首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Leiurus quinquestriatus quinquestriatus receptor site of the voltage-dependent sodium channel has been characterized using several fluorescent scorpion toxins. The derivatives show fluorescence enhancements upon binding to the receptor site on the channel together with blue shifts. The fluorescence properties of the bound probes indicate a conformationally flexible, hydrophobic site. Binding of tetrodotoxin has no effect on the fluorescence spectra of the bound derivatives, whereas binding of the allosteric activator batrachotoxin enhances the fluorescence about 2-fold and causes a red shift in the emission spectra, suggesting a batrachotoxin-induced conformational change in the scorpion toxin receptor. The distance between the tetrodotoxin receptor and the Leiurus scorpion toxin receptor on the channel was measured by fluorescence resonance energy transfer. Five different chromophoric scorpion toxin derivatives were used as energy transfer acceptors or donors with anthraniloyltetrodotoxin or N-methylanthraniloylglycine-tetrodotoxin as the energy donor or acceptor. Because of the presence of three tetrodotoxin receptors for each Leiurus receptor, the positions of the donors and acceptors were exchanged. Efficiencies of transfer were measured by both donor quenching and sensitized emission. The average distance of separation between these sites is 35 A. Upon batrachotoxin addition, this distance changes to 42 A indicating a conformational change in one subunit of the channel or a change in the interaction between two subunits coupled to the batrachotoxin-binding site. On the basis of these studies, we present a model suggesting that tetrodotoxin binds to a subunit/site which is extracellularly placed and is 35 A from the Leiurus subunit/site which is located in a protein cleft of the channel which extends partly into the membrane, and undergoes a neurotoxin and voltage-dependent conformational change.  相似文献   

2.
A fluorescent N- methylanthraniloyl derivative of the potent depolarizing agent batrachotoxin has been used to probe the structural and conformational properties of the neurotoxin receptor site on the voltage-dependent sodium channel. Batrachotoxin A 20-alpha-N- methylanthranilate (BTX-NMA) retains high affinity for its receptor site on the synaptosomal sodium channel with a Kd between 78 and 91 nM and an average site capacity of 2 pmol/mg of synaptosomal protein in the presence of Leiurus quinquestriatus quinquestriatus alpha-scorpion toxin. The fluorescence emission of BTX-NMA upon binding to synaptosomes indicates a hydrophobic environment. Toxin V from L. quinquestriatus, an allosteric activator, effects a 20-nm red shift in the spectrum of bound BTX-NMA and a 4-fold enhancement in the fluorescence quantum yield disclosing a conformational change into a hydrophilic environment. Fluorescence resonance energy transfer measurements show that the distance separating the receptor sites is 37 +/- 10 A. Thus, the binding of alpha-scorpion toxin must involve conformational changes that extend over large distances from the batrachotoxin-binding locus. This information together with the distance measurements between the tetrodotoxin and alpha-scorpion toxin receptors and the conformational transition associated with this distance upon batrachotoxin addition indicate a conformationally flexible channel with coupling of sites through the polyatomic framework of individual subunits or through extensive alterations in subunit/subunit interactions.  相似文献   

3.
Seven polypeptides highly toxic to mice were isolated from the venom of the scorpion, Centruroides suffusus suffusus (Css), and their chemical and toxic properties were characterized. It was shown that the most active toxins by intracerebroventricular injection are less active when injected subcutaneously. The complete amino acid sequence (66 residues) of toxin II (Css II) has been determined. The C-terminal end is amidated as found for most other scorpion toxins. Css II is a beta-type toxin, previously used to define the binding site for activation of the sodium channel. Using rat brain synaptosomes, we demonstrated that all Css toxins compete with 125I-Css II to bind to site 4 and should be considered as beta-scorpion toxins. Specific binding parameters for Css VI, one of the most active toxins, were determined: KD = 100 pM; capacity in binding sites, 2.2 pmol of toxin/mg of synaptosomal protein. Css VI was shown to inhibit gamma-aminobutyric acid uptake by synaptosomes: K 0.5 = 100 pM, which agrees with its KD. Competition experiments between the seven Css toxins and 125I-Css II for antiserum raised against Css II demonstrated that all these toxins have common antigenic properties.  相似文献   

4.
Scorpion β-toxin 4 from Centruroides suffusus suffusus (Css4) enhances the activation of voltage-gated sodium channels through a voltage sensor trapping mechanism by binding the activated state of the voltage sensor in domain II and stabilizing it in its activated conformation. Here we describe the antagonist and partial agonist properties of a mutant derivative of this toxin. Substitution of seven different amino acid residues for Glu15 in Css4 yielded toxin derivatives with both increased and decreased affinities for binding to neurotoxin receptor site 4 on sodium channels. Css4E15R is unique among this set of mutants in that it retained nearly normal binding affinity but lost its functional activity for modification of sodium channel gating in our standard electrophysiological assay for voltage sensor trapping. More detailed analysis of the functional effects of Css4E15R revealed weak voltage sensor trapping activity, which was very rapidly reversed upon repolarization and therefore was not observed in our standard assay of toxin effects. This partial agonist activity of Css4E15R is observed clearly in voltage sensor trapping assays with brief (5 ms) repolarization between the conditioning prepulse and the test pulse. The effects of Css4E15R are fit well by a three-step model of toxin action involving concentration-dependent toxin binding to its receptor site followed by depolarization-dependent activation of the voltage sensor and subsequent voltage sensor trapping. Because it is a partial agonist with much reduced efficacy for voltage sensor trapping, Css4E15R can antagonize the effects of wild-type Css4 on sodium channel activation and can prevent paralysis by Css4 when injected into mice. Our results define the first partial agonist and antagonist activities for scorpion toxins and open new avenues of research toward better understanding of the structure-function relationships for toxin action on sodium channel voltage sensors and toward potential toxin-based therapeutics to prevent lethality from scorpion envenomation.  相似文献   

5.
The gene for a beta-neurotoxin [Centruroides suffusus suffusus toxin II (Css II)] from the scorpion C. suffusus suffusus was synthesized by recursive PCR and cloned into the expression vector, pET15b. This recombinant vector was transformed into a thioredoxin mutant host bacterial cell, AD 494(DE3)pLysS, and expression was induced with isopropyl thiogalactoside (IPTG). Although the level of expression was low, the recombinant toxin was found only in the soluble fraction with no evidence for the formation of inclusion bodies as had been observed previously with other scorpion toxins. The recombinant Css II was purified by successive ion-exchange and hydrophobic interaction chromatography. Nuclear magnetic resonance (NMR) and circular dichroism (CD) spectral measurements indicate that the protein has a native structure with no indication of denatured species. The recombinant neurotoxin inhibits the uptake of [(3)H]GABA [gamma-aminobutyric acid (GABA)] in neuronal cells as effectively as natural beta-toxins.  相似文献   

6.
Abstract: Reconstitution of purified sodium channels into phospholipid vesicles restores many aspects of sodium channel function including high-affinity neurotoxin binding and action at neurotoxin receptor sites 1–3 and 5, but neurotoxin binding and action at receptor site 4 has not previously been demonstrated in purified and reconstituted preparations. Toxin IV from the venom of the American scorpion Centruroides suffusus suffusus (Css IV), a β-scorpion toxin, shifts the voltage dependence of sodium channel activation by binding with high affinity to neurotoxin receptor site 4. Sodium channels were purified from rat brain and reconstituted into phospholipid vesicles composed of phosphatidylcholine and phosphatidylethanolamine (65:35). 125I-Css IV, purified by reversed-phase HPLC, bound rapidly and specifically to reconstituted sodium channels. Dissociation of the bound toxin was biphasic with half-times of 0.22 min?1 and 0.015 min?1. At equilibrium, the toxin bound to two classes of specific high-affinity sites, a variable minor class with KD of ~0.1 nM and a major class with a KD of ~5 nM. Approximately 0.8 mol 125I-Css IV was bound per mole of reconstituted, right-side-out sodium channels, as assessed from comparison of binding of saxitoxin and Css IV. Binding of Css IV was unaffected by membrane potential or by neurotoxins that bind at sites 1–3 or 5, consistent with the characteristics of binding of β-scorpion toxins to sodium channels in cells and membrane preparations. Our results show that specific, high-affinity binding at neurotoxin receptor site 4 on purified sodium channels can be restored by reconstitution into phospholipid vesicles and provide an experimental approach to analysis of the peptide components of the toxin receptor site.  相似文献   

7.
Fluorescent derivatives of scorpion toxin V from Leiurus quinquestriatus quinquestriatus have been prepared so that the topographical, dynamic, and cellular properties of the neurotoxin receptor site on the voltage-dependent sodium channel could be studied. Four different modification strategies have been pursued in which acylated, amidinylated, thio-amidinylated, and reductively alkylated scorpion toxins were prepared. Acylation induces a loss of net positive charge on the toxin and these derivatives are purified by preparative isoelectric focusing and ion-exchange chromatography. Amidinylation and reductive alkylation preserve the protonation state of the toxin and maintain the native tertiary structure of the toxin. Because the native toxin does not contain cysteine, we have introduced new sulfhydryls through modification with the cyclic imidoester 2-iminothiolane which also preserves the net charge on the toxin. Novel purification methods with small amounts of toxin by immunoprecipitation using antibodies directed against the chromophores or through covalent thiol-disulfide exchange chromatography have been utilized. The biological activities, equilibrium binding, and spectroscopic properties indicate that these derivatives retain high affinity for the sodium channel and are as active or only 2-3 times less active than L. quinquestriatus V toxin itself. The spectroscopic properties of these fluorescent derivatives cover the absorption range from 290 to 470 nm, and fluorescence emissions range from 360 to 550 nm where suitable filters and spectral overlap with previously synthesized fluorescent tetrodotoxin can be found. The fluorescent properties in particular show excellent environmental sensitivity and are suitable for probing the molecular dynamics of the toxin receptor and for topographic mapping of the sodium channel by fluorescence resonance energy transfer measurements.  相似文献   

8.
Magi 5, from the hexathelid spider Macrothele gigas, is a 29-residue polypeptide containing three disulfide bridges. It binds specifically to receptor site 4 on mammalian voltage-gated sodium channels and competes with scorpion beta-toxins, such as Css IV from Centruroides suffusus suffusus. As a consequence, Magi 5 shifts the activation voltage of the mammalian rNav1.2a channel to more hyperpolarized voltages, whereas the insect channel, DmNav1, is not affected. To gain insight into toxin-channel interactions, Magi 5 and 23 analogues were synthesized. The three-dimensional structure of Magi 5 in aqueous solution was determined, and its voltage-gated sodium channel-binding surfaces were mapped onto this structure using data from electrophysiological measurements on a series of Ala-substituted analogues. The structure clearly resembles the inhibitor cystine knot structural motif, although the triple-stranded beta-sheet typically found in that motif is partially distorted in Magi 5. The interactive surface of Magi 5 toward voltage-gated sodium channels resembles in some respects the Janus-faced atracotoxins, with functionally important charged residues on one face of the toxin and hydrophobic residues on the other. Magi 5 also resembles the scorpion beta-toxin Css IV, which has distinct nonpolar and charged surfaces that are critical for channel binding and has a key Glu involved in voltage sensor trapping. These two distinct classes of toxin, with different amino acid sequences and different structures, may utilize similar groups of residues on their surface to achieve the common end of modifying voltage-gated sodium channel function.  相似文献   

9.
Abstract: Voltage-gated sodium channels serve as a target for many neurotoxins that bind to several distinct, allosterically interacting receptor sites. We examined the effect of membrane potentials (incited by increasing external K+ concentrations) on the binding modulation by veratridine, brevetoxin, and tetrodotoxin of the scorpion α-toxin AaH II to receptor site 3 on sodium channels of rat brain synaptosomes. Depolarization is shown to differentially modulate neurotoxin effects on AaH II binding: Veratridine increase is potentiated, brevetoxin's inhibitory effect is reduced, and tetrodotoxin enhancement is evident mainly at resting membrane potential (5 m M K+). Both tetrodotoxin and veratridine apparently reverse the inhibition of AaH II binding by brevetoxin at resting membrane potential, but only veratridine is able to partially restore AaH II binding at 0 mV (135 m M K+). Thus, the allosteric interactions are grouped into two categories, depending on the membrane potential. Under depolarized conditions, the cooperative effects among veratridine and brevetoxin on AaH II binding fit the previously described two-state conformational model. At resting membrane potential, additional interactions are revealed, which may be explained by assuming that toxin binding induces conformational changes on the channel structure, in addition to being state-dependent. Our results provide a new insight into neurotoxin action and the complex dynamic changes underlying allosteric coupling of neurotoxin receptor sites, which may be related to channel gating.  相似文献   

10.
The interaction of TiTx gamma, the major toxin in the venom of the scorpion Tityus serrulatus, with its receptor in excitable membranes was studied with the use of 125I-TiTx gamma. This derivative retains biological activity, and its specific binding to both brain synaptosomes and electroplaque membranes from Electrophorus electricus is characterized by a dissociation constant equal to that of the native toxin-receptor complex, about 2 to 5 pM. This very high affinity results mainly from a very slow rate of dissociation, equivalent to a half-life longer than 10 h at 4 degrees C. There is a 1:1 stoichiometry between TiTx gamma binding and tetrodotoxin binding to the membranes, but neither tetrodotoxin nor any of 7 other neurotoxins that are representative of 4 different classes of effectors of the Na+ channel interfere with TiTx gamma binding. Similarly, local anesthetics and other molecules that affect other types of ionic channels or neurotransmitter receptors have no effect on TiTx gamma binding. However, toxin II from Centruroides suffusus suffusus does compete with TiTx gamma, though its affinity for the receptor is much lower. Since the Centruroides toxin II is known to affect Na+ channel function, these two scorpion toxins must be put into a fifth class of Na+ channel effectors.  相似文献   

11.
The three-dimensional structures of the long-chain mammalian scorpion β-toxin CssII from Centruroides suffusus suffusus and of its recombinant form, HisrCssII, were determined by NMR. The neurotoxin CssII (nCssII) is a 66 amino acid long peptide with four disulfide bridges; it is the most abundant and deadly toxin from the venom of this scorpion. Both native and recombinant CssII structures were determined by nuclear magnetic resonance using a total of 828 sequential distance constraints derived from the volume integration of the cross peaks observed in 2D NOESY spectra. Both nCssII and HisrCssII structures display a mixed α/β fold stabilized by four disulfide bridges formed between pairs of cysteines: C1-C8, C2-C5, C3-C6, and C4-C7 (the numbers indicate the relative positions of the cysteine residues in the primary structure), with a distortion induced by two cis-prolines in its C-terminal part. The native CssII electrostatic surface was compared to both the recombinant one and to the Cn2 toxin, from the scorpion Centruroides noxius, which is also toxic to mammals. Structural features such N- and C-terminal differences could influence toxin specificity and affinity towards isoforms of different sub-types of Na(v) channels.  相似文献   

12.
The binding of 125I-labeled derivatives of scorpion toxin and sea anemone toxin to tetrodotoxin-insensitive sodium channels in cultured rat muscle cells has been studied. Specific binding of 125I-labeled scorpion toxin and 125I-labeled sea anemone toxin was each blocked by either native scorpion toxin or native sea anemone toxin. K0.5 for block of binding by several polypeptide toxins was closely correlated with K0.5 for enhancement of sodium channel activation in rat muscle cells. These results directly demonstrate binding of sea anemone toxin and scorpion toxin to a common receptor site on the sodium channel. Binding of both 125I-labeled toxin derivatives is enhanced by the alkaloids aconitine and batrachotoxin due to a decrease in KD for polypeptide toxin. Enhancement of polypeptide toxin binding by aconitine and batrachotoxin is precisely correlated with persistent activation of sodium channels by the alkaloid toxins consistent with the conclusion that there is allosteric coupling between receptor sites for alkaloid and polypeptide toxins on the sodium channel. The binding of both 125I-labeled scorpion toxin and 125I-labeled sea anemone toxin is reduced by depolarization due to a voltage-dependent increase in KD. Scorpion toxin binding is more voltage-sensitive than sea anemone toxin binding. Our results directly demonstrate voltage-dependent binding of both scorpion toxin and sea anemone toxin to a common receptor site on the sodium channel and introduce the 125I-labeled polypeptide toxin derivatives as specific binding probes of tetrodotoxin-insensitive sodium channels in cultured muscle cells.  相似文献   

13.
Three scorpion toxins have been analyzed by circular dichroism in water and in 2,2,2-trifluoroethanol (TFE) solutions. These toxins were chosen because they are representative of three kinds of pharmacological activities: (1) toxin AaH IT2, an antiinsect toxin purified from the venom of Androctonus australis Hector, which is able to bind to insect nervous system preparation, (2) toxin Css II, from the venom of Centruroides suffusus suffusus, which is a beta-type antimammal toxin capable of binding to mammal nervous system preparation, and (3) the toxin Ts VII from the venom of Tityus serrulatus, which is able to bind to both types of nervous systems. In order to minimize bias, CD data were analyzed by a predictive algorithm to assess secondary structure content. Among the three molecules, Ts VII presented the most unordered secondary structure in water, but it gained in ordered forms when solubilized in TFE. These results indicated that the Ts VII backbone is the most flexible, which might result in a more pronounced tendency for this toxin molecule to undergo conformational changes. This is consistent with the fact that it competes with both antiinsect and beta-type antimammal toxins for the binding to the sodium channel.  相似文献   

14.
K J Angelides 《Biochemistry》1981,20(14):4107-4118
Fluorescent and photoactivatable fluorescent derivatives of tetrodotoxin (TTX) have been synthesized. N-Methylanthraniloylglycine hydrazide, anthraniloyl hydrazide, and 2-azidoanthraniloylglycine hydrazide were coupled to the carbonyl at C6 of oxidized tetrodotoxin to form stable fluorescent hydrazones. The C6 ketone can be reductively aminated with either ammonium or methylammonium acetate to form 6-amino- or 6-(methylamino)tetrodotoxin, which can then be acylated by a variety of fluorescent reagents. The biological activity, competitive binding with [3H]tetrodotoxin for the receptor on rat axonal membranes, and equilibrium binding isotherms obtained by fluorescence enhancement or anisotropy indicate that the derivatives are only about 2-5 times less active then tetrodotoxin itself. The 2-azidoanthraniloylglycine hydrazone of oxidized tetrodotoxin, when activated by light, generates a reactive nitrene which is capable of covalent insertion into the toxin receptor. The product of the photolysis is a highly fluorescent tetrodotoxin derivative which is irreversibly linked to the receptor site. The excitation and emission spectra of the fluorescent tetrodotoxin derivatives vary with solvent polarity, and this sensitivity has been used to determine the immediate environmental characteristics of the toxin binding site of the sodium channel. It is concluded that the toxin binding site is highly polar. Emission and excitation spectra reveal that radiationless energy is transferred from tryptophan residues of the receptor to the anthraniloyl group of the TTX derivatives.  相似文献   

15.
Radiation inactivation was used in situ to determine the functional unit sizes of the neurotoxin receptors of the voltage-dependent sodium channel from rat brain. Frozen or lyophilized synaptosomes were irradiated with high energy electrons generated by a linear accelerator and assayed for [3H]saxitoxin, 125I-Leiurus quinquestriatus quinquestriatus (alpha-scorpion toxin), 125I-Centruroides suffusus suffusus (beta-scorpion toxin), and batrachotoxinin-A 20 alpha-[3H]benzoate binding activity. The functional unit size of the neurotoxin receptors determined in situ by target analysis are 220,000 for saxitoxin, 263,000 for alpha-scorpion toxin, and 45,000 for beta-scorpion toxin. Analysis of the inactivation curve for batrachotoxinin-A 20 alpha-benzoate binding to the channel yields two target sizes of Mr approximately 287,000 (50%) and approximately 51,000 (50%). The results are independent of the purity of the membrane preparation. Comparison of the radiation inactivation data with the protein composition of the rat brain sodium channel indicates that there are at least two functional components.  相似文献   

16.
A potent toxin has been purified from the venom of the scorpion Centruroides sculpturatus Ewing using the ion-exchange resin CM-Sepharose CL-6B at basic pH. The toxin, designated CsE M1, comprised 65 amino acid residues and its primary structure was established as: Lys-Glu-Gly-Tyr-Leu-Val-Asn-Ser-Tyr-Thr10-Gly-Cys-Lys-Tyr-Glu-Cys- Leu-Lys-Leu- Gly20-Asp-Asn-Asp-Tyr-Cys-Leu-Arg-Glu-Cys-Arg30-Gln-Gln-Tyr- Gly-Lys-Ser-Gly-Gly - Tyr-Cys40-Tyr-Ala-Phe-Ala-Cys-Trp-Cys-Thr-His-Leu50-Tyr-Glu- Gln-Ala-Val-Val-Trp - Pro-Leu-Pro60-Asn-Lys-Thr-Cys-Asn. CsE M1 is the most lethal protein to be identified in C. sculpturatus venom and the LD50 of the toxin, determined by subcutaneous injection into Swiss mice, is 87 micrograms/kg. CsE M1 shows strong structural similarity (92% positional identity) to the most potent beta-toxin, Css II, from the Mexican scorpion, Centruroides suffusus suffusus but is quite dissimilar to the previously characterized toxins with low potency isolated from C. sculpturatus Ewing.  相似文献   

17.
Electrophysiological studies with neuroblastoma cells have shown that toxin gamma from the venom of the scorpion Tityus serrulatus is a new toxin specific for the gating system of the Na+ channel. The procedure which solubilizes the tetrodotoxin receptor from rat brain also solubilizes the Tityus gamma toxin receptor. Binding experiments on the solubilized receptor with a radioiodinated derivative of Tityus gamma toxin have shown: (i) that the TiTx gamma-receptor complex is very stable with a dissociation constant of 8.6 X 10(-12) M and a very slow dissociation (T 1/2 = 15 h); (ii) that the toxin recognizes a class of sites with a 1:1 stoichiometry with those for tetrodotoxin (Bmax = 1.3 pmol/mg protein). The radioiodinated Tityus gamma-receptor complex has been substantially purified by ion-exchange chromatography, lectin affinity chromatography and sucrose gradient sedimentation. A ratio of one Tityus gamma toxin binding site per tetrodotoxin binding site was found throughout the purification. The purified material exhibited a sedimentation coefficient of 10.4S and had an apparent mol. wt. of 270 000 on SDS-gel electrophoresis. No other polypeptide chains were demonstrated to be associated with this large protein in the Tityus gamma receptor. The main conclusion is that the tetrodotoxin binding site associated with the selectivity filter of the Na+ channel and the Tityus gamma toxin binding site associated with the gating component are probably carried by the same polypeptide chain.  相似文献   

18.
It has previously been reported that several single-chain antibody fragments of human origin (scFv) neutralize the effects of two different scorpion venoms through interactions with the primary toxins of Centruroides noxius Hoffmann (Cn2) and Centruroides suffusus suffusus (Css2). Here we present the crystal structure of the complex formed between one scFv (9004G) and the Cn2 toxin, determined in two crystal forms at 2.5 and 1.9 Å resolution. A 15-residue span of the toxin is recognized by the antibody through a cleft formed by residues from five of the complementarity-determining regions of the scFv. Analysis of the interface of the complex reveals three features. First, the epitope of toxin Cn2 overlaps with essential residues for the binding of β-toxins to its Na+ channel receptor site. Second, the putative recognition of Css2 involves mainly residues that are present in both Cn2 and Css2 toxins. Finally, the effect on the increase of affinity of previously reported key residues during the maturation process of different scFvs can be inferred from the structure. Taken together, these results provide the structural basis that explain the mechanism of the 9004G neutralizing activity and give insight into the process of directed evolution that gave rise to this family of neutralizing scFvs.  相似文献   

19.
Purified scorpion toxin (Leiurus quinquestriatus) slows inactivation of sodium channels in frog muscle at concentrations in the range of 17-170 nM. Mono[125I]iodo scorpion toxin binds to a single class of sites in frog sartorius muscle with a dissociation constant of 14 nM and a binding capacity of 13 fmol/mg wet weight. Specific binding is inhibited more than 90% by 3 microM sea anemone toxin II and by depolarization with 165 mM K+. Half-maximal inhibition of binding is observed on depolarization to -41 mV. The voltage dependence of scorpion toxin binding is correlated with the voltage dependence of activation of sodium channels. Removal of calcium from the bathing medium shifts both activation and inhibition of scorpion toxin binding to more negative membrane potentials. The results are considered in terms of the hypothesis that activation of sodium channels causes a conformational change in the scorpion toxin receptor site resulting in reduced affinity for scorpion toxin.  相似文献   

20.
Voltage sensing by voltage-gated sodium channels determines the electrical excitability of cells, but the molecular mechanism is unknown. beta-Scorpion toxins bind specifically to neurotoxin receptor site 4 and induce a negative shift in the voltage dependence of activation through a voltage sensor-trapping mechanism. Kinetic analysis showed that beta-scorpion toxin binds to the resting state, and subsequently the bound toxin traps the voltage sensor in the activated state in a voltage-dependent but concentration-independent manner. The rate of voltage sensor trapping can be fit by a two-step model, in which the first step is voltage-dependent and correlates with the outward gating movement of the IIS4 segment, whereas the second step is voltage-independent and results in shifted voltage dependence of activation of the channel. Mutations of Glu(779) in extracellular loop IIS1-S2 and both Glu(837) and Leu(840) in extracellular loop IIS3-S4 reduce the binding affinity of beta-scorpion toxin. Mutations of positively charged and hydrophobic amino acid residues in the IIS4 segment do not affect beta-scorpion toxin binding but alter voltage dependence of activation and enhance beta-scorpion toxin action. Structural modeling with the Rosetta algorithm yielded a three-dimensional model of the toxin-receptor complex with the IIS4 voltage sensor at the extracellular surface. Our results provide mechanistic and structural insight into the voltage sensor-trapping mode of scorpion toxin action, define the position of the voltage sensor in the resting state of the sodium channel, and favor voltage-sensing models in which the S4 segment spans the membrane in both resting and activated states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号