首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ubiquitylation plays key roles in DNA damage signal transduction. The current model envisions that lysine63-linked ubiquitin chains, via the concerted action of E3 ubiquitin ligases RNF8-RNF168, are built at DNA double-strand breaks (DSBs) to effectively assemble DNA damage-repair factors for proper checkpoint control and DNA repair. We found that RNF168 is a short-lived protein that is stabilized by the deubiquitylating enzyme USP34 in response to DNA damage. In the absence of USP34, RNF168 is rapidly degraded, resulting in attenuated DSB-associated ubiquitylation, defective recruitment of BRCA1 and 53BP1 and compromised cell survival after ionizing radiation. We propose that USP34 promotes a feed-forward loop to enforce ubiquitin signaling at DSBs and highlight critical roles of ubiquitin dynamics in genome stability maintenance.  相似文献   

2.
Deubiquitinating proteases reverse protein ubiquitination and rescue their target proteins from destruction by the proteasome. USP2, a cysteine protease and a member of the ubiquitin specific protease family, is overexpressed in prostate cancer and stabilizes fatty acid synthase, which has been associated with the malignancy of some aggressive prostate cancers. Here, we report the structure of the human USP2 catalytic domain in complex with ubiquitin. Ubiquitin uses two major sites for the interaction with the protease. Both sites are required simultaneously, as shown by USP2 inhibition assays with peptides and ubiquitin mutants. In addition, a layer of ordered water molecules mediates key interactions between ubiquitin and USP2. As several of those molecules are found at identical positions in the previously solved USP7/ubiquitin-aldehyde complex structure, we suggest a general mechanism of water-mediated ubiquitin recognition by USPs.  相似文献   

3.
Villamil MA  Chen J  Liang Q  Zhuang Z 《Biochemistry》2012,51(13):2829-2839
Ubiquitin-specific proteases (USPs) constitute the largest family of the human deubiquitinating enzymes. USP1 belongs to the cysteine protease family and contains a catalytic triad comprised of C90, H593, and D751. Notably, the catalytic activity of USP1 is stimulated through the formation of a tight complex with a WD40 repeat protein UAF1 (USP1-associated factor 1). Our kinetic analyses revealed a general base catalysis in USP1/UAF1, in contrast to an ion-pair mechanism as demonstrated for papain and cathepsin. The pK(a) value of the catalytic cysteine was determined to be 8.67 ± 0.07 in a pH-dependent inactivation study of USP1/UAF1 by iodoacetamide. A normal solvent kinetic isotope effect of 2.8 for k(cat) and 3.0 for k(cat)/K(m) was observed in the USP1/UAF1-catalyzed hydrolysis of ubiquitin-AMC substrate. Moreover, proton inventory analysis supported the transfer of a single solvent-derived proton in the transition state. Our study also revealed the molecular basis for the activation of USP1 by UAF1. Although the pK(a) of the catalytic cysteine in USP1 and USP1/UAF1 was almost identical, the pK(a) of the catalytic histidine in USP1/UAF1 was 0.43 pH unit lower than that in USP1, which facilitates general base catalysis at a neutral pH and contributes to the elevated catalytic efficiency. We ruled out that the higher catalytic efficiency is due to a tighter binding of ubiquitin. Our results support a regulatory mechanism in which UAF1 activates USP1 by modulating its active site conformation. This finding has a general implication for the regulation of USPs that form complex with partner proteins.  相似文献   

4.
The PML tumor suppressor is the founding component of the multiprotein nuclear structures known as PML nuclear bodies (PML-NBs), which control several cellular functions including apoptosis and antiviral effects. The ubiquitin specific protease USP7 (also called HAUSP) is known to associate with PML-NBs and to be a tight binding partner of two herpesvirus proteins that disrupt PML NBs. Here we investigated whether USP7 itself regulates PML-NBs. Silencing of USP7 was found to increase the number of PML-NBs, to increase the levels of PML protein and to inhibit PML polyubiquitylation in nasopharyngeal carcinoma cells. This effect of USP7 was independent of p53 as PML loss was observed in p53-null cells. PML-NBs disruption was induced by USP7 overexpression independently of its catalytic activity and was induced by either of the protein interaction domains of USP7, each of which localized to PML-NBs. USP7 also disrupted NBs formed from some single PML isoforms, most notably isoforms I and IV. CK2α and RNF4, which are known regulators of PML, were dispensable for USP7-associated PML-NB disruption. The results are consistent with a novel model of PML regulation where a deubiquitylase disrupts PML-NBs through recruitment of another cellular protein(s) to PML NBs, independently of its catalytic activity.  相似文献   

5.
6.
Herpes simplex virus type 1 immediate-early regulatory protein ICP0 stimulates lytic infection and reactivation from latency, processes that require the ubiquitin E3 ligase activity mediated by the RING finger domain in the N-terminal portion of the protein. ICP0 stimulates the production of polyubiquitin chains by the ubiquitin-conjugating enzymes UbcH5a and UbcH6 in vitro, and in infected and transfected cells it induces the proteasome-dependent degradation of a number of cellular proteins including PML, the major constituent protein of PML nuclear bodies. However, ICP0 binds strongly to the cellular ubiquitin-specific protease USP7, a member of a family of proteins that cleave polyubiquitin chains and/or ubiquitin precursors. The region of ICP0 that is required for its interaction with USP7 has been mapped, and mutations in this domain reduce the functionality of ICP0. These findings pose the question: why does ICP0 include domains that are associated with the potentially antagonistic functions of ubiquitin conjugation and deconjugation? Here we report that although neither protein affected the intrinsic activities of the other in vitro, USP7 protected ICP0 from autoubiquitination in vitro, and their interaction can greatly increase the stability of ICP0 in vivo. These results demonstrate that RING finger-mediated autoubiquitination of ICP0 is biologically relevant and can be regulated by interaction with USP7. This principle may extend to a number of cellular RING finger E3 ubiquitin ligase proteins that have analogous interactions with ubiquitin-specific cleavage enzymes.  相似文献   

7.
Cdc20-anaphase promoting complex/cyclosome (Cdc20-APC/C) E3 ubiquitin ligase activity is essential for orderly mitotic progression. The deubiqituinase USP44 was identified as a key regulator of APC/C and has been proposed to suppress Cdc20-APC/C activity by maintaining its association with the inhibitory protein Mad2 until all chromosomes are properly attached to the mitotic spindle. However, this notion has been challenged by data in which a lysine-less mutant of Cdc20 leads to premature anaphase, suggesting that it's ubiquitination is not required for APC/C activation. To further evaluate its role in checkpoint function and chromosome instability, we studied the consequences of over-expression of mouse Usp44 in non-transformed murine embryonic fibroblasts. Here we show that cells with high Usp44 are prone to chromosome segregation errors and aneuploidization. We find that high Usp44 promotes association of Mad2 with Cdc20 and reinforces the mitotic checkpoint. Surprisingly, the APC/C-Cdc20 substrate cyclin B1 is stabilized in G2 when Usp44 is over-expressed, but is degraded with normal kinetics once cells enter mitosis. Furthermore, we show that USP44 expression is elevated in subset of T-cell leukemias. These data are consistent with an important role for USP44 in regulating Cdc20-APC/C activity and suggest that high levels of this enzyme may contribute to the pathogenesis of T-ALL.  相似文献   

8.
MMSET is expressed ubiquitously in early development and its deletion is associated with the malformation syndrome called Wolf-Hirschhorn syndrome. It is involved in the t(4; 14) (p16; q32) chromosomal translocation, which is the second most common translocation in multiple myeloma (MM) and is associated with the worst prognosis. MMSET expression has been shown to promote cellular adhesion, clonogenic growth and tumorigenicity in multiple myeloma. MMSET expression has been recently shown to increase with ascending tumor proliferation activity in glioblastoma multiforme. These data demonstrate that MMSET could be implicated in tumor emergence and/or progression. Therefore, we compared the expression of MMSET in 40 human tumor types - brain, epithelial, lymphoid - to that of their normal tissue counterparts using publicly available gene expression data, including the Oncomine Cancer Microarray database. We found significant overexpression of MMSET in 15 cancers compared to their normal counterparts. Furthermore MMSET is associated with tumor aggressiveness or prognosis in many types of these aforementioned cancers.Taken together, these data suggest that MMSET potentially acts as a pathogenic agent in many cancers. The identification of the targets of MMSET and their role in cell growth and survival will be key to understand how MMSET is associated with tumor development.  相似文献   

9.
Mitophagy is one of the processes that cells use to maintain overall health. An E3 ligase, parkin, ubiquitinates mitochondrial proteins prior to their degradation by autophagasomes. USP30 is an enzyme that de-ubiquitinates mitochondrial proteins; therefore, inhibiting this enzyme could foster mitophagy. Herein, we disclose the structure–activity relationships (SAR) within a novel series of highly selective USP30 inhibitors. Two structurally similar compounds, MF-094 (a potent and selective USP30 inhibitor) and MF-095 (a significantly less potent USP30 inhibitor), serve as useful controls for biological evaluation. We show that MF-094 increases protein ubiquitination and accelerates mitophagy.  相似文献   

10.
TRB3 interacts with CtIP and is overexpressed in certain cancers   总被引:2,自引:0,他引:2  
Xu J  Lv S  Qin Y  Shu F  Xu Y  Chen J  Xu BE  Sun X  Wu J 《Biochimica et biophysica acta》2007,1770(2):273-278
TRB3, a human homolog of Drosophila Tribbles, has been recently shown as a critical negative regulator of Akt and S6 kinase activation in a number of cellular processes. Here we found that TRB3 interacted with an important cell cycle regulator CtIP (CtBP-interacting protein) and the interaction involved the C-terminus of both proteins. Interestingly, TRB3 and CtIP co-localized to the nucleus in HeLa cells and exhibited a unique dot-like pattern. Finally, we demonstrated that TRB3 was overexpressed in multiple tumor tissues. Since CtIP plays important roles in cell cycle checkpoint control and it has been implicated in tumorigenesis, our data suggest that TRB3 may be involved in these biological processes through interacting with CtIP.  相似文献   

11.
12.
13.
B7-H4 protein is expressed on the surface of a variety of immune cells and functions as a negative regulator of T cell responses. We independently identified B7-H4 (DD-O110) through a genomic effort to discover genes upregulated in tumors and here we describe a new functional role for B7-H4 protein in cancer. We show that B7-H4 mRNA and protein are overexpressed in human serous ovarian cancers and breast cancers with relatively little or no expression in normal tissues. B7-H4 protein is extensively glycosylated and displayed on the surface of tumor cells and we provide the first demonstration of a direct role for B7-H4 in promoting malignant transformation of epithelial cells. Overexpression of B7-H4 in a human ovarian cancer cell line with little endogenous B7-H4 expression increased tumor formation in SCID mice. Whereas overexpression of B7-H4 protected epithelial cells from anoikis, siRNA-mediated knockdown of B7-H4 mRNA and protein expression in a breast cancer cell line increased caspase activity and apoptosis. The restricted normal tissue distribution of B7-H4, its overexpression in a majority of breast and ovarian cancers and functional activity in transformation validate this cell surface protein as a new target for therapeutic intervention. A therapeutic antibody strategy aimed at B7-H4 could offer an exciting opportunity to inhibit the growth and progression of human ovarian and breast cancers.  相似文献   

14.
Western immunoblots and assays of Bacillus subtilis extracts showed that intracellular serine protease 1 is produced in a form larger than previously reported, appears not to have undergone N-terminal processing, and is active in the presence or absence of calcium. No evidence for an inactive precursor form of the protease was found.  相似文献   

15.
Cui F  Liu L  Zhao Q  Zhang Z  Li Q  Lin B  Wu Y  Tang S  Xie Q 《The Plant cell》2012,24(1):233-244
Plants modify their growth and development to protect themselves from detrimental conditions by triggering a variety of signaling pathways, including the activation of the ubiquitin-mediated protein degradation pathway. Endoplasmic reticulum (ER)-associated protein degradation (ERAD) is an important aspect of the ubiquitin-proteasome system, but only a few of the active ERAD components have been reported in plants. Here, we report that the Arabidopsis thaliana ubiquitin-conjugating enzyme, UBC32, a stress-induced functional ubiquitin conjugation enzyme (E2) localized to the ER membrane, connects the ERAD process and brassinosteroid (BR)-mediated growth promotion and salt stress tolerance. In vivo data showed that UBC32 was a functional ERAD component that affected the stability of a known ERAD substrate, the barley (Hordeum vulgare) powdery mildew O (MLO) mutant MLO-12. UBC32 mutation caused the accumulation of bri1-5 and bri1-9, the mutant forms of the BR receptor, BRI1, and these mutant forms subsequently activated BR signal transduction. Further genetic and physiological data supported the contention that UBC32 plays a role in the BR-mediated salt stress response and that BR signaling is necessary for the plant to tolerate salt. Our data indicates a possible mechanism by which an ERAD component regulates the growth and stress response of plants.  相似文献   

16.
Protein modification by one or more ubiquitin chains serves a critical signalling function across a wide range of cellular processes. Specificity within this system is conferred by ubiquitin E3 ligases, which target the substrates. Their activity is balanced by deubiquitylating enzymes (DUBs), which remove ubiquitin from both substrates and ligases. The RING-CH ligases were initially identified as viral immunoevasins involved in the downregulation of immunoreceptors. Their cellular orthologues, the Membrane-Associated RING-CH (MARCH) family represent a subgroup of the classical RING genes. Unlike their viral counterparts, the cellular RING-CH proteins appear highly regulated, and one of these in particular, MARCH7, was of interest because of a potential role in neuronal development and lymphocyte proliferation. Difficulties in detection and expression of this orphan ligase lead us to search for cellular cofactors involved in MARCH7 stability. In this study, we show that MARCH7 readily undergoes autoubiquitylation and associates with two deubiquitylating enzymes – ubiquitin-specific protease (USP)9X in the cytosol and USP7 in the nucleus. Exogenous expression and short interfering RNA depletion experiments demonstrate that MARCH7 can be stabilized by both USP9X and USP7, which deubiquitylate MARCH7 in the cytosol and nucleus, respectively. We therefore demonstrate compartment-specific regulation of this E3 ligase through recruitment of site-specific DUBs.  相似文献   

17.
18.
Prostasin is a glycosylphosphatidylinositol-anchored active serine protease   总被引:4,自引:0,他引:4  
A recombinant human prostasin serine protease was expressed in several human cell lines. Subcellular fractionation showed that this serine protease is synthesized as a membrane-bound protein while a free-form prostasin is secreted into the culture medium. Prostasin was identified in nuclear and membrane fractions. Membrane-bound prostasin can be released by phosphatidylinositol-specific phospholipase C treatment, or labeled by [(3)H]ethanolamine, indicating a glycosylphosphatidylinositol anchorage. A prostasin-binding protein was identified in mouse and human seminal vesicle fluid. Both the secreted and the membrane-bound prostasin were able to form a covalently linked 82-kDa complex when incubated with seminal vesicle fluid. The complex formation between prostasin and the prostasin-binding protein was inhibited by a prostasin antibody, heparin, and serine protease inhibitors. Prostasin's serine protease activity was inhibited when bound to the prostasin-binding protein in mouse seminal vesicle fluid. This study indicates that prostasin is an active serine protease in its membrane-bound form.  相似文献   

19.
Herpes simplex virus type 1 (HSV-1) regulatory protein ICP0 stimulates lytic infection and the reactivation of quiescent viral genomes. These roles of ICP0 require its RING finger E3 ubiquitin ligase domain, which induces the degradation of several cellular proteins, including components of promyelocytic leukemia nuclear bodies and centromeres. ICP0 also interacts very strongly with the cellular ubiquitin-specific protease USP7 (also known as HAUSP). We have shown previously that ICP0 induces its own ubiquitination and degradation in a RING finger-dependent manner, and that its interaction with USP7 regulates this process. In the course of these studies we found and report here that ICP0 also targets USP7 for ubiquitination and proteasome-dependent degradation. The reciprocal activities of the two proteins reveal an intriguing situation that poses the question of the balance of the two processes during productive HSV-1 infection. Based on a thorough analysis of the properties of an HSV-1 mutant virus that expresses forms of ICP0 that are unable to bind to USP7, we conclude that USP7-mediated stabilization of ICP0 is dominant over ICP0-induced degradation of USP7 during productive HSV-1 infection. We propose that the biological significance of the ICP0-USP7 interaction may be most pronounced in natural infection situations, in which limited amounts of ICP0 are expressed.  相似文献   

20.
Ubiquitin-dependent proteolysis is activated in skeletal muscle atrophying in response to various catabolic stimuli. Previous studies have demonstrated activation of ubiquitin conjugation. Because ubiquitination can also be regulated by deubiquitinating enzymes, we used degenerate oligonucleotides derived from conserved sequences in the ubiquitin-specific protease (UBP) family of deubiquitinating enzymes in RT-PCR with skeletal muscle RNA to amplify putative deubiquitinating enzymes. We identified USP19, a 150-kDa deubiquitinating enzyme that is widely expressed in various tissues including skeletal muscle. Expression of USP19 mRNA increased by approximately 30-200% in rat skeletal muscle atrophying in response to fasting, streptozotocin-induced diabetes, dexamethasone treatment, and cancer. Increased mRNA levels during fasting returned to normal with refeeding, but 1 day later than the normalization of rates of proteolysis and coincided instead with recovery of muscle mass. Indeed, in all catabolic treatments, USP19 mRNA was inversely correlated with muscle mass and provided an index of muscle mass that may be useful in many pathological conditions, using small human muscle biopsies. The increased expression of this deubiquitinating enzyme under conditions of increased proteolysis suggests that it may play a role in regeneration of free ubiquitin either coincident with or after proteasome-mediated degradation of substrates. USP19 may also be involved in posttranslational processing of polyubiquitin produced de novo in response to induction of the polyubiquitin genes seen under these conditions. Deubiquitinating enzymes thus appear involved in muscle wasting and implicate a widening web of regulation of genes in the ubiquitin system in this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号