首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Prostaglandin (PG) F(2alpha), one of the primary prostanoids generated in vascular tissue, is known to cause hypertrophy in vascular smooth muscle cells. To clarify the molecular mechanisms underlying PGF(2alpha)-induced hypertrophy, the involvement of reactive oxygen species was examined in a rat vascular smooth muscle cell line, A7r5. PGF(2alpha) and (+)-fluprostenol, a selective agonist of the PGF receptor, significantly increased intracellular O(2)(-) in A7r5. The PGF(2alpha)-induced O(2)(-) increase was suppressed by diphenyleneiodonium (DPI), an inhibitor of NADPH oxidase that has been reported to be the major source of O(2)(-) in vascular cells. The augmented synthesis of the protein induced by PGF(2alpha) or (+)-fluprostenol was suppressed in the presence of DPI. In PGF(2alpha) or (+)-fluprostenol-treated cells, a dose-dependent increase in the expression of NOX1, a homolog of the catalytic subunit of the phagocyte NADPH oxidase gp91(phox), was demonstrated by Northern blot analysis. Finally, depletion of NOX1 mRNA in the cells transfected with ribozymes targeted for three independent cleavage sites on the mRNA sequence significantly reduced the PGF(2alpha)-induced increase in protein synthesis. Taken together, these results suggest that hypertrophy of vascular smooth muscle cells caused by PGF(2alpha) is mediated by NOX1 induction and the resultant overproduction of O(2)(-) by NADPH oxidase.  相似文献   

3.
In this study, we focused on the relationship between aldosterone and NOX1 expression in vascular smooth muscle cells (VSMCs). For the first time, with the use of specific inhibitors of protein kinase C (PKC), we report that PKCδ mediates upregulation of NOX1 induced by 10 nM aldosterone in cultured VSMCs. Participation of PKC in the mediation of NOX1 regulation was further confirmed by the effect of diacylglycerol, a PKC agonist, on the NOX1 RNA in A7r5 cells with Northern blot analysis. To establish cause and effect, we next silenced the PKCδ gene partly by RNA interference and found knockdown of PKCδ gene attenuated aldosterone-induced NOX1 expression, generation of superoxide, as well as protein synthesis in VSMCs. Taken together, these data indicated PKCδ might mediate aldosterone-dependent NOX1 upregulation in VSMCs. In addition, we showed that the cascade from aldosterone to PKCδ activation had the participation of the mineralocorticoid receptor.  相似文献   

4.
5.
Proinflammatory cytokines such as interleukin-1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) enhance degradation of cartilage-specific, type II collagen by matrix metalloproteinase-13 (MMP-13). We investigated the previously unknown role of H-Ras and reactive oxygen species (ROS) in the cytokine induction of MMP-13 gene expression in human articular chondrocytes by using pharmacological inhibitors, RNA interference (RNAi) and antioxidants. Manumycin A, an inhibitor of H-Ras farnesylation by farnesyltransferase, suppressed IL-1β- and TNF-α-induced MMP-13 mRNA and protein expression. Small interfering RNA (siRNA)-mediated H-Ras silencing down-regulated MMP-13 mRNA and protein induction by IL-1β and TNF-α. Nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase/NOX) inhibitor, diphenyleneiodonium (DPI) suppressed cytokine-induced MMP-13 expression and superoxide production. Apocynin, another NOX inhibitor, also diminished MMP-13 induction. Deoxyglucose an antimetabolite of glucose metabolism reduced MMP-13 increase. Role of NOX-mediated ROS production was reaffirmed by the observation that the antioxidants, trolox, nordihydroguaiaretic acid (NDGA), quercetin and resveratrol downregulated cytokine-induced MMP-13 mRNA and protein expression. These results provide strong pharmacological and genetic evidence for the implication of H-Ras and NADPH oxidase-generated superoxide production in MMP-13 gene regulation by IL-1β and TNF-α. These proteins could be potentially targeted for therapeutic inhibition of MMP-13-driven cartilage erosion by using H-Ras and NOX inhibitors and antioxidants.  相似文献   

6.
7.
8.
NADPH oxidase 4 (NOX4) and the NOX4-related redox signaling are implicated in cardiac hypertrophy. NOX4 is interrelated with endoplasmic reticulum stress (ERS). Spliced X-box binding protein 1 (Xbp1s) is a key mediator of ERS while its role in cardiac hypertrophy is still poorly understood. Recently, receptor interacting protein kinase 1(RIPK1) has been increasingly reported to be associated with ERS. Therefore, we aimed to test the hypothesis that Xbp1s mediates NOX4-triggered cardiac hypertrophy via RIPK1 signaling. In the heart tissue of transverse aortic constriction (TAC) rats and in primary cultured neonatal cardiomyocytes(NCMs) treated with angiotensinII(AngII) or isoproterenol (ISO), NOX4 expression and reactive oxygen species (ROS) generation, and expression of Xbp1s as well as RIPK1-related phosphorylation of P65 subunit of NF-κB were elevated. Gene silencing of NOX4 by specific small interfering RNA (siRNA) significantly blocked the upregulation of NOX4, generation of ROS, splicing of Xbp1 and activation of the RIPK1-related NF-κB signaling, meanwhile attenuated cardiomyocyte hypertrophy. In addition, ROS scavenger (N-acetyl-L-cysteine, NAC) and NOX4 inhibitor GKT137831 reduced ROS generation and alleviated activation of Xbp1 and RIPK1-related NF-κB signaling. Furthermore, splicing of Xbp1 was responsible for the increase in RIPK1 expression in AngII or ISO-treated NCMs. Upregulated RIPK1 in turn activates NF-κB signaling in a kinase activity-independent manner. These findings suggest that Xbp1s plays an important role in NOX4-triggered cardiomyocyte hypertrophy via activating its downstream effector RIPK1, which may prove significant for the development of future therapeutic strategies.  相似文献   

9.
10.
11.
Yuan X  Liu N 《遗传学报》2011,38(5):193-200
Advanced glycation end products (AGEs) play an important role in vascular complications of diabetes, including fibrinolytic abnormalities.Pioglitazone, a peroxisome proliferator-activated receptor gamma (PPARΥ) agonist, has recently been shown to reduce circulating plasminogen activator inhibitor-1 (PAI-1) levels in diabetes mellitus. In the present study, we investigated the effects of pioglitazone on the expression of local PAI-1 in rat vascular smooth muscle cells (VSMCs) induced by AGEs and the underlying mechanism. The result showed that AGEs could enhance the PAI-1 expression by 5.1-fold in mRNA and 2.7-fold in protein level, as evaluated by real-time RT-PCR and Western blotting,respectively. Pioglitazone was found to down-regulate the AGE-stimulated PAI-1 expression in VSMCs. However, these inhibitory effects were partially attenuated by the PPARΥ antagonist, GW9662. Furthermore, we found that AGEs induced a rapid increase in phosphorylation and activation of extracellular signal-regulated protein kinase 1/2 (ERK 1/2). The ERK kinase inhibitor, UO126, partially prevented the induction of PAI-1 by AGEs. Moreover, pioglitazone was also found to inhibit the phosphorylation of ERKi/2. Taken together, it was concluded that pioglitazone could inhibit AGE-induced PAI-1 expression, which was mediated by the ERK1/2 and PPARΥ pathways. Our findings suggestedpioglitazone had a therapeutic potential in improving fibrinolytic activity, and consequently preventing thromboembolic complications of diabetes and cardiovascular disease.  相似文献   

12.
13.
《Cellular signalling》2014,26(9):1818-1824
Reactive oxygen species (ROS) produced by different NADPH oxidases (NOX) play a role in cardiomyocyte hypertrophy induced by different stimuli, such as angiotensin II and pressure overload. However, the role of the specific NOX isoforms in phenylephrine (PE)-induced cardiomyocyte hypertrophy is unknown. Therefore we aimed to determine the involvement of the NOX isoforms NOX1, NOX2 and NOX4 in PE-induced cardiomyocyte hypertrophy. Hereto rat neonatal cardiomyoblasts (H9c2 cells) were incubated with 100 μM PE to induce hypertrophy after 24 and 48 h as determined via cell and nuclear size measurements using digital imaging microscopy, electron microscopy and an automated cell counter. Digital-imaging microscopy further revealed that in contrast to NOX1 and NOX4, NOX2 expression increased significantly up to 4 h after PE stimulation, coinciding and co-localizing with ROS production in the cytoplasm as well as the nucleus. Furthermore, inhibition of NOX-mediated ROS production with apocynin, diphenylene iodonium (DPI) or NOX2 docking sequence (Nox2ds)-tat peptide during these first 4 h of PE stimulation significantly inhibited PE-induced hypertrophy of H9c2 cells, both after 24 and 48 h of PE stimulation. These data show that early NOX2-mediated ROS production is crucial in PE-induced hypertrophy of H9c2 cells.  相似文献   

14.
HIV-1 glycoprotein 120 (gp120) is known to cause neurotoxicity via several mechanisms including production of proinflammatory cytokines/chemokines and oxidative stress. Likewise, drug abuse is thought to have a direct impact on the pathology of HIV-associated neuroinflammation through the induction of proinflammatory cytokines/chemokines and oxidative stress. In the present study, we demonstrate that gp120 and methamphetamine (MA) causes apoptotic cell death by inducing oxidative stress through the cytochrome P450 (CYP) and NADPH oxidase (NOX) pathways. The results showed that both MA and gp120 induced reactive oxygen species (ROS) production in concentration- and time-dependent manners. The combination of gp120 and MA also induced CYP2E1 expression at both mRNA (1.7±0.2- and 2.8±0.3-fold in SVGA and primary astrocytes, respectively) and protein (1.3±0.1-fold in SVGA and 1.4±0.03-fold in primary astrocytes) levels, suggesting the involvement of CYP2E1 in ROS production. This was further confirmed by using a selective inhibitor of CYP2E1, diallylsulfide (DAS), and CYP2E1 knockdown using siRNA, which significantly reduced ROS production (30–60%). As the CYP pathway is known to be coupled with the NOX pathway, including Fenton–Weiss–Haber (FWH) reaction, we examined whether the NOX pathway is also involved in ROS production induced by either gp120 or MA. Our results showed that selective inhibitors of NOX, diphenyleneiodonium (DPI), and FWH reaction, deferoxamine (DFO), also significantly reduced ROS production. These findings were further confirmed using specific siRNAs against NOX2 and NOX4 (NADPH oxidase family). We then showed that gp120 and MA both induced apoptosis (caspase-3 activity and DNA lesion using TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling) assay) and cell death. Furthermore, we showed that DAS, DPI, and DFO completely abolished apoptosis and cell death, suggesting the involvement of CYP and NOX pathways in ROS-mediated apoptotic cell death. In conclusion, this is the first report on the involvement of CYP and NOX pathways in gp120/MA-induced oxidative stress and apoptotic cell death in astrocytes, which has clinical implications in neurodegenerative diseases, including neuroAIDS.  相似文献   

15.
16.
Monocyte chemoattractant protein-1 (MCP-1), an important chemokine whose expression is increased during the course of obesity, plays a role in macrophage infiltration into obese adipose tissue. This study was designed to elucidate the role of mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) in the induction of MCP-1 during the course of adipocyte hypertrophy. We examined the time course of MKP-1 and MCP-1 mRNA expression and extracellular signal-regulated kinase (ERK) phosphorylation in the adipose tissue from mice rendered mildly obese by a short term high fat diet. We also studied the role of MKP-1 in the induction of MCP-1 in 3T3-L1 adipocytes during the course of adipocyte hypertrophy. MCP-1 mRNA expression was increased, followed by ERK activation and down-regulation of MKP-1, an inducible dual specificity phosphatase to inactivate ERK, in the adipose tissue at the early stage of obesity induced by a short term high fat diet, when macrophages are not infiltrated. Down-regulation of MKP-1 preceded ERK activation and increased production of MCP-1 in 3T3-L1 adipocytes in vitro during the course of adipocyte hypertrophy. Adenovirus-mediated restoration of MKP-1 in hypertrophied 3T3-L1 adipocytes reduced the otherwise increased ERK phosphorylation, thereby leading to the significant reduction of MCP-1 mRNA expression. This study provides evidence that the down-regulation of MKP-1 is critical for increased production of MCP-1 during the course of adipocyte hypertrophy.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号