首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 83 毫秒
1.
One fundamental problem in cytokinesis is how the plane of cell division is established. In this review, we describe our studies on searching for "signals" that position the cell division plane, using fission yeast Schizosaccharomyces pombe. First, we take a genetic approach to determine how the nucleus may position the contractile ring in fission yeast. mid1p appears to link the position of the ring with the nuclear position, as it is required for proper placement of the contractile ring and is localized in a band at the cell surface overlying the nucleus. Second, we study how microtubules may function in the establishment of cell polarity at the cell tips. tea1p may be deposited on the cell surface by microtubules and function to recruit proteins involved in making actin structures. These studies suggest how microtubules may direct the assembly of the contractile ring in animal cells.  相似文献   

2.
The timing of initiation of DNA synthesis (IDS) in Paramecium is established before cell division at a point located at about 0.75 in the preceding cell cycle. This point occurs about 90 min prior to fission and coincides with the point at which cells become committed to cell division. The location of the point at which the timing of IDS is set was deduced from a series of nutrient-shift experiments. Changes in nutrient level lead to changes in the duration of the subsequent G1 interval when they occur more than 90 min prior to fission. Perturbation of the cell cycle so that the timing of commitment to cell division is altered, results in a parallel shift in the point at which the timing of IDS is established.  相似文献   

3.
Each cell of Paramecium caudatum has a germinal micronucleus. When a bi-micronucleate state was created artificially by micronuclear transplantation, both micronuclei divided for at least 2 cell cycles after nuclear transplantation. However, this bi-micronucleate state was unstable and reduced to a uni-micronucleate state after several fissions. Although the number of micronuclei was usually 1 during the vegetative phase, 4 presumptive micronuclei differentiated after conjugation. At the first post-conjugational fission, only 1 of the 4 micronuclei divided, indicating that there is tight regulation of micronuclear number in exconjugants. Micronuclei that did not divide at the first post-conjugational fission may persist through the first and second post-conjugational cell cycles. The decision to divide appears to be separate from the decision to degenerate, as evidenced by division of a remaining micronucleus upon removal of the dividing micronucleus at the first division. Degeneration of micronuclei in exconjugants differs from that of haploid nuclei after meiosis. Nutritional state affected micronuclear degeneration. Under well-fed conditions, the micronuclei destined to degenerate lost the ability to divide earlier than after starvation treatment, suggesting that micronuclear degeneration is an "apoptotic" phenomenon, probably under the control of the new macronuclei (macronuclear anlagen).  相似文献   

4.
The ultimate goal of cell division is to give rise to two viable independent daughter cells. A tight spatial and temporal regulation between chromosome segregation and cytokinesis ensures the viability of the daughter cells. Schizosaccharomyces pombe, commonly known as fission yeast, has become a leading model organism for studying essential and conserved mechanisms of the eukaryotic cell division process. Like many other eukaryotic cells it divides by binary fission and the cleavage furrow undergoes ingression due to the contraction of an actomyosin ring. In contrast to mammalian cells, yeasts as cell-walled organisms, also need to form a division septum made of cell wall material to complete the process of cytokinesis. The division septum is deposited behind the constricting ring and it will constitute the new ends of the daughter cells. Cell separation also involves cell wall degradation and this process should be precisely regulated to avoid cell lysis. In this review, we will give a brief overview of the whole cytokinesis process in fission yeast, from the positioning and assembly of the contractile ring to the final step of cell separation, and the problems generated when these processes are not precise.  相似文献   

5.
In contrast to a mitotic-spindle-associated bipolar cytokinesis, the cytokinesis of polarized ciliates is preceded by a reorganization of the cortex into dual metameric patterns for prospective daughter cells and then separated by a transverse fission line. This study concerns relations between the generation of cortical metamery and the formation of the fission line in an amicronuclear (i.e., without mitotic spindle) ciliate, Tetrahymena pyriformis. The fission line appears in the division of T. pyriformis as a transverse line formed by equatorial gaps in the meridional ciliary rows, with the second oral structure (OA2) formed posterior to it. It was found that the metamery of cortical morphogenesis is expressed by the appearance of increased MPM2 antibody binding in dividing cells in an apical area and posterior to the fission line gaps, including patterned changes of this binding in both oral apparatuses (OA1 and OA2), and by a reciprocal decrease of binding of an anti-epiplasm antibody. These tested antigens are localized to different cortical structures, but in predividing cells both uniformly show formation of the fission line contrast of labeling. A serine/threonine kinase inhibitor, 6-dimethylaminopurine (6-DMAP), was applied to dividing T. pyriformis at specific stages: (1) if 6-DMAP was added to early dividing cells, it prevented cells from initiating cytokinesis. (2) If 6-DMAP was added to cells at stages close to the physiological transition point of cell division, it yielded either (i) a partial formation of the fission line on the ventral side, combined with modified growth of undivided cortex adjacent to the fission line, with abnormal cytokinesis, or (ii) variable anterior displacement of the complete fission line, which contracted slowly but uniformly. (3) If 6-DMAP was applied during cytokinesis, it did not delay cell division, but daughter cells become abnormal and underwent an incomplete oral reorganization. These results suggest that the generation of metamerism in the cortex of T. pyriformis involves differentiation of the asymmetric fission zone. At least four stage-dependent 6-DMAP-sensitive effects jointly control the progress of cell division and the mutual spatial relations between the generation of metamery and the appearance, completeness, and position of the fission zone in the cortex of polarized T. pyriformis.  相似文献   

6.
Yamamoto M  Nishikawa T  Kajitani H  Kawano S 《Planta》2007,226(4):917-927
Non-flagellated vegetative green algae of the Trebouxiophyceae propagate mainly by autosporulation. In this manner, the mother cell wall is shed following division of the protoplast in each round of cell division. Binary fission type Nannochloris and budding type Marvania are also included in the Trebouxiophyceae. Phylogenetic trees based on the actin sequences of Trebouxiophyceae members revealed that the binary fission type Nannochloris bacillaris and the budding type Marvania geminata are closely related in a distal monophyletic group. Our results suggest that autosporulation is the ancestral mode of cell division in Trebouxiophyceae. To elucidate how non-autosporulative mechanisms such as binary fission and budding evolved, we focused on the cleavage of the mother cell wall. Cell wall development was analyzed using a cell wall-specific fluorescent dye, Fluostain I. Exfoliation of the mother cell wall was not observed in either N. bacillaris or M. geminata. We then compared the two algae by transmission electron microscopy with rapid freeze fixation and freeze substitution; in both algae, the mother cell wall was cleaved at the site of cell division, but remained adhered to the daughter cell wall. In N. bacillaris, the cleaved mother cell wall gradually degenerated and was not observed in the next cell cycle. In contrast, M. geminata daughter cells entered the growth phase of the next cell cycle bearing the mother and grandmother cell walls, causing the uncovered portion of the plane of division to bulge outward. Such a delay in the degeneration and shedding of the mother cell wall probably led to the development of binary fission and budding.  相似文献   

7.
Bacterial cell division predominantly occurs by a highly conserved process, termed binary fission, that requires the bacterial homologue of tubulin, FtsZ. Other mechanisms of bacterial cell division that are independent of FtsZ are rare. Although the obligate intracellular human pathogen Chlamydia trachomatis, the leading bacterial cause of sexually transmitted infections and trachoma, lacks FtsZ, it has been assumed to divide by binary fission. We show here that Chlamydia divides by a polarized cell division process similar to the budding process of a subset of the Planctomycetes that also lack FtsZ. Prior to cell division, the major outer-membrane protein of Chlamydia is restricted to one pole of the cell, and the nascent daughter cell emerges from this pole by an asymmetric expansion of the membrane. Components of the chlamydial cell division machinery accumulate at the site of polar growth prior to the initiation of asymmetric membrane expansion and inhibitors that disrupt the polarity of C. trachomatis prevent cell division. The polarized cell division of C. trachomatis is the result of the unipolar growth and FtsZ-independent fission of this coccoid organism. This mechanism of cell division has not been documented in other human bacterial pathogens suggesting the potential for developing Chlamydia-specific therapeutic treatments.  相似文献   

8.
Mitosis in eukaryotic cells employs spindle microtubules to drive accurate chromosome segregation at cell division. Cells lacking spindle microtubules arrest in mitosis due to a spindle checkpoint that delays mitotic progression until all chromosomes have achieved stable bipolar attachment to spindle microtubules. In fission yeast, mitosis occurs within an intact nuclear membrane with the mitotic spindle elongating between the spindle pole bodies. We show here that in fission yeast interference with mitotic spindle formation delays mitosis only briefly and cells proceed to an unusual nuclear division process we term nuclear fission, during which cells perform some chromosome segregation and efficiently enter S-phase of the next cell cycle. Nuclear fission is blocked if spindle pole body maturation or sister chromatid separation cannot take place or if actin polymerization is inhibited. We suggest that this process exhibits vestiges of a primitive nuclear division process independent of spindle microtubules, possibly reflecting an evolutionary intermediate state between bacterial and Archeal chromosome segregation where the nucleoid divides without a spindle and a microtubule spindle-based eukaryotic mitosis.  相似文献   

9.
Yu Y  Wang HY  Liu LN  Chen ZL  Xia GX 《Plant cell reports》2007,26(7):889-894
The molecular mechanisms controlling cytokinesis in plant cell division cycle remains largely unknown. In this study, a functional approach was taken to identify genes that may play roles in cytokinesis in tobacco BY-2 cells, using fission yeast as the host organism. A total of 22 BY-2 genes that perturbed the terminal stage of cell division when ectopically expressed in yeast cells were isolated, among which, several encode for uncharacterized genes. Additionally, RT-PCR analysis indicated that four of the isolated genes were expressed in a cell cycle-dependent manner. Our results demonstrate that fission yeast system can be efficiently used to identify the genes that may function, either positively or negatively, in the regulation of cytokinesis. More importantly, the candidate genes we have isolated in this work can provide useful information for unraveling the regulators controlling cell separation at the late stage of BY-2 cell division. Yi Yu and Hai-Yun Wang contributed equally to this work.  相似文献   

10.
By capturing time-lapse images of primary stromal-vascular cells (SVCs) derived from rat mesenteric adipose tissue, we revealed temporal and spatial variations of lipid droplets (LDs) in individual SVCs during adipocyte differentiation. Numerous small LDs (a few micrometers in diameter) appeared in the perinuclear region at an early stage of differentiation; subsequently, several LDs grew to more than 10 microm in diameter and occupied the cytoplasm. We have developed a method for the fluorescence staining of LDs in living adipocytes. Time-lapse observation of the stained cells at higher magnification showed that nascent LDs (several 100 nm in diameter) grew into small LDs while moving from lamellipodia to the perinuclear region. We also found that adipocytes are capable of division and that they evenly distribute the LDs between two daughter cells. Immunofluorescence observations of LD-associated proteins revealed that such cell divisions of SVCs occurred even after LDs were coated with perilipin, suggesting that the "final" cell division during adipocyte differentiation occurs considerably later than that characterized in 3T3-L1 cells. Our time-lapse observations have provided a detailed account of the morphological changes that SVCs undergo during adipocyte division and differentiation.  相似文献   

11.
Cytokinesis is essential for proliferative growth but also plays equally important roles during morphogenesis and development. The human pathogen Penicillium marneffei is capable of dimorphic switching in response to temperature, growing in a multicellular filamentous hyphal form at 25°C and in a unicellular yeast form at 37°C. P. marneffei also undergoes asexual development at 25°C to produce multicellular differentiated conidiophores. Thus, P. marneffei exhibits cell division with and without cytokinesis and division by budding and fission, depending on the cell type. The type II myosin gene, myoB, from P. marneffei plays important roles in the morphogenesis of these cell types. Deletion of myoB leads to chitin deposition defects at sites of cell division without perturbing actin localization. In addition to aberrant hyphal cells, distinct conidiophore cell types are lacking due to malformed septa and nuclear division defects. At 37°C, deletion of myoB prevents uninucleate yeast cell formation, instead producing long filaments resembling hyphae at 25°C. The ΔmyoB cells also often lyse due to defects in cell wall biogenesis. Thus, MyoB is essential for correct morphogenesis of all cell types regardless of division mode (budding or fission) and defines differences between the different types of growth.  相似文献   

12.
The Bacillus subtilis divIVA gene encodes a coiled-coil protein that shows weak similarity to eukaryotic tropomyosins. The protein is targeted to the sites of cell division and mature cell poles where, in B.subtilis, it controls the site specificity of cell division. Although clear homologues of DivIVA are present only in Gram-positive bacteria, and its role in division site selection is not conserved in the Gram-negative bacterium, Escherichia coli, a DivIVA-green fluorescent protein (GFP) fusion was targeted accurately to division sites and retained at the cell pole in this organism. Remarkably, the same fusion protein was also targeted to nascent division sites and growth zones in the fission yeast Schizosaccharomyces pombe, mimicking the localization of the endogenous tropomyosin-like cell division protein Cdc8p, and F-actin. The results show that a targeting signal for division sites is conserved across the eukaryote-prokaryote divide.  相似文献   

13.
The stochastic model of cell division formulated by Alt and Tyson is generalized to the case of imprecise binary fission. Closed-form expressions are derived for the generation-time distribution, the birth-size and division-size distributions, the beta curve, and the correlation coefficient of generation times of sister cells. The theoretical results are compared to observations of cell division statistics in a culture of fission yeast.  相似文献   

14.
D Vraná 《Mikrobiologiia》1984,53(1):48-49
The fission yeast Schizosaccharomyces pombe was grown in the chemostat at D = 0.03, 0.05, 0.1, 0.15 and 0.20 h-1. The dry weight and substrate quantities, the number of cells and their morphological characteristics were determined in the steady state. The curves for the cell number and dry weight demonstrate changes in the coordination between the processes of cell growth and division at various growth rates. The cell division was shown to be asymmetric under the conditions of substrate limitation.  相似文献   

15.
The effects of various kinds of nitrogen compounds on the proliferation patterns ofAnkistrodesmus gracilis were examined. Among the tested compounds, the addition of peptone, arginine or glutamine to the N-free medium was the most effective on cell growth. The effectiveness was also shown in media containing one of several kinds of amino acid. In both peptone and arginine media the alga proliferated with multiple fission type of cell division, whereas the cultures grown in glutamine or serine medium contained 2-celled colonies at high frequencies. The latter was an efficient culture condition for cell reproduction with binary fission. The evidence for the behavior of nuclear and cytoplasmic division in these growth patterns were obtained from observations of thin sectioned materials.  相似文献   

16.
In the cell cycle of Paramecium there are three points of interaction between cell growth-related processes and the processes of macronuclear DNA replication and cell division: initiation of DNA synthesis, regulation of the rates of growth and DNA accumulation, and initiation of cell division. This study examines the regulation of the latter two processes by analysis of the response of each to abrupt changes in nutrient level brought about either by transferring dividing cells from a steady-state chemostat culture to medium with unlimited food, or by transferring well-fed dividing cells to exhausted medium. The rates of DNA accumulation and cell growth respond quickly to changes in nutrient level. The amounts of these cell components accumulated during the cell cycle following a shift in nutrient level are typical of those occurring during equilibrium growth under post-shift conditions. Commitment to division occurs at a fixed interval prior to fission that is similar in well-fed and nutrient-limited cells. Initiation of cell division in Paramecium is associated with accumulation of a threshold DNA increment, whose level is largely independent of nutritive conditions. The amount of DNA accumulated during the cell cycle varies with nutritional conditions because the rates of growth and DNA accumulation are affected by nutrient level; slowly growing cells accumulated relatively little DNA during the fixed interval between commitment to cell division and fission.  相似文献   

17.
The position of the division plane affects cell shape and size, as well as tissue organization. Cells of the fission yeast Schizosaccharomyces pombe have a centrally placed nucleus and divide by fission at the cell center. Microtubules (MTs) are required for the central position of the nucleus. Genetic studies lead to the hypothesis that the position of the nucleus may determine the position of the division plane. Alternatively, the division plane may be positioned by the spindle or by morphogen gradients or reaction diffusion mechanisms. Here, we investigate the role of MTs in nuclear positioning and the role of the nucleus in division-plane positioning by displacing the nucleus with optical tweezers. A displaced nucleus returned to the cell center by MT pushing against the cell tips. Nuclear displacement during interphase or early prophase resulted in asymmetric cell division, whereas displacement during prometaphase resulted in symmetric division as in unmanipulated cells. These results suggest that the division plane is specified by the predividing nucleus. Because the yeast nucleus is centered by MTs during interphase but not in mitosis, we hypothesize that the establishment of the division plane at the beginning of mitosis is an optimal mechanism for accurate symmetric division in these cells.  相似文献   

18.
Sloppy size control of the cell division cycle   总被引:1,自引:0,他引:1  
In an asynchronous, exponentially proliferating cell culture there is a great deal of variability among individual cells in size at birth, size at division and generation time (= age at division). To account for this variability we assume that individual cells grow according to some given growth law and that, after reaching a minimum size, they divide with a certain probability (per unit time) which increases with increasing cell size. This model is called sloppy size control because cell division is assumed to be a random process with size-dependent probability. We derive general equations for the distribution of cell size at division, the distribution of generation time, and the correlations between generation times of closely related cells. Our theoretical results are compared in detail with experimental results (obtained by Miyata and coworkers) for cell division in fission yeast, Schizosaccharomyces pombe. The agreement between theory and experiment is superior to that found for any other simple models of the coordination of cell growth and division.  相似文献   

19.

Background and Aims

Alterations of plasmodesma (PD) connectivity are likely to be very important for plant development. Here, the repetitive division pattern of cambial initials in Populus nigra ‘italica’ was studied to follow the development of the PD network during maturation. Furthermore, seasonal changes were investigated in order to trace indications for developmental and functional adaptations.

Methods

Cambium samples of P. nigra twigs, collected in summer, autumn and spring, were chemically fixed for transmission electron microscopy. The parameters, PD density (number of PDs per square micrometre cell-wall area) and PD frequency (total number of PDs per average cell-wall area), were determined for radial and tangential cell interfaces deposited in chronological order.

Key Results

Data sets, presented in plasmodesmograms, show a strong variability in the PD network throughout the year. In summer, high PD numbers occur at the division wall which, after PD doubling by longitudinal fission, decline with further development both at the xylem and the phloem side. In autumn, the number of PDs at the division wall is low as they are in subsequent tangential interfaces. In spring, the first cell division coincides with a massive increase in PD numbers, in particular at the division wall. Only the radial walls between initials maintain their PD equipment throughout the year. This feature can be exploited for identification of the initial layer.

Conclusions

PD networks in the cambium go through a strict developmental programme depending on the season, which is associated with changing functional requirements. For instance, PD numbers correlate with proliferative activity and potential pathways for intercellular signalling. Increases in PD numbers are ascribed to longitudinal fission as a major mechanism, whereas the decline in older derivatives is ascribed to PD degradation.  相似文献   

20.
Leaf elongation rate (LER) in grasses is dependent on epidermal cell supply (number) and on rate and duration of epidermal cell elongation. Nitrogen (N) fertilization increases LER. Longitudinal sections from two genotypes of tall fescue (Festuca arundinacea Schreb.), which differ by 50% in LER, were used to quantify the effects of N on the components of epidermal cell elongation and on mesophyll cell division. Rate and duration of epidermal cell elongation were determined by using a relationship between cell length and displacement velocity derived from the continuity equation. Rate of epidermal cell elongation was exponential. Relative rates of epidermal cell elongation increased by 9% with high N, even though high N increased LER by 89%. Duration of cell elongation was approximately 20 h longer in the high- than in the low-LER genotype regardless of N treatment. The percentage of mesophyll cells in division was greater in the high- than in the low-LER genotype. This increased with high N in both genotypes, indicating that LER increased with cell supply. Division of mesophyll cells adjacent to abaxial epidermal cells continued after epidermal cell division stopped, until epidermal cells had elongated to a mean length of 40 micrometers in the high-LER and a mean length of 50 micrometers in the low-LER genotype. The cell cycle length for mesophyll cells was calculated to be 12 to 13 hours. Nitrogen increased mesophyll cell number more than epidermal cell number: in both genotypes, the final number of mesophyll cells adjacent to each abaxial epidermal cell was 10 with low N and 14 with high N. A spatial model is used to describe three cell development processes relevant to leaf growth. It illustrates the overlap of mesophyll cell division and epidermal cell elongation, and the transition from epidermal cell elongation to secondary cell wall deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号