首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The NAD+ dependent cytosolic Glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) from arms of Octopus vulgaris, Cuvier, 1787, (Octopoda, Cephalopoda) was purified to homogeneity and its kinetic properties investigated. The purification method consisted of ammonium sulfate fractionation followed by Blue Sepharose CL-6B chromatography resulting in a 26-fold increase in specific activity and a final yield of approximately 16%. The apparent molecular weight of the purified native enzyme was 153 kDa. The protein is an homotetramer, composed of identical subunits with an apparent molecular weight of approximately 36 kDa. The Michaelis constants Km for both NAD+ and d-G3P were 66 μM and 320 μM, respectively. The maximal velocity Vmax of the purified enzyme was estimated to be 21.8 U/mg. Only one GAPDH isoform (pI 6.6) was obtained by isoelectrofocusing in polyacrylamide slab gels holding ampholyte generated pH gradients. Under the conditions of assay, the optimum activity occurs at pH 7.0 and at temperature of 35°C. Polyclonal antibodies raised in rabbits against the purified GAPDH immunostained a single 36 kDa GAPDH band on crude extract protein preparations blotted onto nitrocellulose.  相似文献   

2.
Using 3′-RACE and 5′-RACE, we have cloned and sequenced the genomic gene and complete cDNA encoding l-glutamine d-fructose 6-phosphate amidotransferase (GFAT) from the edible straw mushroom, Volvariella volvacea. Gfat contains five introns, and encodes a predicted protein of 697 amino acids that is homologous to other reported GFAT sequences. Southern hybridization indicated that a single gfat gene locus exists in the V. volvacea genome. Recombinant native V. volvacea GFAT enzyme, over-expressed using Escherichia coli and partially purified, had an estimated molecular mass of 306 kDa and consisted of four equal-sized subunits of 77 kD. Reciprocal plots revealed K m values of 0.55 and 0.75 mM for fructose 6-phosphate and l-glutamine, respectively. V. volvacea GFAT activity was inhibited by the end-product of the hexosamine pathway, UDP-GlcNAc, and by the glutamine analogues N 3-(4-methoxyfumaroyl)-l-2,3-diaminopropanoic acid and 2-amino-2-deoxy-d-glucitol-6-phosphate.  相似文献   

3.
Helicobacter pylori is a microaerophilic bacterium, associated with gastric inflammation and peptic ulcers. d-Amino acid dehydrogenase is a flavoenzyme that digests free neutral d-amino acids yielding corresponding 2-oxo acids and hydrogen. We sequenced the H. pylori NCTC 11637 d-amino acid dehydrogenase gene, dadA. The primary structure deduced from the gene showed low similarity with other bacterial d-amino acid dehydrogenases. We purified the enzyme to homogeneity from recombinant Escherichia coli cells by cloning dadA. The recombinant protein, DadA, with 44 kDa molecular mass, possessed FAD as cofactor, and showed the highest activity to d-proline. The enzyme mediated electron transport from d-proline to coenzyme Q1, thus distinguishing it from d-amino acid oxidase. The apparent K m and V max values were 40.2 mM and 25.0 μmol min−1 mg−1, respectively, for dehydrogenation of d-proline, and were 8.2 μM and 12.3 μmol min−1 mg−1, respectively, for reduction of Q1. The respective pH and temperature optima were 8.0 and 37°C. Enzyme activity was inhibited markedly by benzoate, and moderately by SH reagents. DadA showed more similarity with mammalian d-amino acid oxidase than other bacterial d-amino acid dehydrogenases in some enzymatic characteristics. Electron transport from d-proline to a c-type cytochrome was suggested spectrophotometrically.  相似文献   

4.
A non-characterized gene, previously proposed as the d-tagatose-3-epimerase gene from Rhodobacter sphaeroides, was cloned and expressed in Escherichia coli. Its molecular mass was estimated to be 64 kDa with two identical subunits. The enzyme specificity was highest with d-fructose and decreased for other substrates in the order: d-tagatose, d-psicose, d-ribulose, d-xylulose and d-sorbose. Its activity was maximal at pH 9 and 40°C while being enhanced by Mn2+. At pH 9 and 40°C, 118 g d-psicose l−1 was produced from 700 g d-fructose l−1 after 3 h. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
An N-acetyl-d-lactosamine (LacNAc) specific lectin from tubers of Alocasia cucullata was purified by affinity chromatography on asialofetuin-linked amino activated silica. The pure lectin showed a single band in SDS-PAGE at pH 8.8 and was a homotetramer with a subunit molecular mass of 13.5 kDa and native molecular mass of 53 kDa. It was heat stable up to 55 °C for 15 min and showed optimum hemagglutination activity from pH 2 to 11. The lectin was affected by denaturing agents such as urea (2 m), thiourea (2 m) and guanidine–HCl (0.5 m) and did not require Ca2+ and Mn2+ for its activity. It was a potent mitogen at 10 μg/ml towards human peripheral blood mononuclear cells with 50% growth inhibitory potential towards SiHa (human cervix ) cancer cell line at 100 μg/ml.  相似文献   

6.
The GPD2 gene, encoding NAD+-dependent glycerol-3-phosphate dehydrogenase in an industrial ethanol-producing strain of Saccharomyces cerevisiae, was deleted. And then, either the non-phosphorylating NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPN) from Bacillus cereus, or the NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Kluyveromyces lactis, was expressed in the obtained mutant AG2 deletion of GPD2, respectively. The resultant recombinant strain AG2A (gpdP PGK -gapN) exhibited a 48.70 ± 0.34% (relative to the amount of substrate consumed) decrease in glycerol production and a 7.60 ± 0.12% (relative to the amount of substrate consumed) increase in ethanol yield, while recombinant AG2B (gpdP PGK -GAPDH) exhibited a 52.90 ± 0.45% (relative to the amount of substrate consumed) decrease in glycerol production and a 7.34 ± 0.15% (relative to the amount of substrate consumed) increase in ethanol yield compared with the wild-type strain. More importantly, the maximum specific growth rates (μ max) of the recombinant AG2A and AG2B were higher than that of the mutant gpd2Δ and were indistinguishable compared with the wild-type strain in anaerobic batch fermentations. The results indicated that the redox imbalance of the mutant could be partially solved by expressing the heterologous genes.  相似文献   

7.
A novel phosphorylase from Clostridium phytofermentans belonging to the glycoside hydrolase family (GH) 65 (Cphy1874) was characterized. The recombinant Cphy1874 protein produced in Escherichia coli showed phosphorolytic activity on nigerose in the presence of inorganic phosphate, resulting in the release of d-glucose and β-d-glucose 1-phosphate (β-G1P) with the inversion of the anomeric configuration. Kinetic parameters of the phosphorolytic activity on nigerose were k cat = 67 s−1 and K m = 1.7 mM. This enzyme did not phosphorolyze substrates for the typical GH65 enzymes such as trehalose, maltose, and trehalose 6-phosphate except for a weak phosphorolytic activity on kojibiose. It showed the highest reverse phosphorolytic activity in the reverse reaction using d-glucose as the acceptor and β-G1P as the donor, and the product was mostly nigerose at the early stage of the reaction. The enzyme also showed reverse phosphorolytic activity, in a decreasing order, on d-xylose, 1,5-anhydro-d-glucitol, d-galactose, and methyl-α-d-glucoside. All major products were α-1,3-glucosyl disaccharides, although the reaction with d-xylose and methyl-α-d-glucoside produced significant amounts of α-1,2-glucosides as by-products. We propose 3-α-d-glucosyl-d-glucose:phosphate β-d-glucosyltransferase as the systematic name and nigerose phosphorylase as the short name for this Cphy1874 protein.  相似文献   

8.
Treatment of Aspergillus niveus with 30 μg tunicamycin/ml did not interfere with α-glucosidase production, secretion, or its catalytic properties. Fully- and under-glycosylated forms of the enzyme had similar molecular masses, ~56 kDa. Moreover, the absence of N-glycans did not affect either pH optimum (6.0) or temperature optimum (65°C). The Km and Vmax values of under- and fully-glycosylated forms of α-glucosidase were similar when assessed for hydrolysis of starch (~0.6 mg/ml, ~350 μmol glucose per min per ml), maltose (~0.54 μmol, ~330 μmol glucose per min per ml) and p-nitrophenyl-α-d-glucopyranoside (~0.54 μmol, ~8.28 μmol p-nitrophenol per min per ml). However, the under-glycosylated form was sensitive to high temperatures probably because, in addition to stabilizing the protein conformation, glycosylation may also prevent unfolded or partially folded proteins from aggregating. Binding assays clearly showed that the under-glycosylated protein did not bind to concanavalin A but has conserve its jacalin-binding property, suggesting that only O-glycans might be intact on the tunicamycin treated form of the enzyme.  相似文献   

9.
Activity of the tyrosine-inhibitable 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase (EC 4.1.2.15) from Saccharomyces cerevisiae that was encoded by the ARO4 gene cloned on a high-copy-number plasmid was enhanced 64-fold as compared to the wild-type. The enzyme was purified to apparent homogeneity from the strain that harbored this recombinant plasmid. The estimated molecular weight of 42,000 of the enzyme corresponded to the calculated molecular mass of 40 kDa deduced from the DNA sequence. The enzyme could be inactivated by EDTA in a reaction that was reversed by several bivalent metal ions; presumably a metal cofactor is required for enzymatic catalysis. The Michaelis constant of the enzyme was 125 μM for phosphoenolpyruvate and 500 μM for erythrose 4-phosphate. The rate constant was calculated as 6 s–1, and kinetic data indicated a sequential mechanism of the enzymatic reaction. Tyrosine was a competitive inhibitor with phosphoenolpyruvate as substrate of the enzyme (K i of 0.9 μM) and a noncompetitive inhibitor with erythrose 4-phosphate as substrate. This is in contrast to the ARO3-encoded isoenzyme, where phenylalanine is a competitive inhibitor with erythrose 4-phosphate as a substrate of the enzyme and a noncompetitive inhibitor with phosphoenolpyruvate as substrate. Received: 29 December 1997 / Accepted: 3 March 1998  相似文献   

10.
The gene encoding an α-l-arabinofuranosidase that could biotransform ginsenoside Rc {3-O-[β-d-glucopyranosyl-(1–2)-β-d-glucopyranosyl]-20-O-[α-l-arabinofuranosyl-(1–6)-β-d-glucopyranosyl]-20(S)-protopanaxadiol} to ginsenoside Rd {3-O-[β-d-glucopyranosyl-(1–2)-β-d-glucopyranosyl]-20-O-β-d-glucopyranosyl-20(S)-protopanaxadiol} was cloned from a soil bacterium, Rhodanobacter ginsenosidimutans strain Gsoil 3054T, and the recombinant enzyme was characterized. The enzyme (AbfA) hydrolyzed the arabinofuranosyl moiety from ginsenoside Rc and was classified as a family 51 glycoside hydrolase based on amino acid sequence analysis. Recombinant AbfA expressed in Escherichia coli hydrolyzed non-reducing arabinofuranoside moieties with apparent K m values of 0.53 ± 0.07 and 0.30 ± 0.07 mM and V max values of 27.1 ± 1.7 and 49.6 ± 4.1 μmol min−1 mg−1 of protein for p-nitrophenyl-α-l-arabinofuranoside and ginsenoside Rc, respectively. The enzyme exhibited preferential substrate specificity of the exo-type mode of action towards polyarabinosides or oligoarabinosides. AbfA demonstrated substrate-specific activity for the bioconversion of ginsenosides, as it hydrolyzed only arabinofuranoside moieties from ginsenoside Rc and its derivatives, and not other sugar groups. These results are the first report of a glycoside hydrolase family 51 α-l-arabinofuranosidase that can transform ginsenoside Rc to Rd.  相似文献   

11.
An extracellular endo-d-arabinase enzyme produced by the bacterial strain of Cellulomonas was purified 77.1-fold with 0.20% recovery for protein by DEAE Sepharose anion exchange, Sephacryl S-300 gel filtration and blue Sepharose affinity chromatography, and designated as CEDAase. The apparent molecular mass of CEDAase was 45 kDa determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. CEDAase is an endoenzyme for arabinogalactan with the main and specific product of hexa-arabinofuranoside. It reacts optimally with its substrate, arabinogalactan, at approximately pH 8.0 and at 40 °C. CEDAase shows stability in the pH range of 6.0–9.0 and at the temperature below 50 °C. The Km measured for the CEDAase was 55.6 μM, with an apparent Vmax of 0.083 μmol/min. To our knowledge, for the first time, the current work obtains an extracellular Cellulomonas endo-d-arabinase enzyme that might be potentially served as a tool enzyme for hydrolyzing specific cell wall such as Mycobacterium cell. It is purified as an important potential initial material basis for mass spectrometric sequencing and chemical gene synthesis. It may make it possible to clone and express this valuable endo-d-arabinase and make it available to the mycobacteria scientific community.  相似文献   

12.
A recombinant putative β-galactosidase from Thermoplasma acidophilum was purified as a single 57 kDa band of 82 U mg−1. The molecular mass of the native enzyme was 114 kDa as a dimer. Maximum activity was observed at pH 6.0 and 90°C. The enzyme was unstable below pH 6.0: at pH 6 its half-life at 75°C was 28 days but at pH 4.5 was only 13 h. Catalytic efficiencies decreased as p-nitrophenyl(pNP)-β-d-fucopyranoside (1067) > pNP-β-d-glucopyranoside (381) > pNP-β-d-galactopyranoside (18) > pNP-β-d-mannopyranoside (11 s−1 mM−1), indicating that the enzyme was a β-glycosidase.  相似文献   

13.
Radioligand binding of d-[3H]aspartic and l-[3H]glutamic acids to plasma membranes from rat Harderian gland was evaluated. Binding was optimal under physiological conditions of pH and temperature, and equilibrium was reached within 50 min. Specific binding for d-Asp and l-Glu was saturable, and Eadie–Hofstee analysis revealed interaction with a single population of binding sites (for d-Asp K d = 860 ± 28 nM, B max = 27.2 ± 0.5 pmol/mg protein; for l-Glu, K d = 580 ± 15 nM and B max = 51.3 ± 0.8 pmol/mg protein). l-[3H]glutamate had higher affinity and a greater percentage of specific binding than did d-[3H]aspartate. The pharmacological binding specificity of l-[3H]glutamate indicated an interaction with NMDA-type receptors. Specifically, the order of potency of the displacing compound tested was l-Glu > d-Asp > NMDA > MK801 > d-AP5 > glycine. For d-[3H]aspartate, the data revealed an interaction of d-Asp with either NMDA-type receptors or putative specific binding sites.  相似文献   

14.
A tetrameric lectin, with hemagglutinating activity toward rabbit erythrocytes and with specificity toward d-mannosamine and d(+)-mannose, was isolated from the ovaries of a teleost, the cobia Rachycentron canadum. The isolation protocol comprised ion exchange chromatography on CM-cellulose and Q-Sepharose, ion exchange chromatography by fast protein liquid chromatography (FPLC) on Mono Q, and finally gel filtration by FPLC on Superose 12. The lectin was adsorbed on all ion exchangers used. It exhibited a molecular mass of 180 kDa in gel filtration on Superose 12 and a single 45-kDa band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicating that it is a tetrameric protein. The hemagglutinating activity of the lectin was stable up to 40°C and between pH 4 and pH 10. All hemagglutinating activity disappeared at 60°C and at pH 1 and pH 13. The hemagglutinating activity was doubled in the presence of 0.1 μM FeCl3. The lectin exerted antibacterial activity against Escherichia coli with 50% inhibition at 250 μg. There was no antifungal activity toward Coprinus comatus, Fusarium oxysporum, Mycosphaerella arachidicola, and Rhizoctonia solani at a dose of 300 μg. The lectin exhibited maximal mitogenic response from mouse splenocytes at a concentration of 14 μM.  相似文献   

15.
Based on analysis of the genome sequence of Bacillus licheniformis ATCC 14580, an isomerase-encoding gene (araA) was proposed as an l-arabinose isomerase (L-AI). The identified araA gene was cloned from B. licheniformis and overexpressed in Escherichia coli. DNA sequence analysis revealed an open reading frame of 1,422 bp, capable of encoding a polypeptide of 474 amino acid residues with a calculated isoelectric point of pH 4.8 and a molecular mass of 53,500 Da. The gene was overexpressed in E. coli, and the protein was purified as an active soluble form using Ni–NTA chromatography. The molecular mass of the purified enzyme was estimated to be ~53 kDa by sodium dodecyl sulfate–polyacrylamide gel electrophoresis and 113 kDa by gel filtration chromatography, suggesting that the enzyme is a homodimer. The enzyme required a divalent metal ion, either Mn2+or Co2+, for enzymatic activity. The enzyme had an optimal pH and temperature of 7.5 and 50°C, respectively, with a k cat of 12,455 min−1 and a k cat/K m of 34 min−1 mM−1 for l-arabinose, respectively. Although L-AIs have been characterized from several other sources, B. licheniformis L-AI is distinguished from other L-AIs by its wide pH range, high substrate specificity, and catalytic efficiency for l-arabinose, making B. licheniformis L-AI the ideal choice for industrial applications, including enzymatic synthesis of l-ribulose. This work describes one of the most catalytically efficient L-AIs characterized thus far.  相似文献   

16.
Bacteroids formed by Mesorhizobium ciceri CC 1192 in symbiosis with chickpea plants (Cicer arietinum L.) contained a single form of citrate synthase [citrate oxaloacetate-lyase (CoA-acetylating) enzyme; EC 4.1.3.7], which had the same electrophoretic mobility as the enzyme from the free-living cells. The citrate synthase from CC 1192 bacteroids had a native molecular mass of 228 ± 32 kDa and was activated by KCl, which also enhanced stability. Double reciprocal plots of initial velocity against acetyl-CoA concentration were linear, whereas the corresponding plots with oxaloacetate were nonlinear. The K m value for acetyl-CoA was 174 μM in the absence of added KCl, and 88 μM when the concentration of KCl in reaction mixtures was 100 mM. The concentrations of oxaloacetate for 50% of maximal activity were 27 μM without added KCl and 14 μM in the presence of 100 mM KCl. Activity of citrate synthase was inhibited 50% by 80 μM NADH and more than 90% by 200 μM NADH. Inhibition by NADH was linear competitive with respect to acetyl-CoA (K is = 23.1 ± 3 μM) and linear noncompetitive with respect to oxaloacetate (K is = 56 ± 3.8 μM and K ii = 115 ± 15.4 μM). NADH inhibition was relieved by NAD+ and by micromolar concentrations of 5′-AMP. In the presence of 50 or 100 mM KCl, inhibition by NADH was apparent only when the proportion of NADH in the nicotinamide adenine dinucleotide pool was greater than 0.6. In the microaerobic environment of bacteroids, NADH may be at concentrations that are inhibitory for citrate synthase. However, this inhibition is likely to be relieved by NAD+ and 5′-AMP, allowing carbon to enter the tricarboxylic acid cycle. Received: 14 July 1999 / Accepted: 20 September 1999  相似文献   

17.
18.
This paper reports on the optimum concentrations of naphthalene acetic acid (NAA) and 6-benzyladenine (BA) to stimulate callus growth and NAA; kinetin and silver nitrate (AgNO3) for callus redifferentiation in Dianthus caryophyllus L. Meristems were excised and placed in MS medium with 30 g l−1 sucrose and 9.0 μM 2,4-d. Callus clusters were transferred to MS medium containing NAA (0, 1.7, 3.3, and 5.0 μM) and BA (0, 1.7, 3.3, and 5.0 μM) for proliferation and to MS medium with 30 g l−1 sucrose, 2.5 g l−1 phytagel, kinetin (0, 33, and 66 μM); NAA (0, 7.95, and 15.9 μM) and AgNO3 (0, 23.54 and 47.08 μM) for shoot and root induction. Treatments were applied according to a Box–Behnken design. After callus growth and redifferentiation, plants were incubated in the greenhouse at 18 ± 2°C for 4 wk and at 20–26°C for 4 wk. Finally, plants were changed to near-commercial greenhouse conditions with different day (30–35°C) and night (16–24°C) temperatures. Results showed better callus growth at higher NAA concentrations. A maximum callus weight was found with 5.0 μM NAA but without BA. A maximum of 78% calluses with shoots was obtained with 15.9 μM NAA, 47.08 μM AgNO3, and 0.74 μM kinetin and 58% with roots with 15.7 μM NAA and 47.08 μM AgNO3, but without kinetin. The shoots obtained showed little hyperhydricity. Vigorous plants were obtained after gradual acclimatization with an 80% survival rate under nursery conditions.  相似文献   

19.
We purified recombinant glucose-6-phosphate isomerase from Pyrococcus furiosus using heat treatment and Hi-Trap anion-exchange chromatography with a final specific activity of 0.39 U mg−1. The activity of the glucose-6-phosphate isomerase for l-talose isomerization was optimal at pH 7.0, 95°C, and 1.5 mM Co2+. The half-lives of the enzyme at 65°C, 75°C, 85°C, and 95°C were 170, 41, 19, and 7.9 h, respectively. Glucose-6-phosphate isomerase catalyzed the interconversion between two different aldoses and ketose for all pentoses and hexoses via two isomerization reactions. This enzyme has a unique activity order as follows: aldose substrates with hydroxyl groups oriented in the same direction at C2, C3, and C4 > C2 and C4 > C2 and C3 > C3 and C4. l-Talose and d-ribulose exhibited the most preferred substrates among the aldoses and ketoses, respectively. l-Talose was converted to l-tagatose and l-galactose by glucose-6-phosphate isomerase with 80% and 5% conversion yields after about 420 min, respectively, whereas d-ribulose was converted to d-ribose and d-arabinose with 53% and 8% conversion yields after about 240 min, respectively.  相似文献   

20.
Ribitol dehydrogenase (RDH) catalyzes the conversion of ribitol to d-ribulose. A novel RDH gene was cloned from Zymomonas mobilis subsp. mobilis ZM4 and overexpressed in Escherichia coli BL21(DE3). DNA sequence analysis revealed an open reading frame of 795 bp, capable of encoding a polypeptide of 266 amino acid residues with a calculated molecular mass of 28,426 Da. The gene was overexpressed in E. coli BL21(DE3) and the protein was purified as an active soluble form using glutathione S-transferase affinity chromatography. The molecular mass of the purified enzyme was estimated to be ∼28 kDa by sodium dodecyl sulfate-polyacrylamide gel and ∼58 KDa with gel filtration chromatography, suggesting that the enzyme is a homodimer. The enzyme had an optimal pH and temperature of 9.5 and 65°C, respectively. Unlike previously characterized RDHs, Z. mobilis RDH (ZmRDH) showed an unusual dual coenzyme specificity, with a k cat of 4.83 s−1 for NADH (k cat/K m = 27.3 s−1 mM−1) and k cat of 2.79 s−1 for NADPH (k cat/K m = 10.8 s−1 mM−1). Homology modeling and docking studies of NAD+ and NADP+ into the active site of ZmRDH shed light on the dual coenzyme specificity of ZmRDH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号