首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Predicted bovine carboxylesterase (CES) protein and gene sequences were derived from bovine (Bos taurus) genomic sequence data. Two bovine CES1 genes (CES1.1 and CES1.2) were located on chromosome 18 encoding amino acid sequences that were 81% identical. Two forms of CES1.2 were also observed apparently caused by an indel polymorphism encoded at the C-terminus end. Two CES gene clusters were observed on chromosome 18: CES5–CES1.1–CES1.2 and CES2CES3CES6. Bovine CES1, CES2, CES3, CES5 and CES6 shared 39–45% identity with each other, but showed 71–76% identity with each of the five corresponding human CES family members. Phylogeny studies indicated that bovine CES genes originated from five ancestral gene duplication events which predated the eutherian mammalian common ancestor. In addition, a subsequent CES1 gene duplication event is proposed during mammalian evolution prior to the appearance of the Bovidae common ancestor ~ 20 MY ago.  相似文献   

2.
3.
Carboxylesterases (CES) are responsible for the detoxification of a wide range of drugs and xenobiotics, and may contribute to cholesterol, fatty acid and lung surfactant metabolism. In this study, in silico methods were used to predict the amino acid sequences, secondary and tertiary structures, and gene locations for horse CES genes and encoded proteins, using data from the recently completed horse genome project. Evidence was obtained for six CES1 genes closely localised on horse chromosome 3, for which the predicted CES1 gene products are ≥ 74% identical. The horse genome also showed evidence for three other CES gene classes: CES5, located in tandem with the CES1 gene cluster; and CES2 and CES3, located more than 9 million base pairs downstream on chromosome 3. Horse CES2, CES3 and CES5 gene products shared 42–46% identity with each other, and with the CES1 protein subunits. Sequence alignments of these enzymes demonstrated key enzyme and family specific CES protein sequences reported for human CES1, CES2, CES3 and CES5. In addition, predicted secondary and tertiary structures for horse CES1, CES2, CES3 and CES5 subunits showed extensive conservation with human CES1. Phylogenetic analyses demonstrated the relationships and potential evolutionary origins of the horse CES sequences with previously reported sequences for human and other mammalian CES gene products. Several CES1 gene duplication events have apparently occurred following the appearance of the ‘dawn’ horse ~ 55 million years ago.  相似文献   

4.

Background  

Carboxylesterases (CES) perform diverse metabolic roles in mammalian organisms in the detoxification of a broad range of drugs and xenobiotics and may also serve in specific roles in lipid, cholesterol, pheromone and lung surfactant metabolism. Five CES families have been reported in mammals with human CES1 and CES2 the most extensively studied. Here we describe the genetics, expression and phylogeny of CES isozymes in the opossum and report on the sequences and locations of CES1, CES2 and CES6 'like' genes within two gene clusters on chromosome one. We also discuss the likely sequence of gene duplication events generating multiple CES genes during vertebrate evolution.  相似文献   

5.
Obesity often leads non-alcoholic fatty liver disease, insulin resistance and hyperlipidemia. Expression of carboxylesterase CES1 is positively correlated with increased lipid storage and plasma lipid concentration. Here we investigated structural and metabolic consequences of a single nucleotide polymorphism in CES1 gene that results in p.Gly143Glu amino acid substitution. We generated a humanized mouse model expressing CES1WT (control), CES1G143E and catalytically dead CES1S221A (negative control) in the liver in the absence of endogenous expression of the mouse orthologous gene. We show that the CES1G143E variant exhibits only 20% of the wild-type lipolytic activity. High-fat diet fed mice expressing CES1G143E had reduced liver and plasma triacylglycerol levels. The mechanism by which decreased CES1 activity exerts this hypolipidemic phenotype was determined to include decreased very-low density lipoprotein secretion, decreased expression of hepatic lipogenic genes and increased fatty acid oxidation as determined by increased plasma ketone bodies and hepatic mitochondrial electron transport chain protein abundance. We conclude that attenuation of human CES1 activity provides a beneficial effect on hepatic lipid metabolism. These studies also suggest that CES1 is a potential therapeutic target for non-alcoholic fatty liver disease management.  相似文献   

6.
It is challenging to study regulatory genetic variants as gene expression is affected by both genetic polymorphisms and non-genetic regulators. The mRNA allele-specific expression (ASE) assay has been increasingly used for the study of cis-acting regulatory variants because cis-acting variants affect gene expression in an allele-specific manner. However, poor correlations between mRNA and protein expressions were observed for many genes, highlighting the importance of studying gene expression regulation at the protein level. In the present study, we conducted a proof-of-concept study to utilize a recently developed allele-specific protein expression (ASPE) assay to identify the cis-acting regulatory variants of CES1 using a large set of human liver samples. The CES1 gene encodes for carboxylesterase 1 (CES1), the most abundant hepatic hydrolase in humans. Two cis-acting regulatory variants were found to be significantly associated with CES1 ASPE, CES1 protein expression, and its catalytic activity on enalapril hydrolysis in human livers. Compared to conventional gene expression-based approaches, ASPE demonstrated an improved statistical power to detect regulatory variants with small effect sizes since allelic protein expression ratios are less prone to the influence of non-genetic regulators (e.g., diseases and inducers). This study suggests that the ASPE approach is a powerful tool for identifying cis-regulatory variants.  相似文献   

7.
8.
9.
We provide here a list of 154 P450 genes and seven putative pseudogenes that have been characterized as of October 20, 1990. These genes have been described in a total of 23 eukaryotes (including nine mammalian and one plant species) and six prokaryotes. Of 27 gene families so far described, 10 exist in all mammals. These 10 families comprise 18 subfamilies, of which 16 and 14 have been mapped in the human and mouse genomes, respectively; to date, each subfamily appears to represent a cluster of tightly linked genes. We propose here a modest revision of the initially proposed (Nebert et al., DNA 6, 1-11, 1987) and updated (Nebert et al., DNA 8, 1-13, 1989) nomenclature system based on evolution of the superfamily. For the gene we recommend that the italicized root symbol CYP for human (Cyp for mouse), representing cytochrome P450, be followed by an Arabic number denoting the family, a letter designating the subfamily (when two or more exist), and an Arabic numeral representing the individual gene within the subfamily. A hyphen should precede the final number in mouse genes. We suggest that the human nomenclature system be used for other species. This system is consistent with our earlier proposed nomenclature for P450 of all eukaryotes and prokaryotes, except that we are discouraging the future use of cumbersome Roman numerals.  相似文献   

10.
11.
Three proteinaceous pheromone families, the androgen-binding proteins (ABPs), the exocrine-gland secreting peptides (ESPs) and the major urinary proteins (MUPs) are encoded by large gene families in the genomes of Mus musculus and Rattus norvegicus. We studied the evolutionary histories of the Mup and Esp genes and compared them with what is known about the Abp genes. Apparently gene conversion has played little if any role in the expansion of the mouse Class A and Class B Mup genes and pseudogenes, and the rat Mups. By contrast, we found evidence of extensive gene conversion in many Esp genes although not in all of them. Our studies of selection identified at least two amino acid sites in β-sheets as having evolved under positive selection in the mouse Class A and Class B MUPs and in rat MUPs. We show that selection may have acted on the ESPs by determining Ka/Ks for Exon 3 sequences with and without the converted sequence segment. While it appears that purifying selection acted on the ESP signal peptides, the secreted portions of the ESPs probably have undergone much more rapid evolution. When the inner gene converted fragment sequences were removed, eleven Esp paralogs were present in two or more pairs with Ka/Ks >1.0 and thus we propose that positive selection is detectable by this means in at least some mouse Esp paralogs. We compare and contrast the evolutionary histories of all three mouse pheromone gene families in light of their proposed functions in mouse communication.  相似文献   

12.
13.
14.
The cytochrome P-450 monooxygenase system possesses catalytic activity toward many exogenous compounds (e.g., drugs, insecticides, and polycyclic aromatic hydrocarbons) and endogenous compounds (e.g., steroids, fatty acids, and prostaglandins). Multiple forms of cytochrome P-450 with different substrate specificities have been isolated. In the present paper we report the isolation and sequence of a cDNA clone for the human hepatic cytochrome P-450 responsible for mephenytoin (an anticonvulsant) oxidation. The mephenytoin cytochrome P-450 is analogous to the rat cytochrome P-450 form termed PB-1 (family P450C2C). We also report that human PB-1 is encoded by one of a small family of related genes all of which map to human chromosome 10q24.1-10q24.3. The endogenous role of this enzyme appears to be in steroid oxidations. This cytochrome P-450 family does not correspond to any of the hepatic cytochrome P-450 gene families previously mapped in humans.  相似文献   

15.
At least six families of mammalian acid lipases (E.C. 3.1.1.?) catalyse the hydrolysis of triglycerides in the body, designated as LIPA (lysosomal), LIPF (gastric), LIPJ (testis) and LIPK, LIPM and LIPN (epidermal), which belong to the AB hydrolase superfamily. In this study, in silico methods were used to predict the amino acid sequences, secondary and tertiary structures, and gene locations for acid lipase genes and encoded proteins using data from several mammalian genome projects. Mammalian acid lipase genes were located within a gene cluster for each of the 8 mammalian genomes examined, including human (Homo sapiens), chimpanzee (Pons troglodytes), rhesus monkey (Macacca mulatta), mouse (Mus musculus), rat (Rattus norvegicus), cow (Bos taurus), horse (Equus caballus) and dog (Canis familaris), with each containing 9 coding exons. Human and mouse acid lipases shared 44–87% sequence identity and exhibited sequence alignments and identities for key amino acid residues and conservation of predicted secondary and tertiary structures with those previously reported for human gastric lipase (LIPF) (Roussel et al., 1999). Evidence for a new family of acid lipase genes is reported for mouse and rat genomes, designated as Lipo. Mouse acid lipase genes are subject to differential mRNA tissue expression, with Lipa showing wide tissue expression, while others have a more restricted tissue expression in the digestive tract (Lipf), salivary gland (Lipo) and epidermal tissues (Lipk, Lipm and Lipn). Phylogenetic analyses of the mammalian acid lipase gene families suggested that these genes are products of gene duplication events prior to eutherian mammalian evolution and derived from an ancestral vertebrate LIPA gene, which is present in the frog, Xenopus tropicalis.  相似文献   

16.
17.
Two major forms of human carboxylesterase (CES), CES1A and CES2, dominate the pharmacokinetics of most prodrugs such as imidapril and irinotecan (CPT-11). Excipients, largely used as insert vehicles in formulation, have been recently reported to affect drug enzyme activity. The influence of excipients on the activity of CES remains undefined. In this study, the inhibitory effects of 25 excipients on the activities of CES1A1 and CES2 were evaluated. Imidapril and CPT-11 were used as substrates and cultured with liver microsomes in vitro. Imidapril hydrolase activities of recombinant CES1A1 and human liver microsomes (HLM) were strongly inhibited by sodium lauryl sulphate (SLS) and polyoxyl 40 hydrogenated castor oil (RH40) [Inhibition constant (Ki) = 0.04±0.01 μg/ml and 0.20±0.09 μg/ml for CES1A1, and 0.12±0.03 μg/ml and 0.76±0.33 μg/ml, respectively, for HLM]. The enzyme hydrolase activity of recombinant CES2 was substantially inhibited by Tween 20 and polyoxyl 35 castor oil (EL35) (Ki = 0.93±0.36 μg/ml and 4.4±1.24 μg/ml, respectively). Thus, these results demonstrate that surfactants such as SLS, RH40, Tween 20 and EL35 may attenuate the CES activity; such inhibition should be taken into consideration during drug administration.  相似文献   

18.
The mouse chromosome 7C, orthologous to the human 15q11–q13 has an imprinted domain, where most of the genes are expressed only from the paternal allele. The imprinted domain contains paternally expressed genes, Snurf/Snrpn, Ndn, Magel2, Mkrn3, and Frat3, C/D-box small nucleolar RNAs (snoRNAs), and the maternally expressed gene, Ube3a. Imprinted expression in this large (approximately 3–4 Mb) domain is coordinated by a bipartite cis-acting imprinting center (IC), located upstream of the Snurf/Snrpn gene. The molecular mechanism how IC regulates gene expression of the whole domain remains partially understood. Here we analyzed the relationship between imprinted gene expression and DNA methylation in the mouse chromosome 7C using DNA methyltransferase 1 (DNMT1)-null mutant embryos carrying Dnmt1ps alleles, which show global loss of DNA methylation and embryonic lethality. In the DNMT1-null embryos at embryonic day 9.5, the paternally expressed genes were biallelically expressed. Bisulfite DNA methylation analysis revealed loss of methylation on the maternal allele in the promoter regions of the genes. These results demonstrate that DNMT1 is necessary for monoallelic expression of the imprinted genes in the chromosome 7C domain, suggesting that DNA methylation in the secondary differentially methylated regions (DMRs), which are acquired during development serves primarily to control the imprinted expression from the maternal allele in the mouse chromosome 7C.  相似文献   

19.
Alvarez E  Zhou W  Witta SE  Freed CR 《Gene》2005,357(1):18-28
To better understand the development of ventral mesencephalic dopamine neurons, we performed subtractive hybridization screens to find ventral mesencephalic genes expressed at rat embryonic day 10 when these neurons begin to differentiate. The most commonly identified genes in these screens were members of the Bex (Brain expressed X-linked) gene family, rat Bex1 (Rex3), and a novel gene, rat Bex4. After identifying these genes, we then sought to characterize the Bex gene family. Two additional novel Bex genes (human Bex5 and mouse Bex6) were discovered through genomic databases. Bex5 is present in humans and monkeys, but not rodents, while Bex6 exists in mice, but not humans. Bex4 and Bex5 are localized to the X chromosome, are expressed in brain, and are similar in sequence. Bex4 and Bex5 are 54% and 56% identical to human Bex3 (pHGR74, NADE). Mouse Bex6 is on chromosome 16 and is 67% identical to mouse Bex4. Human Bex gene expression was studied with tissue expression arrays probed with specific oligonucleotides. Human Bex1 and Bex2 have similar expression patterns in the central nervous system with high levels in pituitary, cerebellum, and temporal lobe, and Bex1 is widely expressed outside of the central nervous system with high expression in the liver. Human Bex4 is highly expressed in heart, skeletal muscle, and liver, while Bex3 and Bex5 are more widely expressed. The subcellular localization of the Bex proteins varies from nuclear (rat Bex1) to cytoplasmic (rat Bex3, human Bex5, and mouse Bex6) and to both nuclear and cytoplasmic (rat Bex2 and rat Bex4). Rat Bex3, rat Bex4, human Bex5, and mouse Bex6 are degraded by the proteasome, while rat Bex1 or Bex2 are not. Rat Bex3 protein can likely bind transition metals through a histidine-rich domain. Because this gene family was originally named Bex and because these genes are unified by sequence similarity and gene structure, we believe the Bex nomenclature should prevail over nomenclature based on function (NADE) that has not been extended to the other Bex genes. We conclude that the Bex gene family members are highly homologous but differ in their expression patterns, subcellular localization, and degradation by the proteasome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号