首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acanthamoeba myosin IB is a single-headed enzyme containing one heavy chain of 125,000 daltons, one light chain of 27,000 daltons, and one light chain of 14,000 daltons. The 125,000- and 27,000-dalton polypeptides are consistently found in a molar ratio of 1:1. The content of the 14,000-dalton peptide is usually only 0.1 to 0.2, and always less than 0.5, relative to the other two chains and might be a contaminant or a degradation product of one of the other chains. The specific activities of the Ca2+-ATPase, (K+, EDTA)-ATPase, and (after phosphorylation of its heavy chain by a specific kinase) actin-activated Mg2+-ATPase of Acanthamoeba myosin IB are similar to those of rabbit skeletal muscle myosin. After treatment of the enzyme with 2 M LiCl, the 125,000-dalton heavy chain of Acanthamoeba myosin Ib can be obtained, by chromatography on Sephadex G-200, essentially free of the 14,000-dalton peptide and more than 90% free of the 27,000-dalton peptide. This isolated heavy chain has the same specific ATPase activities as the original enzyme. Therefore, the heavy chain of Acanthamoeba myosin IB contains the ATPase catalytic site, the actin-binding site, and the phosphorylation site and is fully active enzymatically in the absence of light chains.  相似文献   

2.
The initial step of intermolecular covalent assembly of immunoglobulins molecules involves formation of heavy chain-light chain or heavy chain-heavy chain disulfide bonds. Using QAE-Sephadex chromatography to isolate microsomal nascent polypeptides, we have shown that this initial step of intermolecular covalent assembly occurs, to a substantial extent, on nascent heavy chains, as well as on completed heavy chains as previously demonstrated by others. In MPC 11 mouse myeloma cells, completed light chains are assembled covalently to nascent heavy chains, whereas in MOPC 21 mouse myeloma cells, completed heavy chains are assembled covalently to nascent heavy chains. These results are consisted with the heavy-light half-molecule being the major initial intermediate in the assembly of MPC 11 IgG2b and heavy-heavy dimer being the major initial intermediate formed in assembly of MOPC 21 IgG1. The nascent MPC 11 heavy chain must be at least 38,000 daltons in size before assembly with the light chain occurs, even though the heavy chain cysteine involved in this disulfide bond is 131 residues (approximately 15,000 daltons) from the NH2 terminus. In addition, pulse-chase labeling studies of MPC 11 cells have shown that the assembly of completed light chains with the nascent heavy chain must occur within a few minutes of the synthesis of the light chain even though a large excess of unassembled MPC 11 light chains remain inside the cell for an average time of 2 h before being secreted.  相似文献   

3.
Vertebrate skeletal fast-twitch muscle myosin subfragment 1 is comprised of a heavy polypeptide chain of 95,000 daltons and one alkali light chain of either 21,000 daltons (A1) or 16,500 daltons (A2). In the present study, the heavy chain of subfragment 1 has been separated from the alkali light chain under nondenaturing conditions resembling those in vivo. The heavy chain exhibits the same ATPase activity as myosin subfragment 1, indicating that the heavy chain alone contains the catalytic site for ATP hydrolysis and that the alkali light chains are nonessential for activity. The free heavy chain associates readily at 4 degrees C or 37 degrees C with free A1 or A2 to form the subfragment 1 isozymes SF1(A1) or SF1(A2) respectively. Actin activates the MgATPase activity of the heavy chain in the same manner as occurs with the native isozyme, indicating that the heavy chain possesses the actin binding domain.  相似文献   

4.
Analysis of nascent heavy chains isolated from MPC11 (gamma 2b heavy chains) and MOPC 21 (gamma 1 heavy chains) mouse myeloma cells demonstrates an accumulation of nascent heavy chains which are slightly smaller in mass (approximately 35,000 daltons) than nascent heavy chains which have just been glycosylated (approximately 38,000 daltons). The accumulation of 35,000-dalton nascent heavy chain appears to be a consequence of the glycosylation process since tunicamycin, an inhibitor of glycosylation, abolishes the apparent translational block manifested by the accumulation of 35,000-dalton nascent chains. Tunicamycin also causes a 15 to 25% increase n the relative rate of synthesis of heavy chain compared to the corresponding rate of synthesis of the nonglycosylated light chain synthesized by the same cell. These results suggest that the translation block, caused by the glycosylation process, of heavy chain synthesis contributes to the imbalance of heavy chain and light chain biosynthesis observed in malignant and normal lymphoid cells.  相似文献   

5.
L W Bergman  W M Kuehl 《Biochemistry》1978,17(24):5174-5180
The initial glycosylation of MPC 11 gamma 2b heavy chains occurs quantitatively in vivo when the nascent heavy chains reach a size of approximately 38 000 daltons. Nonglycosylated, completed MPC 11 heavy chains cannot be glycosylated in these cells. Other classes of mouse heavy chains (i.e., mu, alpha, and gamma 1) also appear to be glycosylated as nascent chains; nonglycosylated, completed heavy chains cannot be glycosylated by the cell in any of these cases. In contrast, variant MPC 11 cells synthesizing a heavy chain with a carboxy-terminal deletion appear to glycosylate some heavy chains prior to chain completion and some heavy chains after chain completion and release from the polysomes. Similar to the variant MPC 11 cells, MOPC 46B cells (which synthesize a kappa light chain containing an oligosaccharide attached to an asparagine located 28 residues from the amino terminus) glycosylate the majority of light chains after prior to chain completion but also some light chains after chain completion and release from the polysomes. In addition, it appears that, although completed MOPC 46B light chains can be glycosylated if they are present in a monomeric form, they cannot be glycosylated if they are present in a covalent dimeric form.  相似文献   

6.
A kappa-light chain variable region (V kappa) dominantly employed in the serum antibody response of A/J mice to streptococcal group A carbohydrate (GAC) has been termed VK1GAC. Examination of in vitro recombinants between the isolated heavy and light chains of VK1GAC+ and VK1GAC-anti-GAC hybridomas and non-GAC-binding myeloma proteins indicated that two antisera (anti-Id5 and anti-Id20) recognized the VK1GAC light chain when it was free in solution or paired with several heterologous heavy chains. Screening of a panel of A/J anti-GAC monoclonal antibodies with these antisera showed almost complete concordance between Id5 and Id20 expression and the presence of VK1GAC light chain as detected by its unique isoelectric focusing spectrotype. These antisera were used to examine serum expression of the VK1GAC light chain in normal and hyperimmune serum of A/J mice. Normal A/J serum contained from 20 to 100 micrograms Id5/ml serum, whereas only 1 to 10 micrograms Id20/ml serum was detected. The levels of both VK1GAC idiotypes increased dramatically 10- to 20-fold after hyperimmunization of mice with group A vaccine. When serum IgG from normal and immune mice was fractionated into the IgG subclasses (IgG1, IgG2a, and IgG3), it was found that the VK1GAC light chain does not pair randomly with heavy chains of the IgG subclasses, but rather is associated preferentially with heavy chains of the IgG3 subclass whether or not it is associated with antibodies to GAC. These results suggest that the heavy chain pairing exhibited by this VK product may not be random.  相似文献   

7.
Myosin purified from the body-wall muscle-defective mutant E675 of the nematode. Caenorhabditis elegans, has heavy chain polypeptides which can be distinguished on the basis of molecular weight. On SDS-polyacrylamide gels, bands are found at 210,000 and 203,000 daltons. This is in contrast to myosin from the wild-type, N2, which has a single heavy chain band at 210,000 daltons. Both heavy chains of E675 are found in body-wall muscle (Epstein, Waterston and Brenner, 1974).When native myosin from E675 is fractionated on hydroxyapatite, it is separated into myosin containing predominantly one or the other molecular weight heavy chain and myosin containing a mixture of the heavy chains. Comparison of the CNBr fragments of myosin that contains predominantly 210,000 dalton heavy chains with those of myosin that contains predominantly 203,000 dalton heavy chains reveals multiple differences. These differences are not explained by the difference in molecular weight of the heavy chains, but may be explained if each type of heavy chain is the product of a different structural gene. Furthermore, because there are fractions which exhibit >80% 210,000 or >80% 203,000 dalton heavy chain, there is myosin which is homogeneous for each of the heavy chains.Although N2 myosin has only a single molecular weight heavy chain, it too is fractionated by hydroxyapatite. By comparing the CNBr fragments of different myosin fractions, we show that N2, like E675, has two kinds of heavy chains.E190, a body-wall muscle-defective mutant in the same complementation group as E675, is lacking the myosin heavy chain affected by the e675 mutation. This property has allowed us to determine by co-purification of labeled E190 myosin in the presence of excess, unlabeled E675 myosin that most, if not all, of the myosin that contains two different molecular weight heavy chains is due to the formation of complexes between homogeneous myosins and not to a heterogeneous myosin.  相似文献   

8.
The I.29 cell line is a nonsecreting B-cell leukemia which bears two different immunoglobulin isotypes on its surface, IgM and IgX. The I.29 cells were hybridized with nonsecreting myeloma cells giving rise to dozens of immunoglobulin secreting hybridomas. These fall into three groups differing in the class of immunoglobulin they secrete. Cells of the first group secrete pentameric IgM (, ), those of the second group secrete an unknown immunoglobulin, IgX, which may constitute an allotype of IgA, and those of the third group produce light chains only. The two complete immunoglobulins, IgM and IgX, have the same idiotype, as revealed by serological cross-reactivity of an exhaustively absorbed rabbit anti-idiotype serum.The molecular sizes of the heavy chains of the secreted IgM and IgX are slightly smaller than the and chains, respectively, which are derived from the surface of normal B cells as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.Abbreviations used in this paper Ig immunoglobulin - NMS normal mouse serum - NaDodSO4 sodium dodecyl sulfate - PAGE polyacrylamide gel electrophoresis - 2ME 2-mercaptoethanol - BPB bromophenol blue - NP40 nonidet P40 This particular immunoglobulin heavy chain has not been fully characterized. It is neither , , nor but is related to, although not identical with, . Because this immunoglobulin has unique properties, it is referred to as IgX.  相似文献   

9.
N D Vu  P D Wagner 《Biochemistry》1987,26(15):4847-4853
Limited proteolysis was used to identify regions on the heavy chains of calf thymus myosin which may be involved in ATP and actin binding. Assignments of the various proteolytic fragments to different parts of the myosin heavy chain were based on solubility, gel filtration, electron microscopy, and binding of 32P-labeled regulatory light chains. Chymotrypsin rapidly cleaved within the head of thymus myosin to give a 70,000-dalton N-terminal fragment and a 140,000-dalton C-terminal fragment. These two fragments did not dissociate under nondenaturing conditions. Cleavage within the myosin tail to give heavy meromyosin occurred more slowly. Cleavage at the site 70,000 daltons from the N-terminus of the heavy chain caused about a 30-fold decrease in the actin concentration required to achieve half-maximal stimulation of the magnesium-adenosinetriphosphatase (Mg-ATPase) activity of unphosphorylated thymus myosin. The actin-activated ATPase activity of this digested myosin was only slightly affected by light chain phosphorylation. Actin inhibited the cleavage at this site by chymotrypsin. In the presence of ATP, chymotrypsin rapidly cleaved the thymus myosin heavy chain at an additional site about 4000 daltons from the N-terminus. Cleavage at this site caused a 2-fold increase in the ethylenediaminetetraacetic acid-ATPase activity and 3-fold decreases in the Ca2+- and Mg-ATPase activities of thymus myosin. Thus, cleavage at the N-terminus of thymus myosin was affected by ATP, and this cleavage altered ATPase activity. Papain cleaved the thymus myosin heavy chain about 94,000 daltons from the N-terminus to give subfragment 1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Myosin and myosin light-chain kinase have been isolated and characterized from small quantities of normal and SV40-transformed, murine astrocytic neuroglial cells in culture and from intact normal mouse brain. Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis of the astrocyte myosins revealed a heavy chain of 200,000 daltons and two light chains of 20,000 and 15,000 daltons. These myosins are similar to other cytyplasmic myosins. The astrocyte 20,000-dalton light chain can be phosphorylated by an endogenous myosin light-chain kinase which has properties similar to those of the myosin light-chain kinase found in human platelets. No differences were detected in either the astrocyte myosins or myosin light-chain kinases between (a) the normal and transformed cells, (b) the transformed cells grown at the permissive and nonpermissive temperatures, or (c) the SV40 wild-type and A-mutant transformants.  相似文献   

11.
Summary Physarum myosin is composed of a heavy chain of about 225,000 daltons and two small polypeptides of 17,700 and 16,100 daltons, called light chain one (LC 1) and two (LC 2). Light chain one is shown to belong to the general class of regulating light chains by two independent criteria. After denaturation, purification and renaturation of thePhysarum light chains only LC 1 will combine with scallop myofibrils in which one myosin regulatory light chain has been removed. This LC 1 can restore inhibition of the ATPase activity of the myofibrils at 10–8 M Ca++ just as well as light chains from rabbit skeletal myosin. Secondly, this LC 1 is the only component of the myosin that is significantly phosphorylated by an endogenous kinase present in crude actomyosin. An active phosphatase is also present. Preliminary results could not detect calcium sensitivity for either kinase or phosphatase, nevertheless the importance of phosphorylation in affecting activity of biological systems suggests that LC 1 may serve some regulating function for plasmodial actomyosin.  相似文献   

12.
The Mg2+ATPase activity of the myosin of a myeloid leukemia cell line (Ml) was not activated by purified Ml actin or by muscle actin alone. Activation required the presence of a cellular fraction as a cofactor in addition to the actin, when Mg2+ATPase was stimulated as much as 20-fold. The cofactor was partially purified and characterized. 1) Its molecular weight was estimated as 45,000 to 55,000 daltons by gel filtration and as 45,000 daltons by SDS polyacrylamide gel electrophoresis. 2) The cofactor was a light chain kinase that phosphorylated both the L1 and L2 light chains of the Ml cell myosin, but not the L3 or heavy chain.  相似文献   

13.
We have investigated in detail the cleavage of human high molecular weight (HMW) kininogen by human plasma kallikrein and revealed the formation of a nicked kininogen and a novel kinin-free protein (KFP) as intermediate cleavage products. The cleavage of a single chain HMW kininogen (Mr=120,000) by plasma kallikrein was a three-step reaction. The first cleavage yielded a nicked kininogen composed of two disulfide-linked 62,000 and 56,000 daltons chains. The second cleavage yielded kinin and an intermediate kinin-free protein, KFP-I, which was apparently of equal size to the nicked kininogen. The third cleavage yielded a stable kinin-free protein, KFP-II, composed of two disulfide-linked 62,000 and 45,000 daltons chains. The liberation of an 8,000 daltons fragment was identified when the 56,000 daltons chain isolated by SP-Sephadex C-50 chromatography of reduced and alkylated KFP-I was cleaved by plasma kallikrein into the 45,000 daltons chain. Although the antiserum against HMW kininogen cross-reacted with low molecular weight (LMW) kininogen, the antiserum against the 45,000 daltons chain was specific for HMW kininogen. These results suggest that the antigenic determinant groups common to HMW and LMW kininogens are located in the 62,000 daltons heavy chain, while those specific for HMW kininogen are located in the 45,000 daltons light chain, which is known to retain blood coagulation activity.  相似文献   

14.
A high salt extract of bovine brain was found to contain a protein kinase which catalyzed the phosphorylation of heavy chain of brain myosin. The protein kinase, designated as myosin heavy chain kinase, has been purified by column chromatography on phosphocellulose, Sephacryl S-300, and hydroxylapatite. During the purification, the myosin heavy chain kinase was found to co-purify with casein kinase II. Furthermore, upon polyacrylamide gel electrophoresis of the purified enzyme under non-denaturing conditions, both the heavy chain kinase and casein kinase activities were found to comigrate. The purified enzyme phosphorylated casein, phosvitin, troponin T, and isolated 20,000-dalton light chain of gizzard myosin, but not histone or protamine. The kinase did not require Ca2+-calmodulin, or cyclic AMP for activity. Heparin, which is known to be a specific inhibitor of casein kinase II, inhibited the heavy chain kinase activity. These results indicate that the myosin heavy chain kinase is identical to casein kinase II. The myosin heavy chain kinase catalyzed the phosphorylation of the heavy chains in intact brain myosin. The heavy chains in intact gizzard myosin were also phosphorylated, but to a much lesser extent. The heavy chains of skeletal muscle and cardiac muscle myosins were not phosphorylated to an appreciable extent. Although the light chains isolated from brain and gizzard myosins were efficiently phosphorylated by the same enzyme, the rates of phosphorylation of these light chains in the intact myosins were very small. From these results it is suggested that casein kinase II plays a role as a myosin heavy chain kinase for brain myosin rather than as a myosin light chain kinase.  相似文献   

15.
Trinitrobenzene selectively dinitrophenylates SH1, a specific thiol in the myosin heavy chain which contains 1 mol of this cysteinyl residue. When the SH1-DNP-myosin thus obtained was irradiated with a mercury lamp, a cross-linked product was formed with a molecular weight of about 220K daltons. It was shown that this product was composed of both heavy and light chains by fluorescence labeling of the heavy chain at SH2, another specific thiol, and immune reaction using an anti-light chain antibody, respectively.  相似文献   

16.
Digestion of insoluble myosin with soluble papain produces heavy meromyosin subfragment 1 (HMM-S-1) having ATPase activity and the ability to combine with actin. These fragments of myosin do not undergo appreciable changes in ATPase activity, chromatographic behavior, or actin combining ability during digestion up to 2 h but, as shown by sodium dodecyl sulfate gel electrophoresis, several splits occur in both the heavy and light polypeptide chains. The largest fragment of heavy chain present in fast, slow, cardiac and embryonic HMM-S-1 has a mass of 89,000 daltons. This fragment undergoes further degradation resulting in fragments having masses of the order of 70,000, 50,000, and 27,000 daltons. The latter fragment and other material resulting from the proteolysis of myosin appear as bands in that region of the gels where the light chains are found in electrophoretograms of the parent myosin. The precise size of the fragments and the rates of their formation depend on the type of myosin; slow and cardiac HMM-S-1 and their fragments show greater stability. Embryonic myosin has properties intermediate between those of fast skeletal and cardiac myosin. Experiments involving the combination of HMM-S-1 with actin and experiments with glutaraldehyde cross linking and chromatography on Sephadex G-200 indicate that the fragments separated by sodium dodecyl sulfate gel electrophoresis are held together by noncovalent forces in HMM-S-1.  相似文献   

17.
Evidence for an IgD homologue on chicken lymphocytes   总被引:14,自引:0,他引:14  
Chicken lymphocyte membrane immunoglobulins (Ig), were precipitated with mouse monoclonal antibodies specific for heavy and light chain isotypes and analyzed by polyacrylamide gel electrophoresis. Very little or no membrane-bound IgG and IgA was detected. After sequential precipitation and removal of IgM reactive with any of three monoclonal anti-mu antibodies, anti-light chain antibody precipitated residual Ig with a relative electrophoretic mobility similar to that of IgM. Under reducing conditions, these surface Ig molecules had a heavy chain that appeared slightly larger (approximately 81,000 daltons) than mu-chain (approximately 79,000 daltons), and light chains of approximately 25,000 daltons. Complete clearance of membrane-bound IgM reactive with an anti-mu allotype antiserum left similar molecules precipitate by monoclonal anti-light chain antibody. These non-IgM molecules could be detected on the surface of lymphocytes from blood, spleen, bursa and the B cell line RAV-1, but not from thymus or blood from an agammaglobulinemic chicken. After capping of B cell surface IgM with anti-mu, immunofluorescent staining with anti-light chain antibody revealed residual Ig molecules disturbed across the surface of more than 90% of the IgM-bearing cells. The data suggest the existence of an avian homologue of mammalian IgD. Affinity-purified goat anti-mu antibodies and a fourth monoclonal anti-mu antibody reacted with both IgM and the putative IgD molecules, which suggests that the IgD homologue shares at least one common determinant with chicken IgM.  相似文献   

18.
Previous crystallographic studies in this laboratory demonstrated that immunoglobulin light chains with the same amino acid sequence can have at least two and probably three or more conformations, depending on whether the second member of an interacting pair is a light or heavy chain. If a heavy chain is not available in the assembly medium, a second light chain plays the structural role of the heavy chain in the formation of a dimer. In the present work, the lambda-type light chains were dissociated from the heavy chains of a serum IgG1 immunoglobulin from the patient Mcg and reassembled noncovalently into a dimer. The reassembly process was completed by allowing the penultimate half-cystine residues to form an interchain disulfide bond. The covalently linked dimer was compared with the Mcg urinary Bence-Jones dimer, for which an atomic model has been fitted to a 2.3-A electron density map. The assembled dimer and the native Bence-Jones protein were indistinguishable in their chromatographic and electrophoretic properties, as well as in their activity in the binding of bis(dinitrophenyl)lysine. These results indicate that the light chains can be converted into the two types of Bence-Jones conformational isomers. The procedure was also reversed: the two Bence-Jones isomers were dissociated and reassembled as the single type of isomer associating with each of two heavy chains in the IgG1 protein. The change in activity occurring when a light chain associates with a heavy chain instead of a second light chain is illustrated by the fact that the Mcg IgG1 immunoglobulin does not bind dis(dinitrophenyl)lysine in measurable amounts.  相似文献   

19.
Synthesis of myosin heavy and light chains in muscle cultures   总被引:11,自引:8,他引:3       下载免费PDF全文
The weight ratio of myosin/actin, the myosin heavy chain content as the percentage of total protein (wt/wt), and the kinds of myosin light chains were determined in (a) standard muscle cultures, (b) pure myotube cultures, and (c) fibroblast cultures. Cells for these cultures were obtained from the breast of 11-day chick embryos. Standard cultures contain, in addition to myotubes, large numbers of replicating mononucleated cells. By killing these replicating cells with cytosine arabinoside, pure myotube cultures were obtained. The myosin/actin ratio (wt/wt) for pure myotube, standard muscle, and fibroblast cultures average 3.1, 1.9, and 1.1 respectively. By day 7, myosin in myotube cultures represents a minimum of 7% of the total protein, but about 3% in standard cultures and less than 1.5% in fibroblasts cultures. Myosin from standard cultures contains light chain LC1, LC2, and LC3, with a relative stoichiometry of the molarity of 1.0:1.9:0.5 and mol wt of 25,000, 18,000 and 16,000 daltons, identical to those in adult fast muscle. Myosin from pure myotubes exhibits light chains LC1 and LC2, with a molar ratio of 1.5:1.6. Myosin from fibroblast cultures possesses two light chains with a stoichiometry of 1.8:1.8 and mol wt of 20,000 and 16,000 daltons. Clearly, the faster migrating light chain, LC3, found in standard cultures is synthesized not by the myotubes but ty the mononucleated cells. In myotubes, both the assembly of the sarcomeres and the interaction between thick and thin filaments required for spontaneous contraction occur in the absence of light chain LC3. One set of structural genes for the myosin light and heavy chains appears to be active in mononucleated cells, whereas another set appears to be active in multinucleated myotubes.  相似文献   

20.
Two mutant cell lines derived from the MPC-11 mouse myeloma synthesize immunoglobulin with abnormal heavy chains and normal light chains. The defective heavy chains have molecular weights of 38,000-42,000 (M3.11) and 50,000 daltons (ICR 11.19) as compared to 55,000 daltons of the wild-type. The glycosylation of the defective heavy chains demostrated several unusual features: first, 30-50% of the M3.11 heavy chain contained no carbonydrate, while 100% of the wildtype and ICR 11.19 heavy chains were glycosylated; second, the glycopeptides of the M3.11 heavy chains revealed an altered gel filtration pattern when compared with the wild-type; and third, digestion with an endoglycosidase indicated that the heterogeneity of the wild-type and M3.11 glycopeptides involved structural changes in the core region of the oligosaccharide. Examination of two other glycoproteins (the major histocompatibility complex antigens) in these cell lines showed that in M3.11, the H-2D but not the H-2K product was abnormally glycosylated and contained a smaller glycopeptide. However, in a subclone of M3.11 that had lost the ability to produce immunoglobulin heavy chains, the H-2D glycopeptide had returned to wild-type size. We concluded from these studies that the defective M3.11 immunoglobulin heavy chain interfered both with its own glycosylation and the glycosylation of another protein, H-2D.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号