首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Multiple blood pressure (BP) quantitative trait loci (QTLs) are reported on rat chromosome 10 (RNO10). Of these, QTLs detected by contrasting the genome of the hypertensive Dahl salt-sensitive (S) rat with two different relatively normotensive strains, Lewis (LEW) and the Milan normotensive strain (MNS), are reported. Because the deduced QTL regions of both S vs. LEW and S vs. MNS comparisons are within large genomic segments encompassing more than 2 cM, there was a need to further localize these QTLs and determine whether the QTLs are unique to specific strain comparisons. Previously, the S.MNS QTL1 was mapped to less than 2.6 cM as a differential segment between two congenic strains. In this study, multiple congenic strains spanning the projected interval were studied. The BP effect of each strain was interpreted as the net effect of alleles introgressed within that congenic strain. The results suggest that the MNS alleles within the previously proposed differential segment (D10Rat27-D10Rat24) do not independently lower BP of the S rat. However, another congenic strain, S.MNS(10) × 9, containing introgressed MNS alleles that are outside of the previously proposed differential segment is of interest because (1) it demonstrated a BP-lowering effect, (2) it is contained within a single congenic strain and is not based on the observed effect of a differential segment, and, more importantly, (3) it overlaps with the previously identified S.LEW BP QTL region. Identification of the same QTL affecting BP in multiple rat strains will provide further support for the QTL’s involvement and importance in human essential hypertension.  相似文献   

2.
Common inbred strains of the laboratory rat can be divided into four different mitochondrial DNA haplotype groups represented by the SHR, BN, LEW, and F344 strains. In the current study, we investigated the metabolic and hemodynamic effects of the SHR vs. LEW mitochondrial genomes by comparing the SHR to a new SHR conplastic strain, SHR-mt(LEW); these strains are genetically identical except for their mitochondrial genomes. Complete mitochondrial DNA (mtDNA) sequence analysis comparing the SHR and LEW strains revealed gene variants encoding amino acid substitutions limited to a single mitochondrial enzyme complex, NADH dehydrogenase (complex I), affecting subunits 2, 4, and 5. Two of the variants in the mt-Nd4 subunit gene are located close to variants known to be associated with exercise intolerance and diabetes mellitus in humans. No variants were found in tRNA or rRNA genes. These variants in mt-Nd2, mt-Nd4, and mt-Nd5 in the SHR-mt(LEW) conplastic strain were linked to reductions in oxidative and nonoxidative glucose metabolism in skeletal muscle. In addition, SHR-mt(LEW) conplastic rats showed increased serum nonesterified fatty acid levels and resistance to insulin stimulated incorporation of glucose into adipose tissue lipids. These results provide evidence that inherited variation in mitochondrial genes encoding respiratory chain complex I subunits, in the absence of variation in the nuclear genome and other confounding factors, can influence glucose and lipid metabolism when expressed on the nuclear genetic background of the SHR strain.  相似文献   

3.
We have previously demonstrated two different catecholaminergic patterns in genetic and experimental hypertension: a hyperdopaminergic state in spontaneously hypertensive (Okamoto) rats (SHR) and a hypernoradrenergic state in salt-sensitive Dahl rats. Plasma immunoreactive atrial natriuretic factor (IR ANF) concentrations increase in both models as a response to hypertension. To distinguish between the genetic and acquired components of these abnormalities, we measured adrenal dopamine-beta-hydroxylase (D beta H) activity and coeliac ganglionic atrial natriuretic factor (ANF) like immunoreactivity in the two animal strains. While adrenal D beta H activity was increased in Dahl S rats, it was diminished in SHR in the prehypertensive as well as in the hypertensive stages. In the hypertensive stage, the ANF-like immunoreactivity in the coeliac ganglia was lower in the Dahl S group but higher in SHR than in their respective normotensive controls; there were no changes in these animals when they were prehypertensive. Differences in D beta H activity, which determines the fine tuning of sympathoadrenomedullary catecholamine synthesis may account for the inheritance of mechanisms resulting in salt-sensitive hypertension (as in SHR) or salt-dependent hypertension (as in Dahl salt-sensitive rats). In contrast, plasma IR ANF concentrations may reflect a defense mechanism against hypertension. However ANF-like immunoreactivity in coeliac ganglia does not follow its plasma concentrations and changes in different directions in the two hypertensive strains; it may reflect a neuromodulatory function of ANF in the ganglionic neurotransmission and different implications of this role of ANF in the two hypertensive models.  相似文献   

4.
There is enough evidence through linkage and substitution mapping to indicate that rat chromosome 1 harbors multiple blood pressure (BP) quantitative trait loci (QTLs). Of these, BP QTL1b was previously reported from our laboratory using congenic strains derived by introgressing normotensive alleles from the LEW rat onto the genetic background of the hypertensive Dahl salt-sensitive (S) rat. The region spanned by QTL1b is quite large (20.92 Mb), thus requiring further mapping with improved resolution so as to facilitate systematic identification of the underlying genetic determinant(s). Using congenic strains containing the LEW rat chromosomal segments on the Dahl salt-sensitive (S) rat background, further iterations of congenic substrains were constructed and characterized. Collective data obtained from this new iteration of congenic substrains provided evidence for further fragmentation of QTL1b with improved resolution. At least two separate genetic determinants of blood pressure underlie QTL1b. These are within 7.40 Mb and 7.31 Mb and are known as the QTL1b1 region and the QTL1b2 region, respectively. A genetic interaction was detected between the two BP QTLs. Interestingly, five of the previously reported differentially expressed genes located within the newly mapped QTL1b1 region remained differentially expressed. The congenic strain S.LEW(D1Mco36-D1Mco101), which harbors the QTL1b1 region alone but not the QTL1b2 region, serves as a genetic tool for further dissection of the QTL1b1 region and validation of Nr2f2 as a positional candidate gene. Overall, this study represents an intermediary yet obligatory progression towards the identification of genetic elements controlling BP. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. E. J. Toland and Y. Saad contributed equally to this work.  相似文献   

5.
The Dahl salt-sensitive (S) rat is a widely studied model of salt-sensitive hypertension and develops proteinuria, glomerulosclerosis, and renal interstitial fibrosis. An earlier genetic analysis using a population derived from the S and spontaneously hypertensive rat (SHR) identified eight genomic regions linked to renal injury in the S rat and one protective locus on chromosome 11. The "protective" locus in the S rat was replaced with the SHR genomic segment conferring "susceptibility" to kidney injury. The progression of kidney injury in the S.SHR(11) congenic strain was characterized in the present study. Groups of S and S.SHR(11) rats were followed for 12 wk on either a low-salt (0.3% NaCl) or high-salt (2% NaCl) diet. By week 12 (low-salt), S.SHR(11) demonstrated a significant decline in kidney function compared with the S. Blood pressure was significantly elevated in both strains on high salt. Despite similar blood pressure, the S.SHR(11) exhibited a more significant decline in kidney function compared with the S. The decline in S.SHR(11) kidney function was associated with more severe kidney injury including tubular loss, immune cell infiltration, and tubulointerstitial fibrosis compared with the S. Most prominently, the S.SHR(11) exhibited a high degree of medullary fibrosis and a significant increase in renal vascular medial hypertrophy. In summary, genetic modification of the S rat generated a model of accelerated renal disease that may provide a better system to study progression to renal failure as well as lead to the identification of genetic variants involved in kidney injury.  相似文献   

6.
Tissue renin-angiotensin systems are known to behave differently from the circulating renin-angiotensin system (RAS). It has already been proposed that not only the circulating RAS, but also RAS localized in the cardiac tissue plays an important role in the heart failure. The objective of this study was to compare the gene expression of individual components of the renin-angiotensin system in hearts of normotensive and hypertensive rats. Two genetically hypertensive rat strains--spontaneously hypertensive rats (SHR) and hereditary hypertriglyceridemic rats (HTG)--were compared with Wistar-Kyoto (WKY) and Lewis (LEW) normotensive controls. In addition, developmental changes in gene expression of individual components of cardiac RAS were studied in 20-day-old fetuses, 2-day-old newborns and 3-month-old HTG and LEW rats. In our study, the angiotensinogen gene expression did not differ either among adult normotensive and hypertensive strains, or during development. In contrast, the renin gene expression was significantly increased in hearts of hypertensive compared to normotensive rats. Moreover, a 5-fold increase of renin mRNA was observed in hearts of HTG rats between day 2 and the third month of age. There was also an age-dependent increase of ACE gene expression in both HTG and LEW rats which was substantially delayed in HTG hearts. In conclusion, the results of our study suggest that overexpression of the cardiac renin gene in hypertensive strains could participate in the structural and functional changes of the heart during the development of hypertension.  相似文献   

7.
This in vitro study evaluated the basal 42K turnover and response to norepinephrine (NE) in the thoracic aorta removed from Dahl salt-sensitive (S) and salt-resistant (R) rats. Five-week-old S and R rats were placed on either a high-salt (HS) or low-salt (LS) diet. After 5 weeks of the diet, systolic blood pressure, aortic weight/length ratio, and the cellular pool of K+ were elevated in the S-HS group only. In contrast, the steady state turnover of 42K, the NE ED50, and the response to a supramaximal dose of NE were the same in both groups of salt-sensitive and salt-resistant rats. These results suggest that, despite the presence of a greatly elevated systolic blood pressure and evidence of aortic hypertrophy, the intrinsic electrolyte metabolism of the vascular smooth muscle in the Dahl hypertensive rat is the same as that of the Dahl normotensive rat.  相似文献   

8.
The role of altered vascular smooth muscle function in the etiology of essential hypertension has been extensively studied by a number of investigators. The results obtained from in vivo studies do not always correlate with results from in vitro studies and it is not always apparent whether the results reflect differences related to hypertension or to the genetic background of the animal model. In vitro and perfused vascular bed studies in our laboratory have utilized the spontaneously hypertensive rat (SHR), the normotensive Wistar Kyoto rat (WKY), genetically related crossbred rats (F1, F2, and BC1), and also Dahl salt-sensitive (DS) and salt-resistant (DR) rats. The role of altered smooth muscle function in relation to the development of the elevated blood pressure (BP) of the SHR or DS rat was studied and emphasis was placed on determining the role of altered neuronal uptake1 (U1) in hypertensives in masking elevated postsynaptic sensitivity to noradrenaline. In addition, the relationship between postsynaptic sensitivity to cations and BP was assessed. Such studies have indicated that alterations in postsynaptic sensitivity, U1 activity, and sensitivity to cations are not entirely consistent with the etiology of hypertension in the SHR and DS rat but may simply reflect genetic strain differences between the hypertensive and normotensive animals.  相似文献   

9.
10.
观察自发性高血压大鼠(SHR)血管平滑肌细胞(VSMCs)的生长曲线、c-fos原癌基因表达和c-fos基因酶切图谱的情况,与对照组京都维斯特大鼠(WKY)进行对比.结果显示,在小牛血清作用下SHR的VSMCs生长速率和c-fos原癌基因表达明显大于WKY;c-fos原癌基因限制性内切酶片段长度多态性(RFLP)分析表明,经BamHⅠ或EcoRⅠ酶切后的SHR和WKY的酶切图谱一致,同时也未发现SHR的fos基因扩增现象.提示,VSMCs的异常增殖和c-fos原癌基因的表达异常与高血压的形成有关,而c-fos原癌基因的过度表达可能是由于某些与基因转录调控有关的因素异常所致.  相似文献   

11.
We investigated the effect of sodium chloride and adrenergic agents on the release of atrial natriuretic factor (ANF) using working heart-lung preparations from Dahl salt-hypertension sensitive (S) and Dahl salt-hypertension resistant (R) rats. High concentrations of NaCl moderately increased ANF release, but this was attributed to small increases in left atrial pressure rather than to a direct effect of NaCl on ANF release; S and R rats responded similarly. Neither isoproterenol (beta 1 + beta 2 agonist) nor clonidine (alpha 2 agonist) had any effect on ANF release in the heart-lung preparation. In contrast, phenylephrine (alpha 1 agonist) stimulated ANF release. This could not be accounted for by change in atrial pressure and appeared to be a direct effect. S and R rats both released ANF in response to phenylephrine, but there was a modest tendency for hypertensive S rats to release more ANF than normotensive R rats, which is consistent with previous data on mechanically induced (atrial stretch) ANF release in these strains.  相似文献   

12.
Many studies indicate that blood pressure control systems can attenuate pain (hypoalgesia) of short duration; however, we recently found exaggerated nociceptive responses (hyperalgesia) of persistent duration in the spontaneously hypertensive rat (SHR). Here, we used SHR, Dahl Salt-Sensitive (SS), and normotensive control rats to evaluate the contribution of sustained elevations in arterial pressure to nociceptive responses. Compared with Sprague-Dawley and/or Wistar-Kyoto controls, SHR were 1) hypoalgesic in the hot plate test and 2) hyperalgesic in longer latency tail and paw-withdrawal tests and in two models of inflammatory nociception. These differences were not observed between SS and salt-resistant controls fed a high-salt diet. Inflammatory hyperalgesia in SHR was correlated with neither paw edema nor the number of Fos-positive spinal cord neurons. Our results indicate that "pain" phenotype of the SHR is not restricted to hypoalgesia. This phenotype is related to genetic factors or to the autonomic systems that control blood pressure and not to sustained elevations in blood pressure, differences in spinal neuron activity, or inflammatory edema.  相似文献   

13.
14.
The Prague hypertensive rat is a unique strain exhibiting genetic hypertension in which a hypertensive line (PHR) was bred in parallel with a normotensive one (Prague normotensive rat--PNR) from the same parental pair. Sodium efflux from Na(+)-loaded erythrocytes into Mg2(+)-sucrose medium was measured in these two strains as well as in spontaneously hypertensive rats (Okamoto-Aoki, SHR) and in normotensive outbred Wistar rats. Kinetic parameters--maximal velocity and apparent dissociation constant (reflecting the affinity for internal sodium)--were calculated. It was found that PHR as well as SHR had a higher Na+ leak and a decreased activity of the ouabain-sensitive Na+ transport as compared to Wistar rats. Furosemide-sensitive Na+ transport was substantially lower in erythrocytes of both hypertensive strains (PHR and SHR) than in the respective normotensive strains (PNR and Wistar).  相似文献   

15.
In Dahl salt-sensitive (S) and salt-resistant (R) rats, and spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats, at 5-6 wk of age, a cannula was placed in the cisterna magna, and cerebrospinal fluid (CSF) was withdrawn continuously at 75 microl/12 h. CSF was collected as day- and nighttime samples from rats on a regular salt intake (0.6% Na+; R-Na) and then on a high salt intake (8% Na+; H-Na). In separate groups of rats, the abdominal aorta was cannulated and blood pressure (BP) and heart rate (HR) measured at 10 AM and 10 PM, with rats first on R-Na and then on H-Na. On H-Na, CSF [Na+] started to increase in the daytime of day 2 in Dahl S rats and of day 3 in SHR. BP and HR did not rise until day 3 in Dahl S rats and day 4 in SHR. In Dahl R and WKY rats, high salt did not change CSF [Na+], BP, or HR. In a third set of Dahl S rats, sampling of both CSF and BP was performed in each individual rat. Again, significant increases in CSF [Na+] were observed 1-2 days earlier than the increases in BP and HR. In a fourth set of Dahl S rats, BP and HR were recorded continuously by means of radiotelemetry for 5 days on R-Na and 8 days on H-Na. On H-Na, BP (but not HR) increased first in the nighttime of day 2. In another set of Dahl S rats, intracerebroventricular infusion of antibody Fab fragments binding ouabain-like compounds (OLC) with high affinity prevented the increase in BP and HR by H-Na but further increased CSF [Na+]. Finally, in Wistar rats on H-Na, intracerebroventricular infusion of ouabain increased BP and HR but decreased CSF [Na+]. Thus, in both Dahl S and SHR on H-Na, increases in CSF [Na+] preceded the increases in BP and HR, consistent with a primary role of increased CSF [Na+] in the salt-induced hypertension. An increase in brain OLC in response to the initial increase in CSF [Na+] appears to attenuate further increases in CSF [Na+] but at the "expense" of sympathoexcitation and hypertension.  相似文献   

16.
The objectives were to determine 1) if female rats have higher Na intake than males and if social stress increases Na intake, 2) if the sympathetic nervous system (SNS) mediates the stress effects and the gender effect, and 3) if the Y chromosome (Yc) from a hypertensive father increases Na intake. Four rat strains (n = 10/group) of both sexes were used: 1) Wistar Kyoto normotensive (WKY), 2) an F(16) backcross with a Yc from a hypertensive father (SHR/y), 3) spontaneously hypertensive rat (SHR), and 4) an F(16) backcross with a Yc from a normotensive father (SHR/a). Females showed greater baseline Na intake than males (hypertensive strains), intruder stress increased Na intake, and clonidine decreased Na intake, but not in WKY or SHR females. SHR/y males had higher baseline Na intake compared with WKY males. In conclusion, the higher Na intake in females during baseline and stress was partially mediated through the SNS in hypertensive strains and the SHR Yc was partially responsible for the increased Na intake in SHR/y and SHR males compared with WKY.  相似文献   

17.
Previous studies using the inbred rat strains Lewis (LEW) and spontaneously hypertensive rats (SHR) led to the mapping of two quantitative trait loci, named Ofil1 (on chromosome 4 of the rat) and Ofil2 (on chromosome 7), for open-field inner locomotion, a behavioral index of anxiety. Studies using other strains showed that the region next to Ofil1 influences measures of not only anxiety but also ethanol consumption. In view of the high prevalence of psychiatric disorders such as anxiety and alcoholism, as well as the comorbidity between them, the present study was designed to better characterize the contribution of these two loci to complex emotional and consummatory responses. Rats deriving from an F2 intercross between the LEW and the SHR strains were selected according to their genotype at markers flanking the loci Ofil1 and Ofil2 and bred to obtain lines of rats homozygous LEW/LEW or SHR/SHR for each of the two loci, thus generating four genotypic combinations. These selected animals as well as purebred LEW and SHR rats of both sexes were submitted to a battery of tests including measures of locomotor activity, anxiety, sweet and bitter taste reinforcement and ethanol intake. Lewis rats displayed more anxiety-like behavior and less ethanol intake than SHR rats. Ofil1 (on chromosome 4) affected both the activity in the center of the open field and ethanol drinking in females only. These results suggest that Ofil1 contains either linked genes with independent influences on anxiety-related responses and ethanol drinking or a pleiotropic gene with simultaneous effects on both traits.  相似文献   

18.
Our purposes were to develop a linkage map for rat Chromosome (Chr) 10, using chromosome-sorted DNA, and to construct congenic strains to localize blood pressure quantitative trait loci (QTL) on Chr 10 with the map. The linkage mapping panel consisted of three F2 populations totaling 418 rats. Thirty-two new and 29 known microsatellite markers were placed on the map, which spanned 88.9 centiMorgans (cM). The average distance between markers was 1.46 cM. No markers were separated by more than 6.8 cM. Four congenic strains were constructed by introgressing various segments of Chr 10 from the Milan normotensive strain (MNS) onto the background of the Dahl salt-sensitive (S) strain. A blood pressure QTL with a strong effect on blood pressure (35–42 mm Hg) when expressed on the S background was localized to a 31-cM region between D10Mco6 and D10Mcol. The region does not include the locus for inducible nitric oxide synthase (Nos2), which had been considered to be a candidate locus for the QTL. Received: 25 September 1996 / Accepted: 9 November 1996  相似文献   

19.
Hypertension is dominantly inherited in cross hybrids between hypertensive SHR/Mol and normotensive BB/OK rats. We used these cross hybrids for repeated backcrossing of selected hypertensive animals onto normotensive BB/OK rats to fix high blood pressure and to generate a hypertensive and diabetic BB/OK rat subline. After 8 backcrosses, the backcross parents were genetically analysed with the aid of 259 microsatellite markers to identify SHR genes causing blood pressure of 177 +/- 10 mmHg in this BB/OK rat subline. Loci on chromosomes 1, 14 and 18 showed longest heterozygosity. These loci might contain major genes of the SHR rat causing hypertension in this BB/OK rat subline. This classical strategy seems to be most suitable to fix major genes of hypertension in particular and complex traits in general and therefore to generate new animal models.  相似文献   

20.
The normotensive Wistar-Kyoto (WKY) rat strain is a traditional control for the spontaneously hypertensive rat (SHR). We found trait differences between two inbred normotensive WKY strains, derived originally from different vendors, and compared these two strains from La Jolla-Taconic Farms (WKY/lj-tf) and La Jolla-Charles River (WKY/lj-cr) with the inbred SHR/lj-cr for cardiovascular, diurnal, and activity traits under normal and high (8%) NaCl diets. Marked genetic diversity was found between the two vendor-derived WKY. By using an extended study design and radiotelemetry, we compared WKY/lj-cr, WKY/lj-tf, and SHR/lj-cr with the following results: systolic pressure (120 +/- 1, 133 +/- 1, 168 +/- 3 mmHg, respectively); diurnal variation in heart rate (DeltaHR: 46 +/- 3, 71 +/- 4, 57 +/- 2 beats/min, respectively); and salt sensitivity of arterial pressure (Deltasystolic: 10 +/- 1, 21 +/- 1, 20 +/- 1 mmHg, respectively). The WKY/lj-tf genotype apparently results in compromised control of arterial pressure and heart rate, especially during high NaCl intake, and greater susceptibility to high pressure (i.e., high NaCl-induced secondary changes). WKY/lj-tf thus constitutes a new inbred borderline hypertensive WKY substrain offering unique opportunities for genomic studies into the development of genetic hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号