首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 479 毫秒
1.
Although gemcitabine is the most effective chemotherapeutic agent against pancreatic cancer, a growing concern is that a substantial number of patients acquire gemcitabine chemoresistance. To elucidate the mechanisms of acquisition of gemcitabine resistance, we developed gemcitabine-resistant cell lines from six human cancer cell lines; three pancreatic, one gastric, one colon, and one bile duct cancer. We first analyzed gemcitabine uptake using three paired parental and gemcitabine resistant pancreatic cancer cell lines (PK-1 and RPK-1, PK-9 and RPK-9, PK-59 and RPK-59) and found that uptake of gemcitabine was rapid. However, no DNA damage was induced in resistant cells. We further examined the microarray-based expression profiles of the cells to identify genes associated with gemcitabine resistance and found a remarkable reduction in the expression of deoxycytidine kinase (DCK). DCK is a key enzyme that activates gemcitabine by phosphorylation. Genetic alterations and expression of DCK were studied in these paired parental and derived gemcitabine-resistant cell lines, and inactivating mutations were found only in gemcitabine-resistant cell lines. Furthermore, siRNA-mediated knockdown of DCK in the parental cell lines yielded gemcitabine resistance, and introduction of DCK into gemcitabine-resistant cell lines invariably restored gemcitabine sensitivities. Mutation analyses were expanded to three other different paired cell lines, DLD-1 and RDLD-1 (colon cancer cell line), MKN-28 and RMKN-28 (gastric cancer cell line), and TFK-1 and RTFK -1 (cholangiocarcinoma cell line). We found inactivating mutations in RDLD-1 and RTFK-1 and decreased expression of DCK in RMKN-28. These results indicate that the inactivation of DCK is one of the crucial mechanisms in acquisition of gemcitabine resistance.  相似文献   

2.
3.
4.
5.
6.
Pancreatic ductal adenocarcinoma is highly resistant to systemic chemotherapy. Although there are many reports using pancreatic cancer cells derived from patients who did not receive chemotherapy, characteristics of pancreatic cancer cells from chemotherapy-resistant patients remain unclear. In this study, we set out to establish a cancer cell line in disseminated cancer cells derived from gemcitabine-resistant pancreatic ductal adenocarcinoma patients. By use of in vitro co-culture system with stromal cells, we established a novel pancreatic tumor-initiating cell line. The cell line required its direct interaction with stromal cells for its in vitro clonogenic growth and passaging. Their direct interaction induced basal lamina-like extracellular matrix formation that maintained colony formation. The cell line expressed CD133 protein, which expression level changed autonomously and by culture conditions. These results demonstrated that there were novel pancreatic tumor-initiating cells that required direct interactions with stromal cells for their in vitro cultivation in gemcitabine-resistant pancreatic ductal adenocarcinoma. This cell line would help to develop novel therapies that enhance effects of gemcitabine or novel anti-cancer drugs.  相似文献   

7.

Introduction

Gemcitabine is an important component of pancreatic cancer clinical management. Unfortunately, acquired gemcitabine resistance is widespread and there are limitations to predicting and monitoring therapeutic outcomes.

Objective

To investigate the potential of metabolomics to differentiate pancreatic cancer cells that develops resistance or respond to gemcitabine treatment.

Results

We applied 1D 1H and 2D 1H–13C HSQC NMR methods to profile the metabolic signature of pancreatic cancer cells. 13C6-glucose labeling identified 30 key metabolites uniquely altered between wild-type and gemcitabine-resistant cells upon gemcitabine treatment. Gemcitabine resistance was observed to reprogram glucose metabolism and to enhance the pyrimidine synthesis pathway. Myo-inositol, taurine, glycerophosphocholine and creatinine phosphate exhibited a “binary switch” in response to gemcitabine treatment and acquired resistance.

Conclusion

Metabolic differences between naïve and resistant pancreatic cancer cells and, accordingly, their unique responses to gemcitabine treatment were revealed, which may be useful in the clinical setting for monitoring a patient’s therapeutic response.
  相似文献   

8.
Pancreatic carcinoma is the major clinical entity where the nucleoside analog gemcitabine is used for first-line therapy. Overcoming cellular resistance toward gemcitabine remains a major challenge in this context. This raises the need to identify factors that determine gemcitabine sensitivity in pancreatic carcinoma cells. We previously found the MAPK-activated protein kinase 2 (MK2), part of the p38/MK2 stress response pathway, to be required for DNA replication fork stalling when osteosarcoma-derived cells were treated with gemcitabine. As a consequence, inhibition or depletion of MK2 protects these cells from gemcitabine-induced death (Köpper, et al. Proc Natl Acad Sci USA 2013; 110:16856–61). Here, we addressed whether MK2 also determines the sensitivity of pancreatic cancer cells toward gemcitabine. We found that MK2 inhibition reduced the intensity of the DNA damage response and enhanced survival of the pancreatic cancer cell lines BxPC-3, MIA PaCa-2, and Panc-1, which display a moderate to strong sensitivity to gemcitabine. In contrast, MK2 inhibition only weakly attenuated the DNA damage response intensity and did not enhance long-term survival in the gemcitabine-resistant cell line PaTu 8902. Importantly, in BxPC-3 and MIA PaCa-2 cells, inhibition of MK2 also rescued increased H2AX phosphorylation caused by inhibition of the checkpoint kinase Chk1 in the presence of gemcitabine. These results indicate that MK2 mediates gemcitabine efficacy in pancreatic cancer cells that respond to the drug, suggesting that the p38/MK2 pathway represents a determinant of the efficacy by that gemcitabine counteracts pancreatic cancer.  相似文献   

9.
10.
Pachymic acid (PA) is a purified triterpene extracted from medicinal fungus Poria cocos. In this paper, we investigated the anticancer effect of PA on human chemotherapy resistant pancreatic cancer. PA triggered apoptosis in gemcitabine-resistant pancreatic cancer cells PANC-1 and MIA PaCa-2. Comparative gene expression array analysis demonstrated that endoplasmic reticulum (ER) stress was induced by PA through activation of heat shock response and unfolded protein response related genes. Induced ER stress was confirmed by increasing expression of XBP-1s, ATF4, Hsp70, CHOP and phospho-eIF2α. Moreover, ER stress inhibitor tauroursodeoxycholic acid (TUDCA) blocked PA induced apoptosis. In addition, 25 mg kg-1 of PA significantly suppressed MIA PaCa-2 tumor growth in vivo without toxicity, which correlated with induction of apoptosis and expression of ER stress related proteins in tumor tissues. Taken together, growth inhibition and induction of apoptosis by PA in gemcitabine-resistant pancreatic cancer cells were associated with ER stress activation both in vitro and in vivo. PA may be potentially exploited for the use in treatment of chemotherapy resistant pancreatic cancer.  相似文献   

11.
BACKGROUNDCellular metabolism regulates stemness in health and disease.  A reduced redox state is essential for self-renewal of normal and cancer stem cells (CSCs). However, while stem cells rely on glycolysis, different CSCs, including pancreatic CSCs, favor mitochondrial metabolism as their dominant energy-producing pathway. This suggests that powerful antioxidant networks must be in place to detoxify mitochondrial reactive oxygen species (ROS) and maintain stemness in oxidative CSCs. Since glutathione metabolism is critical for normal stem cell function and CSCs from breast, liver and gastric cancer show increased glutathione content, we hypothesized that pancreatic CSCs also rely on this pathway for ROS detoxification.AIMTo investigate the role of glutathione metabolism in pancreatic CSCs.METHODSPrimary pancreatic cancer cells of patient-derived xenografts (PDXs) were cultured in adherent or CSC-enriching sphere conditions to determine the role of glutathione metabolism in stemness. Real-time polymerase chain reaction (PCR) was used to validate RNAseq results involving glutathione metabolism genes in adherent vs spheres, as well as the expression of pluripotency-related genes following treatment. Public TCGA and GTEx RNAseq data from pancreatic cancer vs normal tissue samples were analyzed using the webserver GEPIA2. The glutathione-sensitive fluorescent probe monochlorobimane was used to determine glutathione content by fluorimetry or flow cytometry. Pharmacological inhibitors of glutathione synthesis and recycling [buthionine-sulfoximine (BSO) and 6-Aminonicotinamide (6-AN), respectively] were used to investigate the impact of glutathione depletion on CSC-enriched cultures. Staining with propidium iodide (cell cycle), Annexin-V (apoptosis) and CD133 (CSC content) were determined by flow cytometry. Self-renewal was assessed by sphere formation assay and response to gemcitabine treatment was used as a readout for chemoresistance.RESULTSAnalysis of our previously published RNAseq dataset E-MTAB-3808 revealed up-regulation of genes involved in the KEGG (Kyoto Encyclopedia of Genes and Genomes) Pathway Glutathione Metabolism in CSC-enriched cultures compared to their differentiated counterparts. Consistently, in pancreatic cancer patient samples the expression of most of these up-regulated genes positively correlated with a stemness signature defined by NANOG, KLF4, SOX2 and OCT4 expression (P < 10-5). Moreover, 3 of the upregulated genes (MGST1, GPX8, GCCT) were associated with reduced disease-free survival in patients [Hazard ratio (HR) 2.2-2.5; P = 0.03-0.0054], suggesting a critical role for this pathway in pancreatic cancer progression. CSC-enriched sphere cultures also showed increased expression of different glutathione metabolism-related genes, as well as enhanced glutathione content in its reduced form (GSH). Glutathione depletion with BSO induced cell cycle arrest and apoptosis in spheres, and diminished the expression of stemness genes. Moreover, treatment with either BSO or the glutathione recycling inhibitor 6-AN inhibited self-renewal and the expression of the CSC marker CD133. GSH content in spheres positively correlated with intrinsic resistance to gemcitabine treatment in different PDXs r = 0.96, P = 5.8 × 1011). Additionally, CD133+ cells accumulated GSH in response to gemcitabine, which was abrogated by BSO treatment (P < 0.05). Combined treatment with BSO and gemcitabine-induced apoptosis in CD133+ cells to levels comparable to CD133- cells and significantly diminished self-renewal (P < 0.05), suggesting that chemoresistance of CSCs is partially dependent on GSH metabolism.CONCLUSIONOur data suggest that pancreatic CSCs depend on glutathione metabolism. Pharmacological targeting of this pathway showed that high GSH content is essential to maintain CSC functionality in terms of self-renewal and chemoresistance.  相似文献   

12.
Cancer stem cells (CSCs) and epithelial–mesenchymal transition (EMT)‐type cells are considered as underlying causes of chemoresistance, tumour recurrence and metastasis in pancreatic cancer. We aimed to describe the mechanisms – particularly glycolysis – involved in the regulation of the CSC and EMT phenotypes. We used a gemcitabine‐resistant (GR) Patu8988 cell line, which exhibited clear CSC and EMT phenotypes and showed reliance on glycolysis. Inhibition of glycolysis using 2‐deoxy‐D‐glucose (2‐DG) significantly enhanced the cytotoxicity of gemcitabine and inhibited the CSC and EMT phenotypes in GR cells both in vitro and in vivo. Intriguingly, the use of the reactive oxygen species (ROS) scavenger N‐acetylcysteine (NAC) restored the CSC and EMT phenotypes. H2O2 produced changes similar to those of 2‐DG, indicating that ROS were involved in the acquired cancer stemness and EMT phenotypes of GR cells. Moreover, doublecortin‐like kinase 1 (DCLK1), a pancreatic CSC marker, was highly expressed and regulated the stemness and EMT phenotypes in GR cell. Both 2‐DG and H2O2 treatment suppressed DCLK1 expression, which was also rescued by NAC. Together, these findings revealed that glycolysis promotes the expression of DCLK1 and maintains the CSC and EMT phenotypes via maintenance of low ROS levels in chemoresistant GR cells. The glycolysis‐ROS‐DCLK1 pathway may be potential targets for reversing the malignant behaviour of pancreatic cancer.  相似文献   

13.
Gemcitabine is the standard-of-care for chemotherapy in patients with pancreatic adenocarcinoma and it can directly incorporate into DNA or inhibit ribonucleotide reductase to prevent DNA replication and, thus, tumor cell growth. Most pancreatic tumors, however, develop resistance to gemcitabine. Polo-like kinase 1 (Plk1), a critical regulator in many cell cycle events, is significantly elevated in human pancreatic cancer. In this study, we show that Plk1 is required for the G1/S transition and that inhibition of Plk1 significantly reduces the DNA synthesis rate in human pancreatic cancer cells. Furthermore, the combined effect of a specific Plk1 inhibitor GSK461364A with gemcitabine was examined. We show that inhibition of Plk1 significantly potentiates the anti-neoplastic activity of gemcitabine in both cultured pancreatic cancer cells and Panc1-derived orthotopic pancreatic cancer xenograft tumors. Overall, our study demonstrates that co-targeting Plk1 can significantly enhance the efficacy of gemcitabine, offering a promising new therapeutic option for the treatment of gemcitabine-resistant human pancreatic cancer.  相似文献   

14.
Li F  Hu G  Jiang Z  Guo J  Wang K  Ouyang K  Wen D  Zhu M  Liang J  Qin X  Zhang L 《The FEBS journal》2012,279(7):1261-1273
The limited therapeutic effect of gemcitabine on pancreatic cancer is largely attributed to pre-existing or acquired resistance of the tumor cells. This study was aimed at screening for candidate resistance-related gene(s) and elucidating the underlying mechanisms. NME5 was found to be highly expressed in an innate gemcitabine-resistant human pancreatic cancer sample and the cell line PAXC002 derived from the sample. Downregulation of NME5 significantly reversed gemcitabine resistance in PAXC002 cells, whereas NME5 overexpression induced gemcitabine resistance in the pancreatic cancer cell line BxPC-3. NME5 attenuated the induction of apoptosis and cell cycle arrest induced by gemcitabine, probably accounting for the blunted sensitivity to gemcitabine. Furthermore, NME5 was demonstrated to play its role in a nuclear factor kappaB (NF-κB)-dependent manner. NME5 was capable of directly binding NF-κB, and possibly regulated its expression level in PAXC002 cells. Our results also suggest that NF-κB is a key executor of NME5 in regulating apoptosis and cell cycle. All of these data suggest that NME5 is a promising target for relieving innate gemcitabine resistance in pancreatic cancer cells.  相似文献   

15.
Acquired chemoresistance represents a major obstacle in cancer treatment, the underlying mechanism of which is complex and not well understood. MiR‐425‐5p has been reported to be implicated tumorigenesis in a few cancer types. However, its role in regulating chemoresistance has not been investigated in colorectal cancer (CRC) cells. Microarray analysis was performed in isogenic chemosensitive and chemoresistant HCT116 cell lines to identify differentially expressed miRNAs. miRNA quantitative real‐time PCR was used to detect miR‐425‐5p expression levels between drug resistant and parental cancer cells. MiR‐425‐5p mimic and inhibitor were transfected, followed by CellTiter‐Glo® assay to examine drug sensitivity in these two cell lines. Western Blot and luciferase assay were performed to investigate the direct target of miR‐425‐5p. Xenograft mouse models were used to examine in vivo function of miR‐425‐5p. Our data showed that expression of miR‐425‐5p was significantly up‐regulated in HCT116‐R compared with parental HCT116 cells. Inhibition of miR‐425‐5p reversed chemoresistance in HCT116‐R cells. Programmed cell death 10 (PDCD10) is the direct target of miR‐425‐5p which is required for the regulatory role of miR‐425‐5p in chemoresistance. MiR‐425‐5p inhibitor sensitized HCT116‐R xenografts to chemo drugs in vivo. Our study demonstrated that miR‐425‐5p regulates chemoresistance of CRC cells by modulating PDCD10 expression level both in vitro and in vivo. MiR‐425‐5p may represent a new therapeutic target for the intervention of CRC.  相似文献   

16.
In this study, we demonstrated that survivin downregulation with TRAIL expression greatly enhanced the cytotoxic death of pancreatic cancer cells after gemcitabine treatment. Using real-time RT-PCR, we analyzed five survivin shRNAs to identify the best target sequence for suppression of human survivin, with the goal of treating gemcitabine-resistant pancreatic cancer cells. Survivin shRNA 5, corresponding to target 5, showed the greatest reduction in survivin mRNA levels. Furthermore, combined treatment with survivin shRNA-expressing adenovirus with gemcitabine plus TRAIL decreased uncleaved PARP and increased consequent PARP cleavage, which was correlated with the greatest levels of survivin downregulation and cell death. These results indicate that survivin functions as a common mediator of gemcitabine- and TRAIL-induced cell death. Using a nude mouse model implanted with MiaPaCa-2 pancreatic cancer cells, we observed tumor regression induced by an oncolytic adenovirus expressing survivin shRNA and TRAIL plus gemcitabine. Together, our findings provide a strong rationale for treating pancreatic cancer patients with both gemcitabine and oncolytic adenovirus armed with survivin shRNA and TRAIL.  相似文献   

17.
Development of resistance to gemcitabine is a major concern in bladder cancer therapy, and the mechanism remains unclear. Eg5 has been recently identified as an attractive target in cancer chemotherapy, so novel targeted chemotherapy with Eg5 inhibitor is expected to improve the anticancer effect in gemcitabine-resistant bladder cancer. In this research, RT112-Gr cells were 350-fold less sensitive to gemcitabine than the parental cell lines, while KU7-Gr cells were 15-fold less sensitive to gemcitabine than the parental cell lines. Human OneArray Microarray analysis was performed to obtain broad spectrum information about the genes differentially expressed in RT112 and RT112-Gr cells. The anti-proliferative activity of S(MeO)TLC, an Eg5 inhibitor, was analyzed in RT112-Gr cell lines using a cell viability assay. Furthermore, the inhibitory effect was evaluated in vivo using subcutaneous xenograft tumor model. According to the result of Human OneArray® GeneChip, RRM1 and RRM2 were up-regulated, while there was no significant change in Eg5. Trypan blue staining confirmed that in S(MeO)TLC and Gemcitabine combining S(MeO)TLC group cell viability were significantly decreased in RT112-Gr cells as compared with other groups. S(MeO)TLC and S(MeO)TLC+gemcitabine groups prominently suppressed tumor growth in comparison with other groups’ in vivo. There were no significant differences in S(MeO)TLC and gemcitabine+S(MeO)TLC group in the effect of inhibition of bladder cancer in vivo and in vitro. Our data collectively demonstrated that S(MeO)TLC represents a novel strategy for the treatment of gemcitabine resistant bladder cancer.  相似文献   

18.
19.
Pancreatic cancer is a deadly disease with a poor prognosis. Recently, miRNAs have been reported to be abnormally expressed in several cancers and play a role in cancer development and progression. However, the role of miRNA in cancer stem cells remains unclear. Therefore, our aim was to investigate the role of miRNA in the CD133+ pancreatic cancer cell line Capan-1M9 because CD133 is a putative marker of pancreatic cancer stem cells. Using miRNA microarray, we found that the expression level of the miR-30 family decreased in CD133 genetic knockdown shCD133 Capan-1M9 cells. We focused on miR-30a, -30b, and -30c in the miR-30 family and created pancreatic cancer cell sublines, each transfected with these miRNAs. High expression of miR-30a, -30b, or -30c had no effect on cell proliferation and sphere forming. In contrast, these sublines were resistant to gemcitabine, which is a standard anticancer drug for pancreatic cancer, and in addition, promoted migration and invasion. Moreover, mesenchymal markers were up-regulated by these miRNAs, suggesting that mesenchymal phenotype is associated with an increase in migration and invasion. Thus, our study demonstrated that high expression of the miR-30 family modulated by CD133 promotes migratory and invasive abilities in CD133+ pancreatic cancer cells. These findings suggest that targeted therapies to the miR-30 family contribute to the development of novel therapies for CD133+ pancreatic cancer stem cells.  相似文献   

20.
The XPA1 human pancreatic cancer cell line is dimorphic, with spindle stem-like cells and round non-stem cells. We report here the in vitro IC50 values of stem-like and non-stem XPA1 human pancreatic cells cells for: (1) 5-fluorouracil (5-FU), (2) cisplatinum (CDDP), (3) gemcitabine (GEM), and (4) tumor-targeting Salmonella typhimurium A1-R (A1-R). IC50 values of stem-like XPA1 cells were significantly higher than those of non-stem XPA1 cells for 5-FU (P = 0.007) and CDDP (P = 0.012). In contrast, there was no difference between the efficacy of A1-R on stem-like and non-stem XPA1 cells. In vivo, 5-FU and A1-R significantly reduced the tumor weight of non-stem XPA1 cells (5-FU; P = 0.028; A1-R; P = 0.011). In contrast, only A1-R significantly reduced tumor weight of stem-like XPA1 cells (P = 0.012). The combination A1-R with 5-FU improved the antitumor efficacy compared with 5-FU monotherapy on the stem-like cells (P = 0.004). The results of the present report indicate A1-R is a promising therapy for chemo-resistant pancreatic cancer stem-like cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号