首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Oligodendroglial Myelin Basic Protein (MBP) synthesis is essential for myelin formation in the central nervous system. During oligodendrocyte differentiation, MBP mRNA is kept in a translationally silenced state while intracellularly transported, until neuron-derived signals initiate localized MBP translation. Here we identify the small non-coding RNA 715 (sncRNA715) as an inhibitor of MBP translation. SncRNA715 localizes to cytoplasmic granular structures and associates with MBP mRNA transport granule components. We also detect increased levels of sncRNA715 in demyelinated chronic human multiple sclerosis lesions, which contain MBP mRNA but lack MBP protein.  相似文献   

2.
Myelin Basic Protein, one of the major membrane protein component of the central nervous system, was used to probe the molecular mechanism of cellular activation by phytohaemagglutinin.Pre-treatment of human lymphocytes with myelin basic protein results in a lower rising of cytosolic concentration of free calcium after stimulation with phytohaemagglutinin.This effect is dependent on myelin basic protein concentration and on the preincubation time of the protein with the cells. It is not due to a interaction between myelin basic protein and phytohaemagglutinin, but appears to be a consequence of the binding of the protein to the cell surface.The reduction of the rise of cytosolic calcium induced by phytohaemagglutinin is specific for the myelin basic protein because other proteins like albumin and protamine have no effect.  相似文献   

3.
Abstract: An enzyme immunoassay using a double-antibody solid-phase technique for myelin basic protein (MBP) has been developed. Antisera were prepared by immunizing rabbits with the purified MBP from chick brain. The conjugation of MBP with horseradish peroxidase was performed by the periodate oxidation method in triethanolamine-acetate buffer (pH 8.5). The sample, antiserum, and conjugate were incubated at 4°C for 16 h, after which the insoluble second antibody was added and the reaction mixture was incubated at 4°C for 3 h. The peroxidase activity of the insoluble conjugate was assayed fluorometrically with hydrogen peroxide and 3-( p -hydroxyphenyl)propionic acid as substrates. The method had an analytical range from 50 pg to 1 ng (from 2.3 × 10−15 to 4.5 × 10−14 mol). The within-assay coefficient of variation (CV) was between 4 and 11% and the between-assay CV for 200 and 400 pg of MBP was 5.5 and 7.1%, respectively. A weak cross-reactivity was observed between chick MBP and bovine MBP, while no reactivity was shown with calf thymus histone. The MBP content of the brain during development increased markedly from the 3rd embryonic week to the 3rd post-hatch week (from 0.01 to 2.4 mg/g of fresh tissue), and the adult level was 3.2 mg/g of fresh tissue.  相似文献   

4.
Electron microscopic immunocytochemical studies were carried out to localize myelin basic protein and myelin proteolipid protein during the active period of myelination in the developing rat brain using antisera to purified rat brain myelin proteolipid protein and large basic protein. The anti-large basic protein serum was shown by the immunoblot technique to cross-react with all five forms of basic protein present in the myelin of 8-day-old rat brain. Basic protein was localized diffusely in oligodendrocytes and their processes at very early stages in myelination. The immunostaining for basic protein was not specifically associated with any subcellular structures or organelles. The ultrastructural localization of basic protein suggests that it may be involved in fusion of the cytoplasmic faces of the oligodendrocyte processes during compaction of myelin. Immunoreactivity in the oligodendrocyte and myelin due to proteolipid protein appeared at a later stage of myelination than did that due to basic protein. Staining for proteolipid protein in the oligodendrocyte was restricted to the membranes of the rough endoplasmic reticulum, the Golgi apparatus, and apparent Golgi vesicles. The early, uncompacted periaxonal wrappings of oligodendrocyte processes were well stained with antiserum to large basic protein whereas staining for proteolipid protein was visible only after the compaction of myelin sheaths had begun. Our evidence indicates that basic protein and proteolipid protein are processed differently by the oligodendrocytes with regard to their subcellular localization and their time of appearance in the developing myelin sheath.  相似文献   

5.
ADP-Ribosylation of Human Myelin Basic Protein   总被引:2,自引:0,他引:2  
Abstract: When isolated myelin membranes were ADP-ribosylated by [32P]NAD+ either in the absence of toxin (by the membrane ADP-ribosyltransferase) or in the presence of cholera toxin, the same proteins were ADP-ribosylated in both cases and myelin basic protein (MBP) was the major radioactive product. Therefore, cholera toxin was considered a good model for ADP-ribosylation of myelin proteins. Although purified human MBP migrates as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a molecular mass of 20 kDa, the microheterogeneity that is masked under these conditions can be clearly demonstrated on alkaline-urea gels at pH 10.6. At this pH, MBP is resolved into several components that differ one from the other by a single charge (charge isomers). These charge isomers can be resolved on CM52 columns at pH 10.6, and several can be ADP-ribosylated. Component 1 (C-1), the most cationic charge isomer, incorporated 1.79 mol of ADP-ribose/mol of protein. C-2 and C-3 (which differ from C-1 by the loss of one and two positive charges, respectively) incorporated slightly less at 1.67 and 1.63 mol of ADP-ribose/mol of protein, respectively, whereas C-8, the least cationic, incorporated less than 0.11 mol/mol of protein. In the presence of neutral hydroxylamine, the ADP-ribosyl bond was shown to have a half-life of about 80 min, suggesting an N-glycosidic linkage between ADP-ribose and an arginyl residue of the protein. As MBP contains several components that are ADP-ribosylated to different specific activities, the use of MBP, ADP-ribosylated in the natural membrane, to identify the sites involved would yield a mixture of peptides difficult to resolve. Therefore, to identify the sites ADP-ribosylated, an endoproteinase Lys-C digest of C-1 ADP-ribosylated by cholera toxin was prepared. Two radioactive peptides were isolated by reversed-phase HPLC. Amino acid and sequence analyses identified the radioactive peptides as residues 5–13 and 54–58 of the human sequence (sp. act., 0.89 and 0.62 nmol of ADP-ribose/nmol of peptide, respectively). The ADP-ribosylated residues were identified as Arg9 and Arg54 by automated and manual Edman sequencing. Taken together with our previous observation that MBP binds GTP at a single site, these data suggest that MBP functions as part of a signal transduction system in myelin.  相似文献   

6.
Tsang  D.  Tsang  Y. S.  Ho  W. K. K.  Wong  R. N. S. 《Neurochemical research》1997,22(7):811-819
The zinc-binding proteins (ZnBPs) in porcine brain were characterized by the radioactive zinc-blot technique. Three ZnBPs of molecular weights about 53 kDa, 42 kDa, and 21 kDa were identified. The 53 kDa and 42 kDa ZnBPs were found in all subcellular fractions while the 21 kDa ZnBP was mainly associated with particulate fractions. This 21 kDa ZnBP was identified by internal protein sequence data as the myelin basic protein. Further characterization of its electrophoretic properties and cyanogen bromide cleavage pattern with the authentic protein confirmed its identity. The zinc binding properties of myelin basic protein are metal specific, concentration dependent and pH dependent. The zinc binding property is conferred by the histidine residues since modification of these residues by diethyl-pyrocarbonate would abolish this activity. Furthermore, zinc ion was found to potentiate myelin basic protein-induced phospholipid vesicle aggregation. It is likely that zinc plays an important role in myelin compaction by interacting with myelin basic protein.  相似文献   

7.
Sequence of Guinea Pig Myelin Basic Protein   总被引:5,自引:5,他引:0  
This paper proposes a tentative amino acid sequence of guinea pig myelin basic protein obtained by comparison of peptide fragments of the guinea pig and bovine proteins. Analyses of the tryptic peptides confirmed the known sequence differences in the NH2-terminal half of the molecule and showed that in the COOH-terminal half of the guinea pig protein Ser131 was missing, Ala136 - His137 was deleted, Leu140 was replaced by Phe, and an extra Ala was inserted somewhere within sequence 142-151 (tryptic peptide T23 ). Sequence determination of guinea pig tryptic peptides corresponding to residues 130-134 ( T20 ), 135-138 ( T21 ), and 142-151 ( T23 ) of the bovine protein confirmed the above sequence changes and placed the extra Ala between Gly142 and His143 . The sequence of the region corresponding to bovine residues 130-143 is thus Ala-Asp-Tyr-Lys-Ser-Lys-Gly-Phe-Lys-Gly-Ala-His. No species differences were observed in the amino acid compositions of the remaining tryptic peptides obtained from the COOH-terminal half of the molecule. Based upon these results, the guinea pig basic protein contains 167 amino acid residues and has a molecular weight of 18,256.  相似文献   

8.
Human and rat myelin preparations were incubated with varying concentrations of trypsin and plasmin to determine the effects of these proteolytic enzymes on myelin-associated glycoprotein (MAG), basic protein, and other myelin proteins and to compare the effects with those of the neutral protease that was reported to be endogenous in myelin. Basic protein was most susceptible to degradation by both trypsin and plasmin, whereas MAG was relatively resistant to their actions. Under the assay conditions used, the highest concentrations of trypsin and plasmin degraded greater than 80% of the basic protein but less than 30% of the MAG, and lower concentrations caused significant loss of basic protein without appreciably affecting MAG. Neither trypsin nor plasmin caused a specific cleavage of MAG to a derivative of MAG (dMAG) in a manner analogous to the endogenous neutral protease. Thus the endogenous protease appears unique in converting human MAG to dMAG much more rapidly than it degrades basic protein. MAG is slowly degraded along with other proteins when myelin is treated with trypsin or plasmin, but it is less susceptible to their action than is basic protein.  相似文献   

9.
Cleavage of Rabbit Myelin Basic Protein by Pepsin   总被引:13,自引:13,他引:0  
Rapid cleavage of bovine and guinea pig myelin basic proteins by pepsin at pH 6.0 is limited to the Phe-Phe bond in the middle of the molecule. In the rabbit protein, however, rapid cleavages occur elsewhere in addition to the Phe87-Phe88 bond in regions in which there are amino acid substitutions. Rapid cleavage occurs at the Leu151-Phe152 bond, at which Ile-151 has been replaced by Leu, the residue that actually contributes the scissile bond. Rapid cleavages occur at the Phe44-Phe45 and Leu109-Ser110 bonds, which in the bovine and guinea pig proteins are relatively resistant under the experimental conditions (pH 6.0). The increased susceptibility of these bonds in the rabbit protein appears to be related to the replacement of Gly-46 by Ser and the change in the sequence immediately NH2-terminal to Leu-109, from Leu-Ser to Thr-Val. These cleavages of the rabbit protein at the four very susceptible bonds have permitted us to isolate peptides (1-44), (45-87), (88-109), (110-151), and (152-168) in high yield. We have also isolated peptides (88-151), (1-14), and (15-44) in low yield; the latter two result from limited cleavage at the relatively resistant Tyr14Leu15 bond. Peptide (88-109) has been chromatographically resolved into species differing in the degree of methylation of Arg-105; this resolution is thought to result from differences in hydrogen bonding ability of the guanidinium groups.  相似文献   

10.
Monoclonal Antibodies to Human Myelin Basic Protein   总被引:1,自引:1,他引:0  
SJL/J and (SJL X PL) F1 hybrid mice were immunized with intact human myelin basic protein (MBP) or the three major peptic fragments of MBP, residues 1-38, 39-89, and 90-170. Immune spleen cells were fused with mouse myeloma P3 X 63Ag8 (NS1) cells in the presence of polyethylene glycol. Hybridoma supernatant culture fluids were screened for antibody to MBP by a solid-phase radioimmunoassay (RIA). The specificity of the monoclonal antibody (mAb) was characterized by RIA using the three major MBP peptic fragments and subfragments as well as MBP and MBP fragments of different species with known amino acid sequence differences. Six MBP mAbs were generated, one of them IgM isotype and the remainder IgG isotypes. One mAb each reacted against regions of residues 22-38, 39-69, 70-89, 90-116, and two reacted against residues 118-157. Immunoblots also showed that the five IgG mAbs were reactive against MBP and the peptic fragment of MBP containing the epitope. Immunohistochemical studies showed the IgG mAbs specifically stained myelinated fiber tracts in human brain tissue.  相似文献   

11.
Direct treatment of brain myelin with freezing/thawing in 0.2 M 2-mercaptoethanol stimulated the endogenous myelin phosphatase activity manyfold when 32P-labeled phosphorylase a was used as a substrate, a result indicating that an endogenous myelin phosphatase is a latent protein phosphatase. When myelin was treated with Triton X-100, this endogenous latent phosphatase activity was further stimulated 2.5-fold. Diethylaminoethyl-cellulose and Sephadex G-200 chromatography of solubilized myelin revealed a pronounced peak of protein phosphatase activity stimulated by freezing/thawing in 0.2 M 2-mercaptoethanol and with a molecular weight of 350,000, which is characteristic of latent phosphatase 2, as previously reported. Moreover, endogenous phosphorylation of myelin basic protein (MBP) in brain myelin was completely reversed by a homogeneous preparation of exogenous latent phosphatase 2. By contrast, under the same conditions, endogenous phosphorylation of brain myelin was entirely unaffected by ATP X Mg-dependent phosphatase and latent phosphatase 1, although both enzymes are potent MBP phosphatases. Together, these findings clearly indicate that a high-molecular-weight latent phosphatase, termed latent phosphatase 2, is the most predominant phosphatase responsible for dephosphorylation of brain myelin.  相似文献   

12.
Myelin isolated from goldfish brain shows a multilamellar structure with a major dense line and two intraperiod lines. Sodium dodecyl sulfate gel electrophoresis revealed that the protein profile of goldfish brain myelin is distinctly different from that of rat brain myelin. No protein migrating to the position of proteolipid protein or DM-20 was seen in goldfish myelin. Goldfish acclimated to 5 degrees, 15 degrees, and 30 degrees C showed no qualitative differences in myelin proteins. The 13.5 kD protein in goldfish brain myelin and brain homogenate was intensely immunostained with the antiserum to human basic protein by the immunoblot technique. In contrast, none of the proteins of goldfish myelin were immunostained with antiproteolipid protein serum; however, both proteolipid protein and DM-20 of rat brain myelin were immunostained. The significance of the synthesis of myelin proteins by astrocytes in the goldfish brain is discussed.  相似文献   

13.
Abstract: A peptidylarginine deiminase (PAD; EC 3.5.3.15) has been isolated from bovine brain and some of its characteristics have been studied. The enzyme showed an absolute requirement for Ca2+, a temperature optimum at ~50°C, and two Kmvalues when benzoylarginine ethyl ester was used as substrate, 0.78 mMand 11.2 mM.The higher Kmhas not been reported previously. Protein substrates for the enzyme included polyarginine and myelin basic protein but not histones. Because one of the components of MBP contains six citrullinyl residues per mole, enzymic deimination appeared to be a likely mechanism. When the most cationic component (C-1) was subjected to PAD in solution, 17 of the 19 arginyl residues were modified. From sequence analyses we concluded that the nature of the amino acid residues adjacent to the deiminated arginine were not modifiers of the reaction as arginyl residues in a variety of environments were deiminated. This deimination was reflected in a large increase in random structure, as measured by [θ]200. At 5°C, the [θ]200of the deiminated protein was -70 × 103 compared with -30 × 103 deg cm2/dmol for the native protein. When the temperature was increased to 70°C, the [θ]200 was -44 × 103 for the deiminated protein and -20 × 107 deg cm2/ dmol for the native C-1. When plotted as a function of temperature, [θ]200 decreased linearly from 5°C to 50°C for both proteins and did not change from 50°C to 70°C. PAD provides a mechanism for deimination of arginyl residues of myelin basic protein. The selective deimination of the six arginyl residues that are consistently found deiminated in C-8 may be determined by the orientation of the protein in the membrane and/or the more complex lipid composition of myelin may affect the selectivity of the deimination.  相似文献   

14.
15.
Abstract: Although the specificity of multiple sclerosis (MS) brain immunoglobulins (lgs) remains unknown, the incubation of these lgs with human myelin can lead to myelin basic protein (MBP) degradation mediated by neutral proteases. In this study, we demonstrate that monoclonal antibodies (mAbs) specific to myelin components such as the CNS-specific myelin oligodendrocyte glycoprotein (MOG) and galactocerebroside (GalC) are found to induce a significant loss of MBP mediated by neutral proteases in myelin. By contrast, antibodies to periaxonal and structural components of myelin, such as MBP and myelin-associated glycoprotein, are ineffective in inducing such MBP degradation. Among the 11 different anti-MOG mAbs directed to externally located epitopes of MOG, only two were found to induce a significant degradation of MBP, suggesting that antibody-induced MBP degradation is not only antigen specific but also epitope specific. Based on the inhibition of MBP degradation in the presence of EGTA and the analysis of the degradation products obtained following incubation of myelin with mAbs to GalC and MOG (8-18C5), the neutral protease involved in this antibody-induced degradation of MBP could be calcium-activated neutral protease. Taken together, these results suggest that antibodies to GalC and MOG can play a major role in destabilizing myelin through MBP breakdown mediated by neutral proteases and thus have an important role to play in the pathogenesis of MS.  相似文献   

16.
Amino Acid Sequence of Porcine Myelin Basic Protein   总被引:6,自引:6,他引:0  
The myelin basic protein (BP) of pig brain was cleaved into its constituent tryptic peptides and the amino acid composition of each was determined. Those tryptic peptides that had not been sequenced previously were cleaved with dipeptidyl peptidases and the resulting dipeptides were trimethylsilated, separated by gas chromatography, and identified by mass spectrometry. Carboxypeptidases B and Y were used to establish the COOH-terminal sequences of some of the tryptic peptides; one tryptic peptide (sequence 76-92) was cleaved with thermolysin and the thermolytic peptides were analyzed. From the results of the present study together with those reported previously, it has been possible to determine the complete amino acid sequence of the protein. The protein consists of 172 residues and has a theoretical molecular weight of 18,604. Its amino acid sequence is identical with that reported for the homologous bovine protein with the following exceptions: Ser replaces (bovine) Ala2; His-Gly is inserted between Arg9 and Ser10; Ala replaces Ser45; His and Gly replace Gly76 and His77, respectively; Pro replaces Ser131 and Ser135; Ala is inserted between Gly142 and His143; and Gln replaces His143.  相似文献   

17.
Prediction of the Secondary Structure of Myelin Basic Protein   总被引:14,自引:10,他引:4  
An investigation into the probable secondary structure of the myelin basic protein was carried out by the application of three procedures currently in use to predict the secondary structures of proteins from knowledge of their amino acid sequences. In order to increase the accuracy of the predictions, the amino acid substitutions that occur in the basic protein from different species were incorporated into the predictive algorithms. It was possible to locate regions of probable alpha-helix, beta-structure, beta-turn, and unordered conformation (coil) in the protein. One of the predictive methods introduces a bias into the algorithm to maximize or minimize the amounts of alpha-helix and/or beta-structure present; this made it possible to assess how conditions such as pH and protein concentration or the presence of anionic amphiphilic molecules could influence the protein's secondary structure. The predictions made by the three methods were in reasonably good agreement with one another. They were consistent with experimental data, provided that the stabilizing or destabilizing effects of the environment were taken into account. According to the predictions, the extent of possible alpha-helix and beta-structure formation in the protein s severely restricted by the low frequency and extensive scattering of hydrophobic residues, along with a high frequency and extensive scattering of residues that favor the formation of beta-turns and coils. Neither prolyl residues nor cationic residues per se are responsible for the low content of alpha-helix predicted in the protein. The principal ordered conformation predicted is the beta-turn. Many of the predicted beta-turns overlap extensively, involving in some cases up to 10 residues. In some of these structures it is possible for the peptide backbone to oscillate in a sinusoidal manner, generating a flat, pleated sheetlike structure. Cationic residues located in these structures would appear to be ideally oriented for interaction with lipid phosphate groups located at the cytoplasmic surface of the myelin membrane. An analysis of possible and probable conformations that the triproline sequence could assume questions the popular notion that this sequence produces a hairpin turn in the basic protein.  相似文献   

18.
The molecular organization, interactions, phase state and membrane-membrane interactions of model membranes containing cerebroside (GalCer), sulfatide (Sulf) and myelin basic protein (MBP) were investigated. Sulf shows a larger cross-sectional area than GalCer, in keeping with the lateral electrostatic repulsions in the negatively charged polar head group. The interactions of GalCer with different phospholipids are similar while those with Sulf depend on the phosphoryl choline moiety in the phospholipid. MBP induces a decrease of the phase transition temperature in both lipids but with Sulf this occurs at lower proportions of MBP. In mixtures of Sulf with phosphatidylcholine MBP induces phase separation among Sulf-rich and PC-rich domains. Extensive apposition of bilayers containing Sulf is induced by MBP while GalCer interferes with this process. Few membrane interactions proceed to bilayer merging or whole bilayer fusion and the glycosphingolipids help preserve the membrane integrity.  相似文献   

19.
Purified myelin basic protein (MBP) from various species contains several post-translationally modified forms termed charge components or charge isomers. Chicken MBP contains four charge components denoted as C1, C2, C3 and C8. (The C8 isomer is a complex mixture and was not investigated in this study.) These findings are in contrast to those found for human, bovine and other mammalian MBP’s. Mammalian MBP’s, each of which contain seven or eight charge components depending on the analysis of the CM-52 chromatographic curves and the PAGE gels obtained under basic pH conditions. Chicken MBP components C1, C2 and C3 were treated with trypsin and endoproteinase Glu-C. The resulting digests were analyzed by capillary liquid chromatography combined with either an ion trap tandem mass spectrometer or with a Fourier transform ion cyclotron resonance mass spectrometer. This instrumentation permitted establishing the amino acid composition and the determination of the post-translational modifications for each of the three charge components C1-C3. With the exception of N-terminal acetylation, the post-translational modifications were partial. The C1 component lacks any phosphorylated sites, a finding in agreement with the analysis of other MBP species. It also had a single methylation at R105 as did the components C2 and C3. The C2 component contains ten phosphorylated sites (S7, S18, S33, S64, S73, T96, S113, S141, S164, and S168), and modified arginine to citrulline residues at R24, and R165. Component C3 contains eight phosphorylated sites (S7, S33, S64, T96, S113, S141, S164, and S168), and citrulline residues at Arginine 41, R24 and R165. Partial deamidation of glutamine residues Q71, Q101 and Q146 were present in addition to asparagine N90 that was found in all three charge components. The glutamine at residue 3 is partially deamidated in isomers C1 and C2, whereas glutamine 74 and asparagine 83 were found not to be deamidated. Comparison of the PTM’s of MBP’s isolated from several vertebrate species reveals marked differences in their phosphate content. Chicken MBP does not share any phosphorylated sites with dogfish MBP; However, it does contain phosphorylated serine and threonine residues in common with mammalian MBP.  相似文献   

20.
Rabbit myelin basic protein (BP) contains several Arg-X bonds with differing susceptibilities to thrombic cleavage as measured by the yields of the various cleavage products obtained under three different conditions. Under conditions where the thrombin-to-substrate ratio was very low (1 NIH unit/mg BP), the concentration of substrate was relatively low (4 mg BP/ml), and the incubation time was short (2 h), the rabbit BP was cleaved essentially completely and specifically at a single site, the Arg(95)-Thr(96) bond. The BPs of other species (beef, pig, guinea pig, rat) were similarly cleaved, no doubt because all have the same amino acid sequence in this region of the protein. Under conditions in which the enzyme-to-substrate ratio and the substrate concentration were higher (2 NIH units/mg BP, 8 mg BP/ml) and the incubation time was long (24 h), additional, partial cleavages occurred, principally at the Arg(43)-Phe(44) and Arg(128)-Ala(129) bonds, but with some cleavage at the Arg(31)-His(32) and Arg(63)-Thr(64) bonds as well. Under conditions in which all three variables were elevated (5 NIH units/mg peptide, 20 mg peptide/ml, 24 h), more extensive cleavage occurred at the above sites. In peptide (96-168), which we examined in detail, nearly complete cleavage of the Arg(128)-Ala(129) bond occurred, with partial cleavage at the unmethylated Arg(105)-Gly(106), Arg(111)-Phe(112), Arg(150)-Leu(151), and Arg(160)-Ser(161) bonds. The susceptibilities to cleavage of the Arg-X bonds in the BP can be explained with varying degrees of success in terms of the known specificity of thrombin. Cleavage of two of the bonds, Arg(128)-Ala(129) and Arg(160)-Ser(161), suggests the occurrence of a chain reversal or beta-turn in the sequence preceding the scissile bonds. Most cleavages of the BP with thrombin do not occur in the more hydrophobic regions; in particular, the hydrophobic region in the center of the molecule that includes the Phe-Phe(87-88) sequence is left intact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号