首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Similarities in the temperate floras of eastern Asia and North America have been appreciated for more than 200 yr, but the generality of the floristic relationships among eastern Asia (EAS), eastern North America (ENA), and western North America (WNA), postulated by Asa Gray about 150 yr ago, has not been tested until now. In this article, floristic relationships based on genera shared among EAS, ENA, and WNA were examined at different spatial scales for different phylogenetic groups using complete floras. Floristic similarity between EAS and ENA is higher than that between EAS and WNA, and the floras of ENA and WNA are more closely related to each other than are the floras of EAS and ENA. Compared with ENA and WNA, the number of genera common to EAS and ENA is significantly higher in basal angiosperms and significantly lower in asterids. Floristic similarities tend to decrease from more basal to more modern lineages between EAS and ENA and between EAS and WNA but not between ENA and WNA. Similarly, from more basal to more modern divisions, the fraction of shared genera decreases between EAS and ENA and between EAS and WNA, whereas the floristic similarity between ENA and WNA tends to increase. Furthermore, floristic similarity between EAS and ENA increases with latitude. The causes of the observed patterns of floristic similarity between EAS, ENA, and WNA are discussed.  相似文献   

2.
Nyssa (Nyssaceae, Cornales) represents a classical example of the well‐known eastern Asian–eastern North American floristic disjunction. The genus consists of three species in eastern Asia, four species in eastern North America, and one species in Central America. Species of the genus are ecologically important trees in eastern North American and eastern Asian forests. The distribution of living species and a rich fossil record of the genus make it an excellent model for understanding the origin and evolution of the eastern Asian–eastern North American floristic disjunction. However, despite the small number of species, relationships within the genus have remained unclear and have not been elucidated using a molecular approach. Here, we integrate data from 48 nuclear genes, fossils, morphology, and ecological niche to resolve species relationships, elucidate its biogeographical history, and investigate the evolution of morphology and ecological niches, aiming at a better understanding of the well‐known EA–ENA floristic disjunction. Results showed that the Central American (CAM) Nyssa talamancana was sister to the remaining species, which were divided among three, rapidly diversified subclades. Estimated divergence times and biogeographical history suggested that Nyssa had an ancestral range in Eurasia and western North America in the late Paleocene. The rapid diversification occurred in the early Eocene, followed by multiple dispersals between and within the Erasian and North American continents. The genus experienced two major episodes of extinction in the early Oligocene and end of Neogene, respectively. The Central American N. talamancana represents a relic lineage of the boreotropical flora in the Paleocene/Eocene boundary that once diversified in western North America. The results supported the importance of both the North Atlantic land bridge and the Bering land bridge (BLB) for the Paleogene dispersals of Nyssa and the Neogene dispersals, respectively, as well as the role of Central America as refugia of the Paleogene flora. The total‐evidence‐based dated phylogeny suggested that the pattern of macroevolution of Nyssa coincided with paleoclimatic changes. We found a number of evolutionary changes in morphology (including wood anatomy and leaf traits) and ecological niches (precipitation and temperature) between the EA–ENA disjunct, supporting the ecological selection driving trait evolutions after geographic isolation. We also demonstrated challenges in phylogenomic studies of lineages with rapid diversification histories. The concatenation of gene data can lead to inference of strongly supported relationships incongruent with the species tree. However, conflicts in gene genealogies did not seem to impose a strong effect on divergence time dating in our case. Furthermore, we demonstrated that rapid diversification events may not be recovered in the divergence time dating analysis using BEAST if critical fossil constraints of the relevant nodes are not available. Our study provides an example of complex bidirectional exchanges of plants between Eurasia and North America in the Paleogene, but “out of Asia” migrations in the Neogene, to explain the present disjunct distribution of Nyssa in EA and ENA.  相似文献   

3.
The eastern Asian (EA)–eastern North American (ENA) floristic disjunction represents a major pattern of phytogeography of the Northern Hemisphere. Despite 20 years of studies dedicated to identification of taxa that display this disjunct pattern, its origin and evolution remain an open question, especially regarding post‐isolation evolution. The blue‐ or white‐fruited dogwoods (BW) are the most species‐rich among the four major clades of Cornus L., consisting of ~35 species divided into three subgenera (subg. Yinquania, subg. Mesomora, and subg. Kraniopsis). The BW group provides an excellent example of the EA–ENA floristic disjunction for biogeographic study due to its diversity distribution centered in eastern Asia and eastern North America, yet its species relationships and delineation have remained poorly understood. In this study, we combined genome‐wide markers from RAD‐seq, morphology, fossils, and climate data to understand species relationships, biogeographic history, and ecological niche and morphological evolution. Our phylogenomic analyses with RAxML and MrBayes recovered a strongly supported and well‐resolved phylogeny of the BW group with three intercontinental disjunct clades in EA and ENA or Eurasia and North America, of which two are newly identified within subg. Kraniopsis. These analyses also recovered a potential new species but failed to resolve relationships within the C. hemsleyiC. schindleri complex. In an effort to develop an approach to reduce computation time, analysis of different nodal age settings in treePL suggests setting a node's minimum age constraint to the lower bound of a fossil's age range to obtain similar ages to that of BEAST. Divergence time analyses with BEAST and treePL dated the BW stem back to the very Late Cretaceous and the divergence of the three subgenera in the Paleogene. By integrating fossil ages and morphology, a total evidence‐based dating approach was used in conjunction with time‐slice probabilities of dispersal under a DEC model to resolve ancestral ranges of each disjunct in the Miocene: Eurasia and ENA (disjunct 1), EA and western North America (disjunct 2), and EA (disjunct 3). The dated biogeographic history supports dispersal via the North Atlantic Land Bridge in the late Paleogene in disjunct 1 and dispersal via the Bering Land Bridge in the Miocene for disjuncts 2 and 3. Character mapping with a stochastic model in phytools and comparison of ecological niche, morphospace, and rate of evolution indicated differential divergence patterns in morphology, ecological niche, and molecules between disjunct sisters. Although morphological stasis was observed in most of the characters, evolutionary changes in growth habit and some features of leaf, flower, and fruit morphology occurred in one or both sister clades. A significant differentiation of ecological habitats in temperature, precipitation, and elevation between disjunct sisters was observed, suggesting a role of niche divergence in morphological evolution post‐isolation. The patterns of evolutionary rate between morphology and molecules varied among disjunct clades and were not always congruent between morphology and molecules, suggesting cases of non‐neutral morphological evolution driven by ecological selection. Our phylogenetic evidence and comparisons of evolutionary rate among disjunct lineages lend new insights into the formation of the diversity anomaly between EA and ENA, with particular support of an early diversification in EA. These findings, in conjunction with previous studies, again suggest that the EA–ENA disjunct floras are an assembly of lineages descended from the Mesophytic Forests that evolved from the early Paleogene “boreotropical flora” through varied evolutionary pathways across lineages.  相似文献   

4.
This study examines molecular and morphological differentiation in Phryma L., which has only one species with a well-known classic intercontinental disjunct distribution between eastern Asia (EA) and eastern North America (ENA). Phylogenetic analysis of nuclear ribosomal ITS and chloroplast rps16 and trnL-F sequences revealed two highly distinct clades corresponding to EA and ENA. The divergence time between the intercontinental populations was estimated to be 3.68 ± 2.25 to 5.23 ± 1.37 million years ago (mya) based on combined chloroplast data using Bayesian and penalized likelihood methods. Phylogeographic and dispersal-vicariance (DIVA) analysis suggest a North American origin of Phryma and its migration into EA via the Bering land bridge. Multivariate analysis based on 23 quantitative morphological characters detected no geographic groups at the intercontinental level. The intercontinental populations of Phryma thus show distinct molecular divergence with little morphological differentiation. The discordance of the molecular and morphological patterns may be explained by morphological stasis due to ecological similarity in both continents. The divergence of Phryma from its close relatives in the Phrymaceae was estimated to be at least 32.32 ± 4.46 to 49.35 ± 3.18 mya.  相似文献   

5.
Toxicodendron is a genus in the Rhus complex of Anacardiaceae with a disjunct distribution between eastern Asia and North America, extending to southeastern Asia and the neotropics. Nuclear (internal transcribed spacer, external transcribed spacer, and NIA-i3) and chloroplast (ndhF and trnL-F) sequences were used to construct phylogenetic relationships of Toxicodendron. Phylogenetic analysis of these data strongly support Toxieodendron as a monophyletic group distinct from other genera of the Rhus complex, and the phylogeny does not fully corroborate classification at the sectional level. Two temperate disjunct lineages were detected, one from section Toxicodendron and the other between the eastern North American Toxicodendron vernix and the eastern Asian Toxicodendron vernieifluum. Their divergence times were estimated to be 13.46 (7.95-19.42) and 7.53 (2.76-12.86) mya, respectively. The disjunction between section Griffithii (taxa from warm temperate to tropical Asia) and Toxieodendron striatum (from the neotropics) was supported and their divergence time was estimated to be 20.84 (11.1 6-30.52) mya in the early Miocene. Our biogeographic results and the paleontological data support the Bering land bridge as the most likely route to explain the temperate disjunctions, yet the tropical disjunction in Toxicodendron seems to be best explained by the North Atlantic land bridge hypothesis.  相似文献   

6.
The hickory genus (Carya) contains ca. 17 species distributed in subtropical and tropical regions of eastern Asia and subtropical to temperate regions of eastern North America. Previously, the phylogenetic relationships between eastern Asian and eastern North American species of Carya were not fully confirmed even with an extensive sampling, biogeographic and diversification patterns had thus never been investigated in a phylogenetic context. We sampled 17 species of Carya and 15 species representing all other genera of the Juglandaceae as outgroups, with eight nuclear and plastid loci to reconstruct the phylogeny of Carya. The phylogenetic positions of seven extinct genera of the Juglandaceae were inferred using morphological characters and the molecular phylogeny as a backbone constraint. Divergence times within Carya were estimated with relaxed Bayesian dating. Biogeographic analyses were performed in DIVA and LAGRANGE. Diversification rates were inferred by LASER and APE packages. Our results support two major clades within Carya, corresponding to the lineages of eastern Asia and eastern North America. The split between the two disjunct clades is estimated to be 21.58 (95% HPD 11.07-35.51) Ma. Genus-level DIVA and LAGRANGE analyses incorporating both extant and extinct genera of the Juglandaceae suggested that Carya originated in North America, and migrated to Eurasia during the early Tertiary via the North Atlantic land bridge. Fragmentation of the distribution caused by global cooling in the late Tertiary resulted in the current disjunction. The diversification rate of hickories in eastern North America appeared to be higher than that in eastern Asia, which is ascribed to greater ecological opportunities, key morphological innovations, and polyploidy.  相似文献   

7.
Biogeographic disjunction patterns, where multiple taxa are shared between isolated geographic areas, represent excellent systems for investigating the historical assembly of modern biotas and fundamental biological processes such as speciation, diversification, niche evolution, and evolutionary responses to climate change. Studies on plant genera disjunct across the northern hemisphere, particularly between eastern North America (ENA) and eastern Asia (EAS), have yielded tremendous insight on the geologic history and assembly of rich temperate floras. However, one of the most prevalent disjunction patterns involving ENA forests has been largely overlooked: that of taxa disjunct between ENA and cloud forests of Mesoamerica (MAM), with examples including Acer saccharum, Liquidambar styraciflua, Cercis canadensis, Fagus grandifolia, and Epifagus virginiana. Despite the remarkable nature of this disjunction pattern, which has been recognized for over 75 years, there have been few recent efforts to empirically examine its evolutionary and ecological origins. Here I synthesize previous systematic, paleobotanical, phylogenetic, and phylogeographic studies to establish what is known about this disjunction pattern to provide a roadmap for future research. I argue that this disjunction pattern, and the evolution and fossil record of the Mexican flora more broadly, represents a key missing piece in the broader puzzle of northern hemisphere biogeography. I also suggest that the ENA–MAM disjunction represents an excellent system for examining fundamental questions about how traits and life history strategies mediate plant evolutionary responses to climate change and for predicting how broadleaf temperate forests will respond to the ongoing climatic pressures of the Anthropocene.  相似文献   

8.
Sequence data of the chloroplast gene rbcL were used to estimate the time of the well-known eastern Asian-eastern North American floristic disjunction. Sequence divergence of rbcL was examined for 22 species of 11 genera (Campsis, Caulophyllum, Cornus, Decumaria, Liriodendron, Menispermum, Mitchella, Pachysandra, Penthorum, Podophyllum, and Phryma) representing a diverse array of flowering plants occurring disjunctly in eastern Asia and eastern North America. Divergence times of putative disjunct species pairs were estimated from synonymous substitutions, using rbcL molecular clocks calibrated for Cornus. Relative rate tests were performed to assess rate constancy of rbcL evolution among lineages. Corrections of estimates of divergence times for each species pair were made based on rate differences of rbcL between Cornus and other species pairs. Results of these analyses indicate that the time of divergence of species pairs examined ranges from 12.56 +/- 4.30 million years to recent (<0.31 million years), with most within the last 10 million years (in the late Miocene and Pliocene). These results suggest that the isolation of most morphologically similar disjunct species in eastern Asia and eastern North America occurred during the global climatic cooling period that took place throughout the late Tertiary and Quaternary. This estimate is closely correlated with paleontological evidence and in agreement with the hypothesis that considers the eastern Asian-eastern North American floristic disjunction to be the result of the range restriction of a once more or less continuously distributed mixed mesophytic forest of the Northern Hemisphere that occurred during the late Tertiary and Quaternary. This implies that in most taxa the disjunction may have resulted from vicariance events. However, long-distance dispersal may explain the disjunct distribution of taxa with low divergence, such as Menispermum.  相似文献   

9.
Seed plant genera often exhibit intercontinental disjunctions where different species are found on different continents. Many morphologically circumscribed bryophyte species exhibit similar disjunctions. We used nucleotide sequences from the plastid and nuclear genomes to test hypotheses of phylogeography within representatives of the genus Metzgeria: Metzgeria furcata, Metzgeria conjugata, and Metzgeria myriopoda. The first two species have sexual and asexual populations, exhibit disjunctions between North America and Europe, and have been split into separate species, numerous subspecies or varieties. The third species occurs in eastern North America but is not reported from Europe. Phylogenetic analyses resolved three distinct lineages within the morphologically defined species, M. furcata: one in North America, and two in Europe. Similarly, three morphologically cryptic clades of M. conjugata were resolved by the molecular data: northern North America, Europe, and south‐eastern North America. For both species, molecular divergence among taxa occurred in the absence of morphological change. In the case of M. myriopoda, all plants from eastern North America were both morphologically uniform and genetically homogeneous (although not identical). The present study provides significant insight into a plant group with complex taxonomy, and indicates that these liverwort taxa with wide distributions, extreme sex ratios, and continental disjunctions harbor cryptic lineages. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98 , 745–756.  相似文献   

10.
Bocconia (10 species) and Macleaya (2 species) are two disjunct genera between South America and eastern Asia (EAS) in the Papaveraceae offering an opportunity to compare its biogeographic history with that of the well‐known disjunction between EAS and eastern North American (ENA). Our phylogenetic analyses of the chloroplast matK and rbcL gene sequences of Ranunculales including two species of Macleaya and six species of Bocconia supported the monophyly of Bocconia, Macleaya, and Chelidonioideae to which Bocconia and Macleaya belong. Nucleotide sequences of matK, rbcL, and nrDNA ITS supported the sister relationship of Bocconia and Macleaya. Biogeographic analyses of Chelidonioideae using S‐DIVA (statistical dispersal vicariance analysis) and DEC (dispersal extinction cladogenesis) methods inferred Eurasia as the most likely ancestral area of Bocconia and Macleaya and suggested no extinction events in either Bocconia or Macleaya. This agrees with the “Out‐of‐Asia” pattern of the EAS‐ENA disjunction. Molecular dating of Ranunculales with fossil‐based calibrations showed that Bocconia and Macleaya diverged in the late Eocene and early Oligocene, which is much earlier than most EAS‐ENA disjunct taxa. The disjunction may have formed via long distance dispersal or boreotropical connections via the North Atlantic and Bering land bridges. Both Bocconia and Macleaya diversified in the late mid‐Miocene, but Bocconia has apparently experienced a greater diversification probably aided by the evolution of the bird dispersal syndrome in fruit and seed after migration to South America. The greater diversification of Bocconia is also evidenced by the diverse leaf morphology and growth habit in response to colonization in various local habitats in South America.  相似文献   

11.
A conspicuous biogeographic pattern of the Northern Hemisphere is the disjunct occurrence of related taxa on different continents. Perhaps best studied in plants, this pattern includes disjunct distributions of genera in eastern Asia and eastern North America. Such continental disjunctions are thought to be the remnants of a mostly continuously distributed, mixed mesophytic forest dating to the Miocene, which subsequently became fragmented by geological and climatic changes. Some highly host-specific insects, namely aphids, live on descendants of the mixed mesophytic forest taxa and exhibit the same disjunct distributions as that of their host plants. We estimated the phylogeny of Hormaphidini aphids, which host-alternate between witch-hazel (Hamamelis; an eastern Asian-eastern North American disjunct genus) and birch (Betula). Based on partial nuclear elongation factor 1alpha and mitochondrial tRNA leucine/cytochrome oxidase II sequences, trees inferred from maximum-parsimony and maximum-likelihood showed strong support for two monophyletic genera (Hamamelistes and Hormaphis), each containing a clade of Japanese and a clade of North American species. The estimated divergence dates of Asian and North American clades in both genera was 20-30 million years ago, consistent with the idea that aphids may have experienced the same vicariance events as those of their host plants.  相似文献   

12.
Biogeographic patterns and cryptic speciation in bryophytes   总被引:6,自引:0,他引:6  
Bryophytes (mosses, liverworts, hornworts) typically have broad geographical distributions that span two or more continents. Many species show classic patterns of disjunction that are similar to those found in many other groups of organisms (e.g. eastern Asia–eastern North America), and which are thought to result from fragmentation of previously continuous ranges (i.e. vicariance). However, in the bryophytes, these disjunctions often occur at the infra-specific level and suggest that morphological uniformity may belie complex underlying genetic structure. Recent demonstrations of cryptic speciation, revealed by analyses of isozymes and DNA sequence variation, support the interpretation that genetic subdivision has occurred within some morphologically uniform species. Evidence for cryptic or nearly cryptic speciation exists for seven species of liverworts and seven mosses. In most (but not all) cases, cryptic species have broadly overlapping geographical ranges, although many are ecologically differentiated. Future work should focus on species that display 'classic' patterns of disjunction at higher taxonomic levels in other organisms (e.g. eastern North America–eastern Asia, eastern or western North America–Europe, Gondwanic), and should utilize explicitly phylogenetic approaches.  相似文献   

13.
The underlying causes of biodiversity disparities among geographic regions have long been a fundamental theme in ecology and evolution. However, the patterns of phylogenetic diversity (PD) and phylogenetic beta diversity (PBD) of congeners that are disjunctly distributed between eastern Asia–eastern North America (EA−ENA disjuncts) and their associated factors remain unknown. Here we investigated the standardized effect size of PD (SES-PD), PBD, and potentially associated factors in 11 natural mixed forest sites (five in EA and six in ENA) where abundant EA−ENA disjuncts occur. We found that the disjuncts in ENA possessed higher SES-PD than those in EA at the continental scale (1.96 vs −1.12), even though the number of disjunct species in ENA is much lower than in EA (128 vs 263). SES-PD of the EA−ENA disjuncts tended to decrease with increasing latitude in 11 sites. The latitudinal diversity gradient of SES-PD was stronger in EA sites than in ENA sites. Based on the unweighted unique fraction metric (UniFrac) distance and the phylogenetic community dissimilarity, PBD showed that the two northern sites in EA were more similar to the six-site ENA group than to the remaining southern EA sites. Based on the standardized effect size of mean pairwise distances (SES-MPD), nine of eleven studied sites showed a neutral community structure (−1.96 ≤ SES-MPD ≤ 1.96). Both Pearson''s r and structural equation modeling suggested that SES-PD of the EA–ENA disjuncts was mostly associated with mean divergence time. Moreover, SES-PD of the EA–ENA disjuncts was positively correlated with temperature-related climatic factors, although negatively correlated with mean diversification rate and community structure. By applying approaches from phylogenetics and community ecology, our work sheds light on historical patterns of the EA−ENA disjunction and paves the way for further research.  相似文献   

14.
Sequence data of the chloroplast gene rbcL were used to estimate the time of the well-known eastern Asian–eastern North American floristic disjunction. Sequence divergence of rbcL was examined for 22 species of 11 genera (Campsis, Caulophyllum, Cornus, Decumaria, Liriodendron, Menispermum, Mitchella, Pachysandra, Penthorum, Podophyllum, and Phryma) representing a diverse array of flowering plants occurring disjunctly in eastern Asia and eastern North America. Divergence times of putative disjunct species pairs were estimated from synonymous substitutions, using rbcL molecular clocks calibrated for Cornus. Relative rate tests were performed to assess rate constancy of rbcL evolution among lineages. Corrections of estimates of divergence times for each species pair were made based on rate differences of rbcL between Cornus and other species pairs. Results of these analyses indicate that the time of divergence of species pairs examined ranges from 12.56 ± 4.30 million years to recent (<0.31 million years), with most within the last 10 million years (in the late Miocene and Pliocene). These results suggest that the isolation of most morphologically similar disjunct species in eastern Asia and eastern North America occurred during the global climatic cooling period that took place throughout the late Tertiary and Quaternary. This estimate is closely correlated with paleontological evidence and in agreement with the hypothesis that considers the eastern Asian–eastern North American floristic disjunction to be the result of the range restriction of a once more or less continuously distributed mixed mesophytic forest of the Northern Hemisphere that occurred during the late Tertiary and Quaternary. This implies that in most taxa the disjunction may have resulted from vicariance events. However, long-distance dispersal may explain the disjunct distribution of taxa with low divergence, such as Menispermum.  相似文献   

15.
《Palaeoworld》2016,25(2):318-324
The woodwardioid ferns are well-represented in the Northern Hemisphere, where they are disjunctly distributed throughout the warm temperate and subtropical regions of North America, Europe, and Asia. To infer the biogeographic history of the woodwardioid ferns, the phylogeny of Woodwardia was estimated using rbcL and rps4 sequences from divergent distribution regions including the Himalayas. Phylogenetic results support Woodwardia as a monophyletic group with Woodwardia areolatae and W. virginica as basal, these two species from eastern North America diverged early, which are sister clades to the remaining species from America, Europe, and Asia. Based on analyses of the fossil records of these species for divergence times, Woodwardia species were estimated to have diverged initially in the Paleogene of North America. After its New World origin, a greater diversification and expansion of Woodwardia occurred in eastern Eurasia, with the European arrival of Woodwardia radicans during the Middle Miocene. Compared to earlier reports, a migration back into North America via the Bering land bridge is consistent with these data.  相似文献   

16.
This review shows a close biogeographic connection between eastern Asia and western North America from the late Cretaceous to the late Neogene in major lineages of vascular plants (flowering plants, gymnosperms, ferns and lycophytes). Of the eastern Asian–North American disjuncts, conifers exhibit a high proportion of disjuncts between eastern Asia and western North America. Several lineages of ferns also show a recent disjunct pattern in the two areas. In flowering plants, the pattern is commonly shown in temperate elements between northeastern Asia and northwestern North America, as well as elements of the relict boreotropical and Neogene mesophytic and coniferous floras. The many cases of intercontinental biogeographic disjunctions between eastern Asia and western North America in plants supported by recent phylogenetic analyses highlight the importance of the Bering land bridge and/or the plant migrations across the Beringian region from the late Cretaceous to the late Neogene, especially during the Miocene. The Beringian region has permitted the filtering and migration of certain plant taxa since the Pliocene after the opening of the Bering Strait, as many conspecific taxa or closely related species occur on both sides of Beringia.  相似文献   

17.
In order to develop better insights into biogeographic patterns of eastern Asian and North American disjunct plant genera, sequences of nuclear ribosomal DNA internal transcribed spacer (nr DNA ITS) region were used to estimate interspecific relationships of Thuja L. (Cupressaceae) and infer its biogeography based on the phylogeny. According to the phylogenetic analysis, two clades were recognized. The first clade included Thuja plicata D. Don (western North America) and T. koraiensis Nakai (northeastern Asia), and the second one contained T. occidentalis (Gord.) Carr. (Japan). The ancestral area of Thuja was inferred to be eastern Asia, and two dispersal events were responsible for the modern distribution of Thuja in North America. Both the North Atlantic land bridge and Bering land bridge were possible routes for the migration of ancestral populations to North America.  相似文献   

18.
Aim Rain forest‐restricted plant families show disjunct distributions between the three major tropical regions: South America, Africa and Asia. Explaining these disjunctions has become an important challenge in biogeography. The pantropical plant family Annonaceae is used to test hypotheses that might explain diversification and distribution patterns in tropical biota: the museum hypothesis (low extinction leading to steady accumulation of species); and dispersal between Africa and Asia via Indian rafting versus boreotropical geodispersal. Location Tropics and boreotropics. Methods Molecular age estimates were calculated using a Bayesian approach based on 83% generic sampling representing all major lineages within the family, seven chloroplast markers and two fossil calibrations. An analysis of diversification was carried out, which included lineage‐through‐time (LTT) plots and the calculation of diversification rates for genera and major clades. Ancestral areas were reconstructed using a maximum likelihood approach that implements the dispersal–extinction–cladogenesis model. Results The LTT plots indicated a constant overall rate of diversification with low extinction rates for the family during the first 80 Ma of its existence. The highest diversification rates were inferred for several young genera such as Desmopsis, Uvariopsis and Unonopsis. A boreotropical migration route was supported over Indian rafting as the best fitting hypothesis to explain present‐day distribution patterns within the family. Main conclusions Early diversification within Annonaceae fits the hypothesis of a museum model of tropical diversification, with an overall steady increase in lineages possibly due to low extinction rates. The present‐day distribution of species within the two largest clades of Annonaceae is the result of two contrasting biogeographic histories. The ‘long‐branch clade’ has been diversifying since the beginning of the Cenozoic and underwent numerous geodispersals via the boreotropics and several more recent long‐distance dispersal events. In contrast, the ‘short‐branch clade’ dispersed once into Asia via the boreotropics during the Early Miocene and further dispersal was limited.  相似文献   

19.
The eastern Asia-North America disjunction is one of the most interesting biogeographical patterns, but its formation is still in much debate. Here nucleotide sequences of five cpDNA regions, nrDNA ITS and two low-copy nuclear genes (LEAFY, 4CL) were employed to reconstruct the phylogeny and to explore the historical biogeography of Thuja, a typical eastern Asia-North America disjunct genus. High topological discordance was observed between chloroplast and nuclear gene trees, even between different nuclear gene trees, suggesting that Thuja could have a reticulate evolutionary history due to multiple interspecific hybridization events. The eastern Asian species Thuja koraiensis might have obtained its chloroplast genome from the eastern North American species T. occidentalis by chloroplast capture, while the western North American species T. plicata is very likely to have inherited a recombinant cpDNA. Based on the phylogenetic analysis of multiple genes, DIVA-reconstruction of the distribution history, molecular clock estimation and fossil data, we inferred that Thuja could have originated from the high-latitude areas of North America in the Paleocene or earlier with subsequent expansion into eastern Asia through the Bering Land Bridge. The two eastern Asia species T. standishii and T. sutchuenensis have a sister relationship, and their split could have occurred in the Oligocene or early Miocene. In the present study, the selection of molecular markers in biogeographic studies was also discussed. Since most previous studies on the eastern Asia and North America disjunction are based on uniparentally inherited cpDNA and (or) directly sequenced nrDNA ITS data, the historical reticulate evolution in the studied groups might have been underestimated. Therefore, we suggest that multiple genes from different genomes, especially low-copy nuclear genes, be used in this research area in the future.  相似文献   

20.
Prunus subgenus Padus is a group with a wide distribution in temperate eastern Asia and eastern North America with one species extending to Europe and one to Central America. Phylogenetic relationships of subgenus Padus were reconstructed using sequences of nuclear ribosomal ITS, and plastid ndhF gene, and rps16 intron and rpl16 intron. Prunus subgenus Padus is shown to be polyphyletic. Taxa of subgenus Padus and subgenus Laurocerasus are highly intermixed in both the ITS and the plastid trees. The results support two disjunctions between eastern North America and Eurasia within the Padus group. One disjunction is between Prunus virginiana of eastern North America and P. padus of Eurasia, estimated to have diverged at 2.99 (95 % HPD 0.59–6.15)–4.1 (95 % HPD 0.63–8.59) mya. The other disjunction is between P. serotina and its Asian relatives. The second disjunction may have occurred earlier than the former one, but the age estimate is difficult due to the unresolved phylogenetic position of the P. serotina complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号