首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
EDTA-extractable protein (EEP) is known to be a major lens membrane protein with a molecular mass in the range 32 kDa to 38 kDa, and is also known to bind to the lens membrane and phospholipid-containing liposomes in a calcium-dependent manner. Recent results (Russell, P., Zelenka, P., Martensen, J., and Reid, T.W. (1977) Curr. Eye Res. 6, 533-538) on antibody cross-reactivity have demonstrated that a 34-35 kDa component of EEP is identical to calpactin I (lipocortin II). In this study, we have identified and purified three distinct 34 kDa components of EEP (designated as EEP-34A1, EEP-34A2 and EEP-34B) from bovine lens that inhibit phospholipase A2 activity. These proteins bind to phospholipid-containing liposome and F-actin in a calcium-dependent fashion. Two-dimensional electrophoresis demonstrates that the three proteins were distinct from one another. However, immunochemical studies and one-dimensional peptide mapping indicate that EEP-34A1 and EEP-34B are very similar. Our results also indicate that EEP-34A1 is very similar to calpactin II and that EEP-34A2 corresponds to calpactin I. The bovine lens 34-35 kDa component of EEP is a mixture of proteins rather than a single protein.  相似文献   

2.
Rapid purification of two lipocortin-like proteins from mice lung   总被引:1,自引:0,他引:1  
We have purified two proteins (40 kDa and 36 kDa) from mice lung by the method of calcium-precipitation/EGTA solubilization and then a separation on a high anion exchanger column (Mono Q HR 5/5. Pharmacia) with a gradient of NaCl. The two proteins were strong inhibitors of phospholipase A2 as assessed in vitro with porcine pancreatic phospholipase A2 and [3H]-oleic acid labeled E. Coli membranes as substrate. The 40 kDa protein had a pI of 5.8 and was found to be immunologically related to human recombinant lipocortin I. The 36 kDa protein had a pI of 4.7 and cross-reacted with a polyclonal antibody raised against a 32 kDa human lipocortin-like protein described in human blood mononuclear cells. We report here a rapid purification of two distinct lipocortin-like proteins from mice lung.  相似文献   

3.
The extracellular domain of the mouse interferon gamma receptor comprising amino acids 17-243 of the protein was produced in Spodoptera frugiperda cells infected with a recombinant baculovirus. The receptor was mainly secreted into the culture medium and was purified to homogeneity in several hundred milligram amounts. The purification procedure involved four chromatography steps and delivered a soluble and active receptor with an overall recovery of 30%. From each purification run, two pools of soluble receptor with the same interferon gamma binding capacity were isolated. Under reducing electrophoretic conditions the protein of pool I migrates as two bands of molecular masses 32 and 34 kDa and of pool II as two bands of 30 and 32 kDa. The soluble receptor of both pools carries a heterogeneous glycosylation. After deglycosylation it appears as one protein band of 27 kDa. N-linked carbohydrates contribute about 6 kDa and O-linked carbohydrates 1 kDa to its molecular mass. The nonreduced protein specifically binds interferon gamma on ligand blots and in a solid-phase binding system and competes for the binding of radiolabeled interferon gamma to the cell surface receptor. The soluble mouse interferon gamma receptor exists as a monomer in physiological buffer and binds interferon gamma in its dimeric form. It is stable at room temperature and against tryptic digestion, but is very sensitive to proteinase K digestion. The soluble mouse interferon gamma receptor produced in the insect/baculovirus expression system may prove useful to study the function of interferon gamma receptor as an antagonist of endogenous interferon gamma in the treatment of immunological and inflammatory disorders.  相似文献   

4.
Challenge of mammalian cells with heavy metals or sulfhydryl-reactive agents including sodium arsenite induces the de novo synthesis of a 32-/34-kDa stress protein (p32) (M. M. Caltabiano, T. P. Koestler, G. Poste, and R. G. Greig (1986) J. Biol. Chem. 261, 13,381). Here we report that antibody prepared against p32/p34 purified from human A375 melanoma cells immunoprecipitated an antigen of similar molecular mass from a panel of human, rat, and murine cells following challenge with sodium arsenite. No reactivity was observed in lysates from control, uninsulted cultures. The precise molecular mass of the arsenite-induced antigen was species-specific: 32 kDa (human and rat) and 34 kDa (murine). Indirect immunofluorescence analysis using affinity-purified monospecific IgG demonstrated that p32/p34 was localized to the cytoplasm and displayed a perinuclear distribution.  相似文献   

5.
To detect the soybean allergen P34 (Gly m Bd 30K) from soybean products, the full-length cDNA sequence of P34 was synthesized and inserted into the prokaryotic expression vector pET-28a. The P34 protein was expressed in Escherichia coli BL21 (DE3) as an inclusion body under the induction of 0.8 mmol/L isopropyl β-D-1-thiogalactopyranoside. After purification with His-Bind affinity chromatography, the purity quotient of the recombinant protein was over 92 %, and its molecular weight (approximately 33 kDa) was very close to that of the native soybean P34. The polyclonal antibody (pAB) against P34 was prepared with the purified recombinant P34. The generated pAB, named as pAB-P34, exhibited high specificity to the P34 protein of the soybean meal. The indirect enzyme-linked immunosorbent assay (iELISA) based on pAB-P34 was established to determine the P34 content of soybean products. The CVs of the recovery tests of P34 were less than 7.77 %, which indicated that iELISA had high reproducibility and accuracy. Therefore, the recombinant P34 produced in the E. coli expression system, the prepared pAB-P34, and the developed iELISA could provide a valuable tool for sensitive detection of P34 in various soybean products and for future studies on allergies related to soybean P34.  相似文献   

6.
We demonstrate, for the first time in fish, that a Ca(2+)-independent and cyclic-nucleotide-independent histone H1 kinase activity oscillates according to the cell cycle of the oocyte, peaking at the first and the second meiotic metaphase with a transient drop between them. The kinase, M-phase-specific histone H1 kinase (M-H1K), was purified from mature carp oocytes by using two exogenous substrates for assaying its activity: histone H1 and a synthetic peptide (SP peptide, KKAAKSPKKAKK) containing the sequence KSPKK, which includes the consensus sequence of the site phosphorylated by a serine/threonine-specific protein kinase encoded by the fission yeast cdc2+ gene (cdc 2 kinase). The M-H1K and maturation-promoting factor (MPF) activities coincided closely throughout four steps of purification, strongly suggesting the identity of M-H1K and MPF. The final preparation was purified 5000-fold with a recovery of 4%, when histone H1 was used for the kinase assay, and 10,000-fold with a recovery of 7% when SP peptide was used. The purified molecular mass of the kinase was estimated to be 100 kDa by gel filtration and contained four proteins of 33, 34, 46 and 48 kDa. Anti-PSTAIR antibody recognizing cdc2 kinase cross-reacted with the 33-kDa and 34-kDa proteins, while the 46-kDa and 48-kDa bands cross-reacted with monoclonal antibodies raised against cyclin B. The 33-kDa protein was also recognized by an antibody against a goldfish cdk2 (Eg1) kinase, a cdc2-related kinase which has the PSTAIR sequence and binds to p13suc1 but does not form a complex with cyclin B. M-H1K activity corresponded well to the 34-kDa, 46-kDa and 48-kDa proteins but not to the 33-kDa protein. These results strongly suggest that M-H1K consists of cdc2 kinase forming a complex with cyclin B, and that cdk2 kinase is not a component of M-H1K, although it is found in the highly purified M-H1K. The purified M-H1K utilized Mg2+, Mn2+, ATP and GTP, and had a wide pH optimum ranging over 8.0-10.5. The kinase was thermolabile and sensitive to freezing/thawing.  相似文献   

7.
To clarify phosphorylation of calpains I and II in vivo, we purified both calpains concurrently from the [32P] metabolic-labeled human chronic myelogenous leukemia cell line K-562. By Ultragel AcA34 column chromatography, enzymatic activity of calpain I was separated from [32P] radioactivity. Whereas calpain II activity was closely associated with [32P] radioactivity on Ultragel AcA34 and Blue Sepharose CL-6B column chromatographies. By the above purification procedures, calpain I was purified 1300-fold from the crude extract and calpain II was 920-fold from the original sample, respectively. Autoradiographies of purified calpains I and II from [32P] labeled K-562 cells revealed that both calpains were not specifically phosphorylated in vivo. The autophosphorylation in vitro on calpains and modulation of their proteolytic activities reported recently thus may not occur within cells.  相似文献   

8.
Abstract: Two kynurenine aminotransferases (KATs), arbitrarily termed KAT I and KAT II, are capable of producing the neuroinhibitory brain metabolite kynurenic acid from l -kynurenine in human brain tissue. Here we describe the purification of KAT I to homogeneity and the subsequent characterization of the enzyme using physicochemical, biochemical, and immunological methods. KAT I was purified from human brain ∼2,000-fold with a yield of 2%. Assessed by polyacrylamide gel electrophoresis, KAT I migrated toward the anode as a single protein with a mobility of 0.5. The pure enzyme was found to be a dimer consisting of two identical subunits of ∼60 kDa. Among several oxo acids tested, KAT I showed highest activity with 2-oxoisocaproate. Kinetic analyses of the pure enzyme revealed an absolute K m of 2.0 m M and 10.0 m M for l -kynurenine and pyruvate, respectively. KAT I activity was substantially inhibited by l -glutamine, l -phenylalanine, and l -tryptophan, using either pyruvate (1 m M ) or 2-oxoisocaproate (1 m M ) as a cosubstrate. l -Tryptophan inhibited enzyme activity noncompetitively with regard to pyruvate ( K i = 480 µ M ) and competitively with regard to l -kynurenine ( K i = 200 µ M ). Anti-KAT I antibodies were produced against pure KAT I and were partially purified by conventional techniques. Immunotitration and immunoblotting analyses confirmed that KAT I is clearly distinct from both human KAT II and rat kynurenine-pyruvate aminotransferase. Pure human KAT I and its antibody will serve as valuable tools in future studies of kynurenic acid production in the human brain under physiological and pathological conditions.  相似文献   

9.
Maturation-promoting factor (MPF) activity has been demonstrated for the first time in fish oocytes. We purified MPF from a 100,000g supernatant of crushed, naturally spawned carp oocytes using four chromatography columns: Q-Sepharose Fast-Flow, p13suc1-affinity Sepharose, Mono S, and Superose 12. The final preparation was purified over 1000-fold with a recovery of about 1%. On Superose 12, MPF eluted as a single peak with an apparent molecular weight of 100 kDa. SDS-PAGE analysis of the active fractions after Superose 12 revealed the presence of four proteins of 33, 34, 46, and 48 kDa. A monoclonal antibody against the PSTAIR sequence of cdc2 kinase recognized the 33- and 34-kDa proteins for which the 46- and 48-kDa proteins are endogenous substrates. The 46- and 48-kDa proteins were recognized by a monoclonal antibody against Escherichia coli-produced goldfish cyclin B, but not by an anti-cyclin A antibody. When oocytes were matured in the presence of 32P, the labeling was seen with the 34-kDa protein, but not with the 33-kDa protein. The 34-kDa protein corresponded to the MPF activity, but the 33-kDa protein did not. These findings indicate that carp MPF is a complex of cdc2 kinase and cyclin B, and further that active MPF contains the phosphorylated form of cdc2 kinase.  相似文献   

10.
Polyclonal antibodies were prepared against the major antenna chlorophyll (Chl) a/b-binding protein from the prokaryote Prochlorothrix hollandica (Burger-Wiersma et al. (1986) Nature (Lond.) 320, 262-264). Immunoblotting experiments on Triton X-114 phase-partitioned P. hollandica thylakoids revealed that the antibody recognizes intrinsic membrane polypeptides of 33 and 30 kDa, and immunocytochemistry of P. hollandica thin sections showed that the antibody preferentially decorates the thylakoid. The antibody was immunopurified against a LacZ fusion protein produced in Escherichia coli by an immunopositive phage clone retrieved from a lambda ZAP expression library. This purified antibody crossreacted to both the 33 and 30 kDa polypeptides, indicating that these proteins are either structurally related products of different genes, or modified forms of the same gene product. Whereas immunological crossreactivity of Prochlorothrix antibody to the major LHC-II Chl a/b antenna of maize could not be detected, the immunopurified antibody reacted strongly to the major 34 kDa Chl a/b antenna protein from the prokaryote Prochloron sp. (Lewin (1975) Phycologia 14, 153-160). These data confirm the structural similarity of the prochlorophyte photosynthetic antenna systems.  相似文献   

11.
A protein tyrosine kinase has been purified from the particulate fraction of bovine spleen to a specific activity of 0.217 mumol/min/mg at 100 microM ATP and 3 mM [Val5] angiotensin II. Both the angiotensin phosphorylation activity and immunoreactivity towards an antibody preparation raised against a synthetic peptide containing the autophosphorylation site of pp60c-src, Cys-src(403-421), were monitored during the purification. The purified sample displayed three closely spaced protein bands with molecular weights of 50-55 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. All bands could be phosphorylated exclusively on tyrosine residues under autophosphorylation conditions. All reacted on immunoblots with an antibody raised against a synthetic peptide corresponding to the consensus autophosphorylation site of members of the pp60c-src family of tyrosine kinases. Tryptic phosphopeptide maps of the three proteins were essentially indistinguishable. The results suggest that the purified enzyme preparation contained mainly three closely related pp60c-src-family protein tyrosine kinases or a pp60src-family protein tyrosine kinase modified posttranslationally to give three closely spaced protein bands on sodium dodecyl sulfate gel. Neither of these proteins appears to be pp60c-src or p56lck. The spleen protein tyrosine kinase was found to phosphorylate a p34cdc2 kinase peptide, Cys-cdc2(8-20), which contained the regulatory tyrosine residue Tyr-15 about 20 times better than [Val5]angiotensin II or Cys-src(403-421) peptide at a peptide substrate concentration of 1 mM. In contrast, epidermal growth factor receptor kinase partially purified from A431 cells did not show preference for Cys-cdc2(8-20) as its substrate. Although Cys-cdc2(8-20) contained two tyrosine residues, only the tyrosine corresponding to Tyr-15 in p34cdc2 was phosphorylated by the spleen tyrosine kinase. The observation suggests that the primary structure surrounding Tyr-15 of p34cdc2 contains substrate structural determinants specific for the spleen tyrosine kinase.  相似文献   

12.
A 32 kDa phospholipase A2 inhibitory protein was isolated from pig thyroid gland after calcium precipitation and fast protein liquid anion-exchange chromatography. SDS-polyacrylamide gel electrophoresis revealed the purity of the protein. The protein activity was assessed by the inhibition of pancreatic phospholipase A2 on [3H]oleic acid-labelled Escherichia coli membranes as substrate and on the prostaglandin E2 production of cultured thyroid cells. The amino acid composition and the isoelectric point were quite similar to those of endonexin previously described in other tissues or cells. The cross-reactivity of a polyclonal antibody against a 32 kDa lipocortin from human peripheral blood mononuclear cells with our thyroidal 32 kDa protein confirmed its lipocortin nature. Before the purification by fast protein liquid chromatography, the Ca2+ pellet contained lipocortin I (35 kDa and its core protein 33 kDa) identified by its cross-reactivity with a polyclonal antibody.  相似文献   

13.
CMP-beta-N-acetylneuraminic acid (CMP-neuNAc) is the substrate for the sialylation of glycoconjugates by sialyltransferases in microbes and higher eukaryotes. CMP-neuNAc synthetase catalyzes the formation of this substrate, CMP-neuNAc, from CTP and neuNAc. In this report we describe the purification of CMP-neuNAc synthetase from bovine anterior pituitary glands. The enzyme was purified by ion exchange, gel filtration, and affinity chromatography. The protein was homogeneous on SDS-PAGE with a molecular weight of 52 kDa, a subunit size similar to that of the E.coli K1 (48.6 kDa). The identity of the 52 kDa protein band was confirmed by native gel electrophoresis in that the position of the enzyme activity in gel slices coincided with the position of major bands in the stained gel. Photoaffinity labeling with 125I-ASA-CDP ethanolamine resulted in the modification of a 52 kDa polypeptide that was partially protected against modification by the substrate CTP. Enzyme activity in crude fractions could be adsorbed onto an immunoadsorbent prepared from antibody against the purified 52 kDa protein. Taken together these data suggest that the 52 kDa polypeptide purified by this procedure described in this report is indeed CMP-neuNAc synthetase. The active enzyme chromatographed on a gel filtration column at 158 kDa suggesting it exists in its native form as an oligomer.  相似文献   

14.
Soluble starch synthase (SSS) I was purified 361-fold from hand-dissected endosperm tissue of inbred maize (Zea mays, cv. B73) to specific activities ranging between 5 and 9 µmol min−1 mg−1. A key to this purification protocol was the introduction of a size-exclusion chromatography step, a size-based fractionation which provided abundant levels of desalted SSS forms I and II. The native molecular masses calculated for SSS forms I and II were 75.5 kDa and 180 kDa, respectively. SSSI was then further purified by hydrophobic interaction chromatography on Phenyl-Superose and by FPLC on Mono Q. Analysis of column peaks by SDS—PAGE and scanning densitometry revealed that a 76 kDa polypeptide is strongly correlated with SSSI activity. Antibodies were then generated against a 76 kDa polypeptide extracted from starch granules. These antibodies, which were monospecific for the soluble 76 kDa polypeptide, neutralized greater than 90% of SSSI activity, and precipitated the 76 kDa protein. These results establish the 76 kDa protein as an SSSI in the B73 line of inbred maize. An immunologically similar 76 kDa protein also appears to be tightly associated with the starch granule.  相似文献   

15.
Membrane-associated, Type II (cGMP-activatable) cyclic nucleotide phosphodiesterase (PDE) from rabbit brain, representing 75% of the total homogenate Type II PDE activity, was purified to apparent homogeneity. The enzyme was released from 13,000 x g particulate fractions by limited proteolysis with trypsin and fractionated using DE-52 anion-exchange, cGMP-Sepharose affinity and hydroxylapatite chromatographies. The enzyme showed 105 kDa subunits by SDS-PAGE and had a Stokes radius of 62.70 A as determined by gel filtration chromatography. Hydrolysis of cAMP or cGMP showed positive cooperativity, with cAMP kinetic behavior linearized in the presence of 2 microM cGMP. Substrate concentrations required for half maximum velocity were 28 microM for cAMP and 16 microM for cGMP. Maximum velocities were approx. 160 mumol/min per mg for both nucleotides. The apparent Kact for cGMP stimulation of cAMP hydrolysis at 5 microM substrate was 0.35 microM and maximal stimulation (3-5-fold) was achieved with 2 microM cGMP. Cyclic nucleotide hydrolysis was not enhanced by calcium/calmodulin. The purified enzyme can be labeled by cAMP-dependent protein kinase as demonstrated by the incorporation of 32P from [gamma-32P]ATP into the 105 kDa enzyme subunit. Initial experiments showed that phosphorylation of the enzyme did not significantly alter enzyme activity measured at 5 microM [3H]cAMP in the absence or presence of 2 microM cGMP or at 40 microM [3H]cGMP. Monoclonal antibodies produced against Type II PDE immunoprecipitate enzyme activity, 105 kDa protein and 32P-labeled enzyme. The 105 kDa protein was also photoaffinity labeled with [32P]cGMP. The purified Type II PDE described here is physicochemically very similar to the isozyme purified from the cytosolic fraction of several bovine tissues with the exception that it is predominantly a particulate enzyme. This difference may reflect an important regulatory mechanism governing the metabolism of cyclic nucleotides in the central nervous system.  相似文献   

16.
Three phospholipid transfer proteins, namely proteins I, II and III, were purified from the rabbit lung cytosolic fraction. The molecular masses of phospholipid transfer proteins I, II and III are 32 kilodaltons (kDa), 22 kDa and 32 kDa, respectively; their isoelectric point values are 6.5, 7.0 and 6.8, respectively. Phospholipid transfer proteins I and III transferred phosphatidylcholine (PC) and phosphatidylinositol (PI) from donor unilamellar liposomes to acceptor multilamellar liposomes; protein II transferred PC but not PI. All the three phospholipid transfer proteins transferred phosphatidylethanolamine poorly and showed no tendency to transfer triolein. The transfer of [14C]PC from unilamellar liposomes to multilamellar liposomes facilitated by each protein was affected differently by the presence of acidic phospholipids in the PC unilamellar liposomes. In an equal molar ratio of acidic phospholipid and PC, phosphatidylglycerol (PG) reduced the activities of proteins I and III by 70% (P = 0.0004 and 0.0032, respectively) whereas PI and phosphatidylserine (PS) had an insignificant effect. In contrast, the protein II activity was stimulated 2-3-times more by either PG (P = 0.0024), PI (P = 0.0006) or PS (P = 0.0038). In addition, protein II transferred dioleoylPC (DOPC) about 2-times more effectively than dipalmitoylPC (DPPC) (P = 0.0002), whereas proteins I and III transferred DPPC 20-40% more effectively than DOPC but this was statistically insignificant. The markedly different substrate specificities of the three lung phospholipid transfer proteins suggest that these proteins may play an important role in sorting intracellular membrane phospholipids, possibly including lung surfactant phospholipids.  相似文献   

17.
T Okabe  K Sobue 《FEBS letters》1987,213(1):184-188
A new 84/82 kDa calmodulin-binding protein, which also interacts with actin filaments, tubulin and spectrin, was purified from the bovine synaptosomal membrane. The binding of calmodulin to this protein was Ca2+-dependent, and was inhibited by trifluoperazine, the association constant being calculated to be 2.2 X 10(6) M-1. Maximally, 1 mol of calmodulin bound to 1 mol of the purified protein. This protein was phosphorylated by both kinase II (Ca2+- and calmodulin-dependent kinase) and cyclic AMP-dependent kinase. In addition, antibody against this protein was demonstrated to have an immunological crossreactivity with synapsin I in the synaptosomal membrane.  相似文献   

18.
DNA ligases play obligatory roles during replication, repair, and recombination. Multiple forms of DNA ligase have been reported in mammalian cells including DNA ligase I, the high molecular mass species which functions during replication, and DNA ligase II, the low molecular mass species which is associated with repair. In addition, alterations in DNA ligase activities have been reported in acute lymphocytic leukemia cells, Bloom's syndrome cells, and cells undergoing differentiation and development. To better distinguish the biochemical and molecular properties of the various DNA ligases from human cells, we have developed a method of purifying multiple species of DNA ligase from HeLa cells by chromatography through DEAE-Bio-Gel, CM-Bio-Gel, hydroxylapatite, Sephacryl S-300, Mono P, and DNA-cellulose. DNA-cellulose chromatography of the partially purified enzymes resolved multiple species of DNA ligase after labeling the enzyme with [alpha-32P]ATP to form the ligase-[32P]AMP adduct. The early eluting enzyme activity (0.25 M NaCl) contained a major 67-kDa-labeled protein, while the late eluting activity (0.48 M NaCl) contained two major labeled proteins of 90 and 78 kDa. Neutralization experiments with antiligase I antibodies indicated that the early and late eluting activity peaks were DNA ligase II and I, respectively. The three major ligase-[32P]AMP polypeptides (90, 78, and 67 kDa) were subsequently purified to near homogeneity by elution from preparative sodium dodecyl sulfate-polyacrylamide gels. All three polypeptides retained DNA ligase activities after gel elution and renaturation. To further reveal the relationship between these enzymes, partial digestion by V8-protease was performed. All three purified polypeptides gave rise to a common 22-kDa-labeled fragment for their AMP-binding domains, indicating that the catalytic sites of ligase I and II are quite similar, if not identical. Similar findings were obtained from the two-dimensional gel electrophoresis of their AMP-binding domains in the trypsin-digested protein fragments. The results also suggested that these isozymes have been derived from the same primordial DNA sequence or from the same precursor protein. The purification scheme and the data obtained will be instrumental for the further elucidation of the biological roles of various DNA ligases from human cells.  相似文献   

19.
A chlorophyll (a + b)--protein complex associated with photosystem I (PSI) was isolated from a larger PSI complex (CPIa) produced by electrophoresis of barley thylakoids solubilized with 300 mM octyl glucoside. It had an apparent Mr of 35,000-43,000 on 7.5% and 10% acrylamide gels respectively, and a chlorophyll a/b ratio of 2.5 +/- 1.5. Denaturation released four polypeptides migrating between 21-24 kDa. They were well separated from the polypeptides of the two photosystem II chlorophyll a + b antenna complexes: LHCII (25-27 kDa) and CP29 (28-29 kDa). In order to study the PSI antenna complex, antibodies were raised against highly purified CPIa. The antigen appeared to be pure when electrophoresed, blotted and reacted with its antiserum, i.e. anti-CPIa detected only the 64-66-kDa CPI apoprotein and the four 21-24 kDa antenna polypeptides. However, when blotted against the whole spectrum of thylakoid proteins, it cross-reacted with both LHCII and CP29 apoproteins. Removal of anti-CPI activity from the anti-CPIa did not affect these cross-reactions, showing that they were not due to antibodies directed against CPI. To show that the same antibody population was reacting with both the photosystem I and photosystem II antenna polypeptides, anti-CPIa was adsorbed onto highly purified CPIa on nitrocellulose. The bound antibody was eluted and used again in a Western blot against whole thylakoid proteins. This selected antibody population showed the same relative strength of reaction with photosystem I and photosystem II antenna polypeptides as the original antibody population had. Similar observations have been made with antibodies to the two photosystem II antenna complexes. We therefore conclude that there are antigenic determinants in common among the chlorophyll a + b binding polypeptides, and predict that there could be amino acid sequence similarities.  相似文献   

20.
We report the purification and characterization of an active catalytic fragment of Ca2+/calmodulin-dependent protein kinase II, derived from autophosphorylation and subsequent limited chymotryptic digestion of the purified rat forebrain soluble kinase. The purified fragment was completely Ca2+/calmodulin-independent, existed as a monomer, and phosphorylated synapsin I at the same sites as does the native form of Ca2+/calmodulin-dependent protein kinase II. Kinetic studies with the purified fragment revealed a more than 10-fold increase in Vmax and a 50% decrease in Km for synthetic peptide substrates, compared with native Ca2+/calmodulin-dependent protein kinase II. No 32P-labeled autophosphorylated residues were detected in the purified active fragment, indicating that the autophosphorylation sites were not contained within this fragment. Comparative studies of this active fragment (30 kDa) and its inactive counterpart (32-kDa fragment) revealed certain structural details of both fragments. Calmodulin-overlay study, immunoblot analysis, and direct amino acid sequencing suggest that both fragments contain the entire NH2-terminal catalytic domain and were generated by distinct cleavage within the regulatory domain. The putative cleavage sites for both fragments are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号