首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent advances in gene knockout techniques and the in vivo analysis of mutant mice, together with the advent of large-scale projects for systematic mouse mutagenesis and genome-wide phenotyping, have allowed the creation of platforms for the most complete and systematic analysis of gene function ever undertaken in a vertebrate. The development of high-throughput phenotyping pipelines for these and other large-scale projects allows investigators to search and integrate large amounts of directly comparable phenotype data from many mutants, on a genomic scale, to help develop and test new hypotheses about the origins of disease and the normal functions of genes in the organism. Histopathology has a venerable history in the understanding of the pathobiology of human and animal disease, and presents complementary advantages and challenges to in vivo phenotyping. In this review, we present evidence for the unique contribution that histopathology can make to a large-scale phenotyping effort, using examples from past and current programmes at Lexicon Pharmaceuticals and The Jackson Laboratory, and critically assess the role of histopathology analysis in high-throughput phenotyping pipelines.  相似文献   

2.
Whole-genome genetic association studies in outbred mouse populations represent a novel approach to identifying the molecular basis of naturally occurring genetic variants, the major source of quantitative variation between inbred strains of mice. Measuring multiple phenotypes in parallel on each mouse would make the approach cost effective, but protocols for phenotyping on a large enough scale have not been developed. In this article we describe the development and deployment of a protocol to collect measures on three models of human disease (anxiety, type II diabetes, and asthma) as well as measures of mouse blood biochemistry, immunology, and hematology. We report that the protocol delivers highly significant differences among the eight inbred strains (A/J, AKR/J, BALBc/J, CBA/J, C3H/HeJ, C57BL/6 J, DBA/2 J, and LP/J), the progenitors of a genetically heterogeneous stock (HS) of mice. We report the successful collection of multiple phenotypes from 2000 outbred HS animals. The phenotypes measured in the protocol form the basis of a large-scale investigation into the genetic basis of complex traits in mice designed to examine interactions between genes and between genes and environment, as well as the main effects of genetic variants on phenotypes.  相似文献   

3.
4.
5.
Growth rate is an important variable and parameter in biology with a central role in evolutionary, functional genomics, and systems biology studies. In this review the pros and cons of the different technologies presently available for high-throughput measurements of growth rate are discussed. Growth rate can be measured in liquid microcultivation of individual strains, in competition between strains, as growing colonies on agar, as division of individual cells, and estimated from molecular reporters. Irrespective of methodology, statistical issues such as spatial biases and batch effects are crucial to investigate and correct for to ensure low false discovery rates. The rather low correlations between studies indicate that cross-laboratory comparison and standardization are pressing issue to assure high-quality and comparable growth-rate data.  相似文献   

6.
7.
8.
A bold new effort to disrupt every gene in the mouse genome necessitates systematic, interdisciplinary approaches to analyzing patterning defects in the mouse embryo. We present a novel, rapid, and inexpensive method for obtaining high-resolution virtual histology for phenotypic assessment of mouse embryos. Using osmium tetroxide to differentially stain tissues followed by volumetric X-ray computed tomography to image whole embryos, isometric resolutions of 27 μm or 8 μm were achieved with scan times of 2 h or 12 h, respectively, using mid-gestation E9.5–E12.5 embryos. The datasets generated by this method are immediately amenable to state-of-the-art computational methods of organ patterning analysis. This technique to assess embryo anatomy represents a significant improvement in resolution, time, and expense for the quantitative, three-dimensional analysis of developmental patterning defects attributed to genetically engineered mutations and chemically induced embryotoxicity.  相似文献   

9.
Recently, a number of collaborative large-scale mouse mutagenesis programs have been launched. These programs aim for a better understanding of the roles of all individual coding genes and the biological systems in which these genes participate. In international efforts to share phenotypic data among facilities/institutes, it is desirable to integrate information obtained from different phenotypic platforms reliably. Since the definitions of specific phenotypes often depend on a tacit understanding of concepts that tends to vary among different facilities, it is necessary to define phenotypes based on the explicit evidence of assay results. We have developed a website termed PhenoSITE (Phenome Semantics Information with Terminology of Experiments: http://www.gsc.riken.jp/Mouse/), in which we are trying to integrate phenotype-related information using an experimental-evidence-based approach. The site's features include (1) a baseline database for our phenotyping platform; (2) an ontology associating international phenotypic definitions with experimental terminologies used in our phenotyping platform; (3) a database for standardized operation procedures of the phenotyping platform; and (4) a database for mouse mutants using data produced from the large-scale mutagenesis program at RIKEN GSC. We have developed two types of integrated viewers to enhance the accessibility to mutant resource information. One viewer depicts a matrix view of the ontology-based classification and chromosomal location of each gene; the other depicts ontology-mediated integration of experimental protocols, baseline data, and mutant information. These approaches rely entirely upon experiment-based evidence, ensuring the reliability of the integrated data from different phenotyping platforms.  相似文献   

10.
The Mouse Genetics Project (MGP) at the Wellcome Trust Sanger Institute aims to generate and phenotype over 800 genetically modified mouse lines over the next 5 years to gain a better understanding of mammalian gene function and provide an invaluable resource to the scientific community for follow-up studies. Phenotyping includes the generation of a standardized biobank of paraffin-embedded tissues for each mouse line, but histopathology is not routinely performed. In collaboration with the Pathology Core of the Centre for Modeling Human Disease (CMHD) we report the utility of histopathology in a high-throughput primary phenotyping screen. Histopathology was assessed in an unbiased selection of 50 mouse lines with (n=30) or without (n=20) clinical phenotypes detected by the standard MGP primary phenotyping screen. Our findings revealed that histopathology added correlating morphological data in 19 of 30 lines (63.3%) in which the primary screen detected a phenotype. In addition, seven of the 50 lines (14%) presented significant histopathology findings that were not associated with or predicted by the standard primary screen. Three of these seven lines had no clinical phenotype detected by the standard primary screen. Incidental and strain-associated background lesions were present in all mutant lines with good concordance to wild-type controls. These findings demonstrate the complementary and unique contribution of histopathology to high-throughput primary phenotyping of mutant mice.KEY WORDS: Histopathology, High-throughput phenotyping, Mouse, Pathology  相似文献   

11.
Crawley JN 《Neuron》2008,57(6):809-818
Comprehensive behavioral analyses of transgenic and knockout mice have successfully identified the functional roles of many genes in the brain. Over the past 10 years, strategies for mouse behavioral phenotyping have evolved to maximize the scope and replicability of findings from a cohort of mutant mice, minimize the interpretation of procedural artifacts, and provide robust translational tools to test hypotheses and develop treatments. This Primer addresses experimental design issues and offers examples of high-throughput batteries, learning and memory tasks, and anxiety-related tests.  相似文献   

12.
Phenomics is a field of science at the junction of biology and informatics which solves the problems of rapid, accurate estimation of the plant phenotype; it was rapidly developed because of the need to analyze phenotypic characteristics in large scale genetic and breeding experiments in plants. It is based on using the methods of computer image analysis and integration of biological data. Owing to automation, new approaches make it possible to considerably accelerate the process of estimating the characteristics of a phenotype, to increase its accuracy, and to remove a subjectivism (inherent to humans). The main technologies of high-throughput plant phenotyping in both controlled and field conditions, their advantages and disadvantages, and also the prospects of their use for the efficient solution of problems of plant genetics and breeding are presented in the review.  相似文献   

13.
14.
Many biologists believe that data analysis expertise lags behind the capacity for producing high-throughput data. One view within the bioinformatics community is that biological scientists need to develop algorithmic skills to meet the demands of the new technologies. In this article, we argue that the broader concept of inferential literacy, which includes understanding of data characteristics, experimental design and statistical analysis, in addition to computation, more adequately encompasses what is needed for efficient progress in high-throughput biology.  相似文献   

15.
A rapid method for the quantification of L-ascorbic acid (1) in berry fruit by HPLC with photodiode array detection is presented. L-Ascorbic acid was resolved on a C18 monolithic column with aqueous buffer, after which the column was washed with acetonitrile to remove lipophilic compounds prior to re-equilibration for analysis of the next sample. Using the monolithic column format with high mobile phase flow rates, the entire separation, wash and re-equilibration were achieved in 3 min. With the exception of gooseberry (Ribes uva-crispa), for which an interfering compound co-eluted, concentrations of 1 could be determined in a wide range of berry fruits after extraction in metaphosphoric acid without further sample preparation. Using this extraction method, recoveries of 1 in excess of 85% were achieved. Fruit or juice extracts were stable in 5% metaphosphoric acid for at least 4 h and stability could be extended to longer than 150 h by the addition of the reducing agent tris(2-carboxethyl)phosphine hydrochloride. Following validation, the method was utilised for the phenotyping of fruit in a Scottish Crop Research Institute (SCRI) Ribes nigrum L. breeding population of 300 individuals. An improved extraction method allowed extraction, quantification of 1 and data analysis to be undertaken in less than one working week.  相似文献   

16.
High-throughput plant phenotyping has been advancing at an accelerated rate as a response to the need to fill the gap between genomic information and the plasticity of the plant phenome. During the past decade, North America has seen a stark increase in the number of phenotyping facilities, and these groups are actively contributing to the generation of high-dimensional, richly informative datasets about the phenotype of model and crop plants. As both phenomic datasets and analysis tools are made publicly available, the key to engineering more resilient crops to meet global demand is closer than ever. However, there are a number of bottlenecks that must yet be overcome before this can be achieved. In this paper, we present an overview of the most commonly used sensors that empower digital phenotyping and the information they provide. We also describe modern approaches to identify and characterize plants that are resilient to common abiotic and biotic stresses that limit growth and yield of crops. Of interest to researchers working in plant biochemistry, we also include a section discussing the potential of these high-throughput approaches in linking phenotypic data with chemical composition data. We conclude by discussing the main bottlenecks that still remain in the field and the importance of multidisciplinary teams and collaboration to overcome those challenges.  相似文献   

17.
High-throughput assays, such as RNA-seq, to detect differential abundance are widely used. Variable performance across statistical tests, normalizations, and conditions leads to resource wastage and reduced sensitivity. EDDA represents a first, general design tool for RNA-seq, Nanostring, and metagenomic analysis, that rationally selects tests, predicts performance, and plans experiments to minimize resource wastage. Case studies highlight EDDA’s ability to model single-cell RNA-seq, suggesting ways to reduce sequencing costs up to five-fold and improving metagenomic biomarker detection through improved test selection. EDDA’s novel mode-based normalization for detecting differential abundance improves robustness by 10% to 20% and precision by up to 140%.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0527-7) contains supplementary material, which is available to authorized users.  相似文献   

18.
Sequences of the ubiquitin-conjugating enzyme (UBC or E2) family were used as a test set to investigate issues associated with the high-throughput comparative modelling of protein structures. A semi-automatic method was initially developed with particular emphasis on producing models of a quality suitable for structural comparison. Structural and sequence features of the E2 family were used to improve the sequence alignment and the quality of the structural templates. Initially, failure to correct for subtle structural inconsistencies between templates lead to problems in the comparative analysis of the UBC electrostatic potentials. Modelling of known UBC structures using Modeller 4.0 showed that multiple templates produced, on average, no better models than the use of just one template, as judged by the root-mean-squared deviation between the comparative model and crystal structure backbones. Using four different quality-checking methods, for a given target sequence, it was not possible to distinguish the model most similar to the experimental structure. The UBC models were thus finally modelled using only the crystal structure template with the highest sequence identity to the target to be modelled, and producing only one model solution. Quality checking was used to reject models with obvious structural anomalies (e.g., bad side-chain packing). The resulting models have been used for a comparison of UBC structural features and of their electrostatic potentials. The work was extended through the development of a fully automated pipeline that identifies E2 sequences in the sequence databases, aligns and models them, and calculates the associated electrostatic potential.  相似文献   

19.
High-throughput mouse magnetic resonance imaging (MRI) is seeing rapidly increasing demand in development of therapeutics. Recent advances including higher-field systems, new gradient and radio frequency coils and new pulse sequences, coupled with efficient animal preparation and data handling, allow high-throughput MRI under certain protocols. However, with current shifts from anatomic to functional and molecular imaging, innovative technology is required to meet new throughput demands. The first multiple mouse imaging strategies have provided a glimpse of the future state-of-the-art. However, the successful translation of standard clinical MRI technology to preclinical MRI is required to facilitate next-generation high-throughput MRI.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号