C. The optimal pH of the enzyme was 11.3. The enzyme was also stable in the pH 9.0–12.2 range for 24 h at 30°C; however, activity losses of 38% and 76% were observed at pH values of 12.7 and 13.0, respectively. The activation energy of Hammarsten casein hydrolysis by the purified enzyme was 10.59 kcal mol−1 (44.30 kJ mol−1). The enzyme was stable in the presence of the 1% (w/v) Tween-20, Tween-40,Tween-60, Tween-80, and 0.2% (w/v) SDS for 1 h at 30°C and pH 10.5. Only 10% activity loss was observed with 1% sodium perborate under the same conditions. The enzyme was not inhibited by iodoacetate, ethylacetimidate, phenylglyoxal, iodoacetimidate, n-ethylmaleimidate, n-bromosuccinimide, diethylpyrocarbonate or n-ethyl-5-phenyl-iso-xazolium-3′-sulfonate. Its complete inhibition by phenylmethanesulfonylfluoride and relatively high k cat value for N-Suc-Ala-Ala-Pro-Phe-pNA hydrolysis indicates that the enzyme is a chymotrypsin-like serine protease. K m and k cat values were estimated at 0.655 μM N-Suc-Ala-Ala-Pro-Phe-pNA and 4.21×103 min−1, respectively.  相似文献   

15.
An extracellular alkaline protease produced by Bacillus licheniformis AP-1 was purified 76-fold, yielding a single 28 kDa band on SDS-PAGE. It was optimally active at pH 11 and at 60 degrees C (assayed over 10 min). The protease was completely inhibited by phenylmethylsulfonyl fluoride and diodopropyl fluorophosphate, with little increase upon Ca2+ and Mg2+ addition.  相似文献   

16.
An xylanase producing alkaliphilic Micrococcus sp was isolated from an alkaline soda lake. Xylose and xylan induced enzyme production but no activity was detected when it was grown using other carbohydrate sources. The level of xylanase production was higher in the presence of xylose than in the presence of xylan. The enzyme was purified to homogeneity and its molecular weight was estimated to be 56 kD on SDS-PAGE. The optimum temperature and pH for xylanase activity were 55°C and 7.5–9.0, respectively. Sixty per cent of the maximum activity was displayed at pH 11. The enzyme was very stable in the pH range of 6.5–10 and up to a temperature of 40°C. Xylanase activity was inhibited by Cu2+ and Hg2+. Received 03 October 1997/ Accepted in revised form 03 February 1998  相似文献   

17.
Cells of Pseudomonas aeruginosa were adhered to polymethyl methacrylate, polyvinyl acetate, polyvinyl chloride, polyhydroxyethyl methacrylate, mixed-acrylic, silicone, and natural latex materials. Planktonic bacteria and bacteria that adhered to the test materials were compared for their uptake of either L-[3,4,5-3H] leucine or [methyl-3H] thymidine during growth in a minimal medium. Leucine incorporation was reduced and thymidine uptake was negligible in adherent bacteria for up to 8 h following primary attachment by which time cells in the planktonic state showed active uptake of both substrates. These reduced uptake periods correlated with lag phases of growth of adherent cells as determined with a sonication-release plate count procedure and analyses of adenosine triphosphate (ATP). The extent of the lag phase of the adherent populations was dependent on initial densities of adhered cells and the nature of the substratum. Received 02 December 1998/ Accepted in revised form 25 April 1999  相似文献   

18.
Lipase from Pseudomonas aeruginosa LP602, a bacterial strain isolated from a domestic wastewater sample, was preliminarily characterized. The enzyme exhibited maximum lipolytic activity at pH 8.0 where it was also stably maintained. At 55°C, the lipase had the highest activity but not stability. The enzyme was insensitive to EDTA and to many ions tested except Zn2+. It was sensitive to SDS but not to Tween-20, Tween-80 or Triton X-100. The enzyme was active towards a number of commercial food grade fats and oils. A suitable medium formula for lipase production was MMP containing 6.25% whey as a carbon source, 1% soybean oil as inducer and 0.5% yeast extract supplement. The culture was fed with glucose to a final concentration of 0.1% at the 15th hour of incubation. Lipase production under this condition was 3.5 U ml−1. Both P. aeruginosa LP602 cells and the lipase were shown to be usable for lipid-rich wastewater treatment. Received 21 April 1998/ Accepted in revised form 6 August 1998  相似文献   

19.
20.
构建铜绿假单胞菌lasI,rhlI基因功能缺陷株,为进一步阐明氦氧饱和高气压暴露条件诱导lasI,rhlI基因介导铜绿假单胞菌毒力调节的分子机制研究奠定基础。用双亲株接合转移法删除lasI,rhlI基因ORF编码区,通过RT-PCR方法验证目标基因编码序列mRNA的缺失;通过对细菌生长增殖能力、弹性蛋白酶代谢活性和细菌绿脓菌素分泌能力等表型的测定,验证目标基因编码序列缺失后的基因调节功能的缺陷。结果表明成功构建铜绿假单胞菌lasI,rhlI基因功能缺陷株,可作为进一步研究的基因工程菌。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号