首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Microbiologically influenced corrosion of steel in anaerobic environments has been attributed to hydrogenotrophic microorganisms. A sludge sample collected from the bottom plate of a crude-oil storage tank was used to inoculate a medium containing iron (Fe0) granules, which was then incubated anaerobically at 37°C under an N2-CO2 atmosphere to enrich for microorganisms capable of using iron as the sole source of electrons. A methanogen, designated strain KA1, was isolated from the enrichment culture. An analysis of its 16S rRNA gene sequence revealed that strain KA1 is a Methanococcus maripaludis strain. Strain KA1 produced methane and oxidized iron much faster than did the type strain of M. maripaludis, strain JJT, which produced methane at a rate expected from the abiotic H2 production rate from iron. Scanning electron micrographs of iron coupons that had been immersed in either a KA1 culture, a JJT culture, or an aseptic medium showed that only coupons from the KA1 culture had corroded substantially, and these were covered with crystalline deposits that consisted mainly of FeCO3.Iron (Fe0) is an inexpensive metal and is widely used in many industrial processes and industrial/commercial products. When iron contacts an aqueous electrolyte, it readily corrodes. This happens because, as a result of metallurgical and environmental heterogeneities, the electrolytes are not evenly distributed across the surface of the metal and consequently the electric potential is also unevenly distributed. Therefore, electrons flow within the metal from an area of higher electrical potential (the anode) to an area of lower electrical potential (the cathode). At the anode, iron atoms lose electrons and dissolve into ferrous ions (Fe2+), whereas cations or elements dissolved in solution (e.g., H+ under anaerobic conditions or O2 under aerobic conditions) are reduced by electrons at the cathode.The corrosion of structures that contain iron is economically devastating. It has been estimated that in the United States alone, the cost of corrosion is 276 billion dollars annually (17). Iron is corroded not only by physiochemical processes but also by the metabolic activity of microorganisms; this metabolic process is termed microbiologically influenced corrosion (MIC). Some 10% of all corrosion damage may be the result of microbial activity (15), and sulfate-reducing bacteria (SRB) are widely regarded as the causative agents of MIC in anaerobic environments (11, 12, 18, 21). The mechanism by which SRB stimulate iron corrosion may occur via the uptake of electrons at the cathodic surface of iron (cathodic depolarization) in conjunction with sulfate reduction (8e + SO42 + 10H+ → H2S + 4H2O) (27), while at the anionic surface, iron atoms are oxidized to ferrous ions (Fe → Fe2+ + 2e). In fact, certain SRB use not only hydrogen but also iron as a source of electrons for sulfate reduction (1, 9, 22). Because not all SRB grow as fast in the presence of iron as they do in the presence of hydrogen (9), fast-growing SRB on iron may have a specific enzyme(s) that removes electrons from iron.Because some methanogens are viable in a hydrogen atmosphere, as are most SRBs, these methanogens may also cause iron corrosion under anaerobic conditions. Several methanogens have been shown to grow and produce methane in medium containing iron as the sole source of electrons (5). The extent of the corrosion by these methanogens, however, was not substantial (2). Others have reported that methanogens do not increase the rate of iron corrosion in comparison with aseptic solutions (6, 7). Recently Dinh and colleagues (9) isolated a methanogen (strain IM1) that produces methane more rapidly than does Methanococcus maripaludis (DSMZ 2771) when cultured with iron granules. Although the rate of iron oxidation was not measured in their experiments, their results suggests that strain IMI oxidizes iron more rapidly than does strain DSMZ 2771.We report herein that a methanogen that was isolated from the sludge of an oil storage tank can unequivocally oxidize iron.  相似文献   

2.
The global economic burden of microbial corrosion of metals is enormous. Microbial corrosion of iron-containing metals is most extensive under anaerobic conditions. Microbes form biofilms on metal surfaces and can directly extract electrons derived from the oxidation of Fe0 to Fe2+ to support anaerobic respiration. H2 generated from abiotic Fe0 oxidation also serves as an electron donor for anaerobic respiratory microbes. Microbial metabolites accelerate this abiotic Fe0 oxidation. Traditional strategies for curbing microbial metal corrosion include cathodic protection, scrapping, a diversity of biocides, alloys that form protective layers or release toxic metal ions, and polymer coatings. However, these approaches are typically expensive and/or of limited applicability and not environmentally friendly. Biotechnology may provide more effective and sustainable solutions. Biocides produced with microbes can be less toxic to eukaryotes, expanding the environments for potential application. Microbially produced surfactants can diminish biofilm formation by corrosive microbes, as can quorum-sensing inhibitors. Amendments of phages or predatory bacteria have been successful in attacking corrosive microbes in laboratory studies. Poorly corrosive microbes can form biofilms and/or deposit extracellular polysaccharides and minerals that protect the metal surface from corrosive microbes and their metabolites. Nitrate amendments permit nitrate reducers to outcompete highly corrosive sulphate-reducing microbes, reducing corrosion. Investigation of all these more sustainable corrosion mitigation strategies is in its infancy. More study, especially under environmentally relevant conditions, including diverse microbial communities, is warranted.  相似文献   

3.
An enzyme preparation from suspension cultured tobacco cells oxidized IAA only in the presence of added cofactors, Mn2+ and 2,4-dichlorophenol, and showed two pH optima for the oxidation at pH 4·5 and 5·5. Effects of various phenolic compounds and metal ions on IAA oxidase activity were examined. The properties of seven peroxidase fractions separated by column chromatography on DEAE-cellulose and CM-Sephadex, were compared. The peroxidases were different in relative activity toward o-dianisidine and guaiacol. All the peroxidases catalysed IAA oxidation in the presence of added cofactors. The pH optima for guaiacol peroxidation were very similar among the seven isozymes, but the optima for IAA oxidation were different. The anionic and neutral fractions showed pH optima near pH 5·5, but the cationic isozymes showed optima near pH 4·5. With guaiacol as hydrogen donor, an anionic peroxidase (A-1) and a cationic peroxidase (C-4) were very different in H2O2 concentration requirements for their activity. Peroxidase A-1 was active at a wide range of H2O2 concentrations, while peroxidase C-4 showed a more restricted H2O2 requirement. Gel filtration and polyacrylamide gel studies indicated that the three cationic peroxidases have the same molecular weight.  相似文献   

4.
Methanogenesis from various elemental metals as electron sources has been demonstrated before. In this study, we have examined the influence of pH on the methanogenic activity of Methanococcus thermolithotrophicus dependent on cathodic hydrogen produced by elemental aluminum wires. When grown on H2+CO2, M. thermolithotrophicus had an optimum pH of 6.2, but when all the H2 was supplied from A1°, the pH optimum was 5.7, consistent with thermodynamic predictions. The results also indicated that aluminum is quite resistant to anaerobic corrosion when compared to iron, most likely due to adhesion of aluminum oxide or hydroxide layers on the surface of the wires. Correspondence to: R. Boopathy  相似文献   

5.

Background

Hydrogen production by fermenting bacteria such as Escherichia coli offers a potential source of hydrogen biofuel. Because H2 production involves consumption of 2H+, hydrogenase expression is likely to involve pH response and regulation. Hydrogenase consumption of protons in E. coli has been implicated in acid resistance, the ability to survive exposure to acid levels (pH 2–2.5) that are three pH units lower than the pH limit of growth (pH 5–6). Enhanced survival in acid enables a larger infective inoculum to pass through the stomach and colonize the intestine. Most acid resistance mechanisms have been defined using aerobic cultures, but the use of anaerobic cultures will reveal novel acid resistance mechanisms.

Methods and Principal Findings

We analyzed the pH regulation of bacterial hydrogenases in live cultures of E. coli K-12 W3110. During anaerobic growth in the range of pH 5 to 6.5, E. coli expresses three hydrogenase isoenzymes that reversibly oxidize H2 to 2H+. Anoxic conditions were used to determine which of the hydrogenase complexes contribute to acid resistance, measured as the survival of cultures grown at pH 5.5 without aeration and exposed for 2 hours at pH 2 or at pH 2.5. Survival of all strains in extreme acid was significantly lower in low oxygen than for aerated cultures. Deletion of hyc (Hyd-3) decreased anoxic acid survival 3-fold at pH 2.5, and 20-fold at pH 2, but had no effect on acid survival with aeration. Deletion of hyb (Hyd-2) did not significantly affect acid survival. The pH-dependence of H2 production and consumption was tested using a H2-specific Clark-type electrode. Hyd-3-dependent H2 production was increased 70-fold from pH 6.5 to 5.5, whereas Hyd-2-dependent H2 consumption was maximal at alkaline pH. H2 production, was unaffected by a shift in external or internal pH. H2 production was associated with hycE expression levels as a function of external pH.

Conclusions

Anaerobic growing cultures of E. coli generate H2 via Hyd-3 at low external pH, and consume H2 via Hyd-2 at high external pH. Hyd-3 proton conversion to H2 is required for acid resistance in anaerobic cultures of E. coli.  相似文献   

6.
We examined nitrate-dependent Fe2+ oxidation mediated by anaerobic ammonium oxidation (anammox) bacteria. Enrichment cultures of “Candidatus Brocadia sinica” anaerobically oxidized Fe2+ and reduced NO3 to nitrogen gas at rates of 3.7 ± 0.2 and 1.3 ± 0.1 (mean ± standard deviation [SD]) nmol mg protein−1 min−1, respectively (37°C and pH 7.3). This nitrate reduction rate is an order of magnitude lower than the anammox activity of “Ca. Brocadia sinica” (10 to 75 nmol NH4+ mg protein−1 min−1). A 15N tracer experiment demonstrated that coupling of nitrate-dependent Fe2+ oxidation and the anammox reaction was responsible for producing nitrogen gas from NO3 by “Ca. Brocadia sinica.” The activities of nitrate-dependent Fe2+ oxidation were dependent on temperature and pH, and the highest activities were seen at temperatures of 30 to 45°C and pHs ranging from 5.9 to 9.8. The mean half-saturation constant for NO3 ± SD of “Ca. Brocadia sinica” was determined to be 51 ± 21 μM. Nitrate-dependent Fe2+ oxidation was further demonstrated by another anammox bacterium, “Candidatus Scalindua sp.,” whose rates of Fe2+ oxidation and NO3 reduction were 4.7 ± 0.59 and 1.45 ± 0.05 nmol mg protein−1 min−1, respectively (20°C and pH 7.3). Co-occurrence of nitrate-dependent Fe2+ oxidation and the anammox reaction decreased the molar ratios of consumed NO2 to consumed NH4+ (ΔNO2/ΔNH4+) and produced NO3 to consumed NH4+ (ΔNO3/ΔNH4+). These reactions are preferable to the application of anammox processes for wastewater treatment.  相似文献   

7.
Microbiologically influenced corrosion (MIC) of metallic materials imposes a heavy economic burden. The mechanism of MIC of metallic iron (Fe0) under anaerobic conditions is usually explained as the consumption of cathodic hydrogen by hydrogenotrophic microorganisms that accelerates anodic Fe0 oxidation. In this study, we describe Fe0 corrosion induced by a nonhydrogenotrophic nitrate-reducing bacterium called MIC1-1, which was isolated from a crude-oil sample collected at an oil well in Akita, Japan. This strain requires specific electron donor-acceptor combinations and an organic carbon source to grow. For example, the strain grew anaerobically on nitrate as a sole electron acceptor with pyruvate as a carbon source and Fe0 as the sole electron donor. In addition, ferrous ion and l-cysteine served as electron donors, whereas molecular hydrogen did not. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain MIC1-1 was a member of the genus Prolixibacter in the order Bacteroidales. Thus, Prolixibacter sp. strain MIC1-1 is the first Fe0-corroding representative belonging to the phylum Bacteroidetes. Under anaerobic conditions, Prolixibacter sp. MIC1-1 corroded Fe0 concomitantly with nitrate reduction, and the amount of iron dissolved by the strain was six times higher than that in an aseptic control. Scanning electron microscopy analyses revealed that microscopic crystals of FePO4 developed on the surface of the Fe0 foils, and a layer of FeCO3 covered the FePO4 crystals. We propose that cells of Prolixibacter sp. MIC1-1 accept electrons directly from Fe0 to reduce nitrate.  相似文献   

8.
Catalase is well known to eliminate H2O2 in cells and reduces the toxicity of peroxide compounds. A catalase gene HpCAT1 of methylotrophic yeast Hansenula polymorpha without the part coding the native signal peptide was cloned into expression vector pYM3165 and then integrated into genome of Pichia pastoris GS115 by electroporation. The result of the enzyme activity assay and SDS-PAGE demonstrated that the recombinant protein (HpCAT1) of H. polymorpha was extracellularly expressed in P. pastoris. The expressed catalase was recovered from the culture supernatant of P. pastoris GS115 and purified by (NH4)2SO4 fractionation and Ni-NTA affinity chromatography. The main biochemical properties of the recombinant protein HpCAT1, such as thermodependence and thermostability, pH optimum and pH stability, as well as the effect of metal ions and chemicals, were characterized. With H2O2 as the substrate, HpCAT1 displayed pH and temperature optima of ~2.6 and 45°C, respectively. The recombinant HpCAT1 activity was inhibited by 1 mM Hg2+ and Cu2+, but was highly enhanced by 1.0 mM Fe2+.  相似文献   

9.
Direct electron uptake is emerging as a key process for electron transfer in anaerobic microbial communities, both between species and from extracellular sources, such as zero-valent iron (Fe0) or cathodic surfaces. In this study, we investigated cathodic electron uptake by Fe0-corroding Desulfovibrio ferrophilus IS5 and showed that electron uptake is dependent on direct cell contact via a biofilm on the cathode surface rather than through secreted intermediates. Induction of cathodic electron uptake by lactate-starved D. ferrophilus IS5 cells resulted in the expression of all components necessary for electron uptake; however, protein synthesis was required for full biofilm formation. Notably, proteinase K treatment uncoupled electron uptake from biofilm formation, likely through proteolytic degradation of proteinaceous components of the electron uptake machinery. We also showed that cathodic electron uptake is dependent on SO42− reduction. The insensitivity of Fe0 corrosion to proteinase K treatment suggests that electron uptake from a cathode might involve different mechanism(s) than those involved in Fe0 corrosion.  相似文献   

10.
Summary Hydroxyl radicals (OH') can be formed in aqueous solution by direct reaction of hydrogen peroxide (H2O2) with ferrous salt (Fenton reaction). OH' damage to deoxyribose, measured as formation of thiobarbituric acid-reactive material, was evaluated at different pHs to study the mechanism of action of classical OH' scavengers. OH' scavenger effect on Fe2+ oxidation was also evaluated in the same experimental conditions. In the absence of OH' scavengers, OH' damage to deoxyribose is higher at acidic compared to neutral and moderately basic pH. At acidic pH deoxiribose is per se able to inhibit Fe2+ oxidation by H202. Most of OH' scavengers tested inhibit deoxyribose damage and Fe2+ oxidation in a similar manner: both inhibitions are most relevant at acidic pH and decrease by increasing the pH. These results are not due to OH' scavenger inhibition of Fenton reaction. The influence of pH on the parameters studied appears to be due to the competition of deoxyribose and OH' scavengers for iron. These results suggest the prominent role of iron binding in the degradation of deoxyribose and in the OH' scavenging ability of different compounds. Results obtained with triethylenetetramine, a iron chelator with a low rate constant with OH', confirm that both deoxyribose and the OH' scavengers interact with iron bringing about a site specific Fenton reaction; that the OH' formed at these sites oxidize these molecules to their radical forms which in turn reduce the Fe3– produced by Fenton reaction. The results presented indicate that most of classical OH' scavengers exert their effect predominantly by preventing the site specific reaction between Fe2+ and H202 on the deoxyribose molecule.  相似文献   

11.
Effects of protease inhibitors on liver regeneration   总被引:2,自引:0,他引:2  
The oxidation of Fe2+ to Fe3+ by oxygen at pH 7.45 is a first order reaction with a 25 minute half life. In the presence of apotransferrin the oxidation rate is greatly enhanced and Fe3+-transferrin is formed. The apotransferrin mediated reaction reaches 50% completion in one minute; it does not follow simple first order kinetics. Iron-saturated transferrin does not exhibit the rate enhancement effect suggesting that the specific metal binding sites are the loci of the iron oxidation. Addition of H2O2, an agent which rapidly oxidizes Fe2+ to Fe3+, during the reaction of Fe2+ with apotransferrin greatly decreases the yield of Fe3+-transferrin. It is postulated that the basis of the rate enhancement effect is the binding of Fe2+ to the metal binding site of the transferrin molecule, followed by a rapid oxidation of the iron to the trivalent form.  相似文献   

12.
Catalase-peroxidases or KatGs from seven different organisms, including Archaeoglobus fulgidus,Bacillus stearothermophilus, Burkholderia pseudomallei, Escherichia coli, Mycobacterium tuberculosis, Rhodobacter capsulatus and Synechocystis PCC 6803, have been characterized to provide a comparative picture of their respective properties. Collectively, the enzymes exhibit similar turnover rates with the catalase and peroxidase reactions varying between 4900 and 15,900 s−1 and 8-25 s−1, respectively. The seven enzymes also exhibited similar pH optima for the peroxidase (4.25-5.0) and catalase reactions (5.75), and high sensitivity to azide and cyanide with IC50 values of 0.2-20 μM and 50-170 μM, respectively. The KMs of the enzymes for H2O2 in the catalase reaction were relatively invariant between 3 and 5 mM at pH 7.0, but increased to values ranging from 20 to 225 mM at pH 5, consistent with protonation of the distal histidine (pKa approximately 6.2) interfering with H2O2 binding to Cpd I. The catalatic kcat was 2- to 3-fold higher at pH 5 compared to pH 7, consistent with the uptake of a proton being involved in the reduction of Cpd I. The turnover rates for the INH lyase and isonicotinoyl-NAD synthase reactions, responsible for the activation of isoniazid as an anti-tubercular drug, were also similar across the seven enzymes, but considerably slower, at 0.5 and 0.002 s−1, respectively. Only the NADH oxidase reaction varied more widely between 10−4 and 10−2 s−1 with the fastest rate being exhibited by the enzyme from B. pseudomallei.  相似文献   

13.
Dissimilatory iron-reducing bacteria transfer electrons to solid ferric respiratory electron acceptors. Outer-membrane cytochromes expressed by these organisms are of interest in both microbial fuel cells and biofuel cells. We use optical waveguide lightmode spectroscopy (OWLS) to show that OmcA, an 85 kDa decaheme outer-membrane c-type cytochrome from Shewanella oneidensis MR-1, adsorbs to isostructural Al2O3 and Fe2O3 in similar amounts. Adsorption is ionic-strength and pH dependent (peak adsorption at pH 6.5-7.0). The thickness of the OmcA layer on Al2O3 at pH 7.0 [5.8 ± 1.1 (2σ) nm] from OWLS is similar, within error, to that observed using atomic force microscopy (4.8 ± 2 nm). The highest adsorption density observed was 334 ng cm−2 (2.4 × 1012 molecules cm−2), corresponding to a monolayer of 9.9 nm diameter spheres or submonolayer coverage by smaller molecules. Direct electrochemistry of OmcA on Fe2O3 electrodes was observed using cyclic voltammetry, with cathodic peak potentials of −380 to −320 mV versus Ag/AgCl. Variations in the cathodic peak positions are speculatively attributed to redox-linked conformation change or changes in molecular orientation. OmcA can exchange electrons with ITO electrodes at higher current densities than with Fe2O3. Overall, OmcA can bind to and exchange electrons with several oxides, and thus its utility in fuel cells is not restricted to Fe2O3.  相似文献   

14.
The kinetics of the formation of the purple complex [FeIII(EDTA)O2]3−, between FeIII-EDTA and hydrogen peroxide was studied as a function of pH (8.22-11.44) and temperature (10-40 °C) in aqueous solutions using a stopped-flow method. The reaction was first-order with respect to both reactants. The observed second-order rate constants decrease with an increase in pH and appear to be related to deprotonation of FeIII-EDTA ([Fe(EDTA)H2O] ⇔ Fe(EDTA)OH]2− + H+). The rate law for the formation of the complex was found to be d[FeIIIEDTAO2]3−/dt=[(k4[H+]/([H+] + K1)][FeIII-EDTA][H2O2], where k4=8.15±0.05×104 M−1 s−1 and pK1=7.3. The steps involved in the formation of [Fe(EDTA)O2]3− are briefly discussed.  相似文献   

15.
Biooxidation of refractory gold-bearing pyrite-arsenopyrite flotation concentrate was optimized and the abundance of predominant groups in the community of thermophilic acidophilic chemolithotrophic microorganisms at various stages of bioleaching was determined. The optimal parameters for growth and leaching/oxidation of the mineral components of the concentrate were pH 1.4–1.8; 47.5°C; and the following salt concentrations in the liquid phase (g/L): K2HPO4 · 3H2O ? 0.53, (NH4)2SO4, 1.6 and MgSO4 · 7H2O, 2.5 (or (NH4)2SO4, 1.23; ammophos, 0.41; KOH, 0.1) with 0.03% yeast extract. The optimal conditions resulted in high growth rate, high levels of iron and arsenic leaching, of Fe2+ and S2?/S0 oxidation, and predominance of Acidithiobacillus caldus, Sulfobacillus spp., and Ferroplasma spp. in the community.  相似文献   

16.
Available cultures of Thiobacillus ferrooxidans were found to be contaminated with bacteria very similar to Thiobacillus acidophilus. The experiments described were performed with a homogeneous culture of Thiobacillus ferrooxidans.Pyrite (FeS2) was oxidized by Thiobacillus ferrooxidans grown on iron (Fe2+), elemental sulphur (So) or FeS2.Evidence for the direct utilization of the sulphur moiety of pyrite by Thiobacillus ferrooxidans was derived from the following observations: a. Known inhibitors of Fe2+ and So oxidation, NaN3 and NEM, respectively, partially abolished FeS2 oxidation. b. A b-type cytochrome was detectable in FeS2-and So-grown cells but not in Fe2+-grown cells. c. FeS2 and So reduced b-type cytochromes in whole cells grown on So. d. CO2 fixation at pH 4.0 per mole of oxygen consumed was the highest with So, lowest with Fe2+ and medium with FeS2 as substrate. e. Bacterial Fe2+ oxidation was found to be negligible at pH 5.0 whereas both FeS2 and So oxidation was still appreciable above this pH. f. Separation of pyrite and bacteria by means of a dialysis bag caused a pronounced drop of the oxidation rate which was similar to the reduction of pyrite oxidation by NEM; indirect oxidation of the sulphur moiety by Fe3+ was not affected by separation of pyrite and bacteria.Bacterial oxidation and utilization of the sulphur moiety of pyrite were relatively more important with increasing pH.  相似文献   

17.
In the absence of H2, Methanococcus spp. utilized pyruvate as an electron donor for methanogenesis. For Methanococcus voltae A3, Methanococcus maripaludis JJ1, and Methanococcus vannielii, typical rates of pyruvate-dependent methanogenesis were 3.4, 2.8, and 3.9 nmol min-1 mg-1 cell dry wt, respectively. These rates were 1–4% of the rates of H2-dependent methanogenesis. For M. voltae, the concentration of pyruvate required for one-half the maximum rate of methanogenesis was 7 mM, and pyruvate-dependent methanogenesis was linear for 3 days. Radiolabeled acetate was formed from [3-14C]pyruvate, and the stoichiometry of pyruvate consumed per acetate produced was 1.12±0.27. The stoichiometry of pyruvate consumed per CH4 produced was 3.64±0.34. These values are close to the expected values of 1 acetate and 4 CH4. Although 10–30% of total cell carbon could be obtained from exogenous pyruvate during growth with H2, pyruvate did not replace the nutritional requirement for acetate in Methanococcus voltae A3 or two acetate auxotrophs of Methanococcus maripaludis, JJ6 and JJ7. These results suggest that pyruvate was not oxidized in the presence of H2. The inability to oxidize pyruvate during H2-dependent methanogenesis would prevent a futile cycle of pyruvate oxidation and biosynthesis during autotrophic growth.  相似文献   

18.
Peroxidases were isolated from Sapindus mukorossi (Reetha) and partially purified using acetone precipitation, ion-exchange chromatography with a 14-fold purification, 22% recovery and a specific activity of 266?×?103 units/mg protein. Sapindus peroxidases (SPases) showed six bands after acetone precipitation and one distinct band after ion exchange chromatography on Native-PAGE after zymography. Enzymes purified by ion exchange chromatography were loaded on Sepahdex G-50 superfine column and their molecular weight was reported to be 25?kDa. They showed temperature optima at 50°C and pH optima at 5.0.?km for SPases was reported to be 1.05?mM and 0.186?mM for guaiacol and H2O2 respectively. The Vmax/Km value for o-dianisidine was 449 while for H2O2 it was 5?×?105. Protocatechuic acid acts as a potent inhibitor for SPases (6.0% relative activity at 4.5???M) but ferulic acid inhibits its activity at a much lower concentration (0.02???M). Enzymes were stimulated by metal cations like Cu2+, Ca2+ (145, 168; percentage relative activity respectively) and showed mild inhibition (up to 20%) with Mn2+ and Mg2+. Alanine stimulated the enzyme activity (up to 33%; at 0?C100???M) while other amino acids like cysteine, methionine, tryptophan and tyrosine inhibited the SPases (13?C57% at 0?C100???M).  相似文献   

19.
《Experimental mycology》1994,18(2):180-192
MacKichan, J. K., Tuininga, A. R., and Kerwin, J. L. 1994. Preliminary characterization of phospholipase A2 in Lagenidium giganteum. Experimental Mycology 18, 180-192. Phospholipase A2 (PLA2) hydrolyses the fatty acyl ester bond at the sn-2 position in glycerophospholipids. To better understand its regulatory roles, factors affecting PLA2 activity in Lagenidium giganteum were investigated: divalent ions; chelators: inhibitors; pH; and substrate concentration. PLA2 activity of L. giganteum whole cell homogenates was determined using 1-stearoyl-2-[1-14C]arachidonoyl phosphatidylcholine as substrate. The divalent cations Ca2+, Mg2+, and Mn2+ all enhanced PLA2 activity, while Co2+, Fe2+, and Zn2+ were either slightly inhibitory or without effect. High concentrations of EGTA enhanced activity, low concentrations of the chelators were slightly inhibitory, while high concentrations of EDTA had little effect. EGTA, which has a higher affinity for Ca2+ and Mn2+ than Mg2+, reduced hydrolysis less than a comparable concentration of EDTA. Two pH optima were found, at both acid (ca. 5.5) and alkaline (ca. 11.5) levels. Four classical inhibitors, nordihydroguaiaretic acid, ellagic acid, gossypol, and 4-bromophenacylbromide, reduced PLA2 activity by about 80% at 5 mM concentration, 50% with 1 mM inhibitor, and had no effect at 100 μM. The relatively high levels of these compounds needed to inhibit PLA2 hydrolysis may have been due to the presence of a cocktail of enzymes, some of which were not susceptible to inhibition. All inhibitors at 1 mM concentration in live cell cultures effectively shut down oosporogenesis, without adverse effects to the mycelia. PLA2 activity was highest in the late oospore stage of the life cycle, although the enzymes were probably not metabolically active in these stationary cultures. Cultures grown on cholesterol-supplemented defined media had significantly higher levels of PLA2 activity relative to cultures grown on sterol-free media. The enzyme was found to be associated primarily with microsomal membranes, but there was significant activity in cytosolic fractions. Separation of cell homogenates by column chromatography revealed that there were at least nine enzymes capable of cleaving fatty acids in the sn -2 position of phospholipids.  相似文献   

20.
In cells, mitochondria, endoplasmic reticulum, and peroxisomes are the major sources of reactive oxygen species (ROS) under physiological and pathophysiological conditions. Cytochrome c (cyt c) is known to participate in mitochondrial electron transport and has antioxidant and peroxidase activities. Under oxidative or nitrative stress, the peroxidase activity of Fe3+cyt c is increased. The level of NADH is also increased under pathophysiological conditions such as ischemia and diabetes and a concurrent increase in hydrogen peroxide (H2O2) production occurs. Studies were performed to understand the related mechanisms of radical generation and NADH oxidation by Fe3+cyt c in the presence of H2O2. Electron paramagnetic resonance (EPR) spin trapping studies using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) were performed with NADH, Fe3+cyt c, and H2O2 in the presence of methyl-β-cyclodextrin. An EPR spectrum corresponding to the superoxide radical adduct of DMPO encapsulated in methyl-β-cyclodextrin was obtained. This EPR signal was quenched by the addition of the superoxide scavenging enzyme Cu,Zn-superoxide dismutase (SOD1). The amount of superoxide radical adduct formed from the oxidation of NADH by the peroxidase activity of Fe3+cyt c increased with NADH and H2O2 concentration. From these results, we propose a mechanism in which the peroxidase activity of Fe3+cyt c oxidizes NADH to NAD, which in turn donates an electron to O2, resulting in superoxide radical formation. A UV-visible spectroscopic study shows that Fe3+cyt c is reduced in the presence of both NADH and H2O2. Our results suggest that Fe3+cyt c could have a novel role in the deleterious effects of ischemia/reperfusion and diabetes due to increased production of superoxide radical. In addition, Fe3+cyt c may play a key role in the mitochondrial “ROS-induced ROS-release” signaling and in mitochondrial and cellular injury/death. The increased oxidation of NADH and generation of superoxide radical by this mechanism may have implications for the regulation of apoptotic cell death, endothelial dysfunction, and neurological diseases. We also propose an alternative electron transfer pathway, which may protect mitochondria and mitochondrial proteins from oxidative damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号