首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to understand mechanisms of gas and aerosol transport in the human respiratory system airflow in the upper airways of a pediatric subject (male aged 5) was calculated using Computational Fluid Dynamic techniques. An in vitro reconstruction of the subject's anatomy was produced from MRI images. Flow fields were solved for steady inhalation at 6.4 and 8 LPM. For validation of the numerical solution, airflow in an adult cadaver based trachea was solved using identical numerical methods. Comparisons were made between experimental results and computational data of the adult model to determine solution validity. It was found that numerical simulations can provide an accurate representation of axial velocities and turbulence intensity. Data on flow resistance, axial velocities, secondary velocity vectors, and turbulent kinetic energy are presented for the pediatric case. Turbulent kinetic energy and axial velocities were heavily dependant on flow rate, whereas turbulence intensity varied less over the flow rates studied. The laryngeal jet from an adult model was compared to the laryngeal jet in the pediatric model based on Tracheal Reynolds number. The pediatric case indicated that children show axial velocities in the laryngeal jet comparable to adults, who have much higher tracheal Reynolds numbers than children due to larger characteristic dimensions. The intensity of turbulence follows a similar trend, with higher turbulent kinetic energy levels in the pediatric model than would be expected from measurements in adults at similar tracheal Reynolds numbers. There was reasonable agreement between the location of flow structures between adults and children, suggesting that an unknown length scale correlation factor could exist that would produce acceptable predictions of pediatric velocimetry based off of adult data sets. A combined scale for turbulent intensity as well may not exist due to the complex nature of turbulence production and dissipation.  相似文献   

2.
The effect of a turbulent jet on gas transport during oscillatory flow   总被引:1,自引:0,他引:1  
Axial mass transport due to the combined effects of flow oscillation and a turbulent jet was studied both experimentally and with a simple theoretical model. The experiments show that the distance over which turbulence enhances transport is greatly increased by flow oscillation, and is particularly sensitive to tidal volume. The jet flow rate and jet configuration are relatively less important. To analyze the results, the region influenced by the jet is divided into two zones: a near field in which the time-mean flow velocities are larger than the turbulent fluctuations, and a far field where the time-mean flow is essentially zero. In the far field, axial mass transport is increased due to the turbulence which decays in strength away from the jet. When oscillatory flow is superimposed upon the steady jet flow, the turbulence in the far field interacts with the flow oscillations to augment the transport of turbulence energy and of mass. This transport enhancement is modeled by introducing an effective axial diffusivity analogous to that used in laminar oscillatory flow.  相似文献   

3.
This study is part of a FDA-sponsored project to evaluate the use and limitations of computational fluid dynamics (CFD) in assessing blood flow parameters related to medical device safety. In an interlaboratory study, fluid velocities and pressures were measured in a nozzle model to provide experimental validation for a companion round-robin CFD study. The simple benchmark nozzle model, which mimicked the flow fields in several medical devices, consisted of a gradual flow constriction, a narrow throat region, and a sudden expansion region where a fluid jet exited the center of the nozzle with recirculation zones near the model walls. Measurements of mean velocity and turbulent flow quantities were made in the benchmark device at three independent laboratories using particle image velocimetry (PIV). Flow measurements were performed over a range of nozzle throat Reynolds numbers (Re(throat)) from 500 to 6500, covering the laminar, transitional, and turbulent flow regimes. A standard operating procedure was developed for performing experiments under controlled temperature and flow conditions and for minimizing systematic errors during PIV image acquisition and processing. For laminar (Re(throat)=500) and turbulent flow conditions (Re(throat)≥3500), the velocities measured by the three laboratories were similar with an interlaboratory uncertainty of ~10% at most of the locations. However, for the transitional flow case (Re(throat)=2000), the uncertainty in the size and the velocity of the jet at the nozzle exit increased to ~60% and was very sensitive to the flow conditions. An error analysis showed that by minimizing the variability in the experimental parameters such as flow rate and fluid viscosity to less than 5% and by matching the inlet turbulence level between the laboratories, the uncertainties in the velocities of the transitional flow case could be reduced to ~15%. The experimental procedure and flow results from this interlaboratory study (available at http://fdacfd.nci.nih.gov) will be useful in validating CFD simulations of the benchmark nozzle model and in performing PIV studies on other medical device models.  相似文献   

4.
A physical model consisting of an axisymmetrical jet in a rigid plexiglass pipe was used to study the flow and pressure fluctuations downstream from an aortic stenosis. The fluctuating velocity components, u and v, at several locations in the steady liquid jet were measured using a laser Doppler anemometer system. Simultaneous wall pressure fluctuations were monitored by an array of nine miniature pressure transducers wall mounted in the axial direction. This paper presents the detailed measurements of mean velocity profiles, turbulent intensity distributions and RMS pressure fluctuations. The energy spectra obtained for the pressure fluctuations and the u and v velocity components are compared. Contrary to earlier works, we found that the differences between peak frequencies of the pressure spectra and the characteristic frequencies of the velocity spectra vary with positions downstream from the nozzle. These differences are discussed in light of pseudosound generation by the eddy structures in the stenotic flow field.  相似文献   

5.
6.
A simple theory of algal deposition   总被引:4,自引:0,他引:4  
SUMMARY. A model describing the deposition of algae in a turbulent environment is outlined, it being assumed that all algae falling on the bed are trapped there forever. Its main features are that, above a certain threshold of turbulence the rate of deposition is independent of the turbulent intensity, and the rate of algal loss by sedimentation, in such conditions, is described by a first order kinetic equation. The hydraulic conditions under which algae settle at their intrinsic, still-water rate and those for which the model is applicable, are examined. Some ecological implications of the model are discussed.  相似文献   

7.
The velocity field around arterial stenoses was investigated using a pulsed doppler velocimeter in vivo. Asymmetric zones of recirculation were identified by systolic flow reversal in the post-stenotic field in carotid and iliac arteries of anesthetised dogs. There was a close correlation between shear intensity and turbulence as estimated by the velocity difference between the jet and the recirculation zone and by maximum spectral width respectively. Under the conditions of these experiments, stenosis grade (% diameter reduction) dominated hemodynamic variables such as Reynolds number, oscillation and pulsatility in determining the intensity of turbulence. The method used does not appear to have sufficient resolution to distinguish between turbulence and discrete oscillating velocities (vorticity) nor to allow determination of wall shear stress though the pattern of change of the latter is similar to that found downstream of axisymmetric stenosis in models using steady flow.  相似文献   

8.
1. Flow conditions were modified over patches of river bed in three rivers in south-western Australia to determine the effects of turbulence on benthic invertebrate communities.
2. Artificial structures to increase downstream turbulence were developed in a laboratory flume. In the field, these increased turbulence intensity by 35% for a 20% reduction in velocity.
3. Patches of gravel were placed in each river and turbulence-generating structures allocated randomly to half of these, creating treatment patches. An acoustic Doppler velocimeter was used to measure flow conditions over both treatment and control patches at several heights above the bed. After 6 weeks, the invertebrate fauna of the gravel patches were sampled to examine the response to modified flow conditions.
4. The treatments increased relative turbulence intensity twofold for a reduction in velocity of between 3 and 5 cm s−1, but turbulence intensity was significantly higher in only one of the three rivers.
5. There were no significant effects of increased relative turbulence intensity on any aspect of the invertebrate assemblage. This may be a result of the fairly small increase in relative turbulence intensity created during the experiment, the spatial scale of the manipulation or the types of stream community studied.  相似文献   

9.
The extent to which laryngeal-induced flow features penetrate into the upper tracheobronchial (TB) airways and their related impact on particle transport and deposition are not well understood. The objective of this study was to evaluate the effects of including the laryngeal jet on the behavior and fate of inhaled aerosols in an approximate model of the upper TB region. The upper TB model was based on a simplified numerical reproduction of a replica cast geometry used in previous in vitro deposition experiments that extended to the sixth respiratory generation along some paths. Simulations with and without an approximate larynx were performed. Particle sizes ranging from 2.5 nm to 12 mum were considered using a well-tested Lagrangian tracking model. The model larynx was observed to significantly affect flow dynamics, including a laryngeal jet skewed toward the right wall of the trachea and a significant reverse flow in the left region of the trachea. Inclusion of the laryngeal model increased the tracheal deposition of nano- and micrometer particles by factors ranging from 2 to 10 and significantly reduced deposition in the first three bronchi of the model. Considering localized conditions, inclusion of the laryngeal approximation decreased deposition at the main carina and produced a maximum in local surface deposition density in the lobar-to-segmental bifurcations (G2-G3) for both 40-nm and 4-microm aerosols. These findings corroborate previous experiments and highlight the need to include a laryngeal representation in future computational and in vitro models of the TB region.  相似文献   

10.
A number of computational fluid dynamics (CFD) studies have explored local deposition patterns of inhaled aerosols in the respiratory tract. These studies have highlighted the effects of multiple physiologic, geometric, and particle characteristics on deposition. However, very few studies have reported local or sub-branch quantitative comparisons to in vitro particle deposition data. The objective of this study is to numerically investigate the effects of transition and turbulence on highly localized particle deposition in a respiratory double bifurcation model in order to quantitatively validate CFD results. To perform the validations, local comparisons have been made to a specific in vitro case study of 10 microm particles depositing in a model of respiratory generations G3-G5. To achieve this objective, two geometric cases have been considered. The first case includes only the double bifurcation model. The second case includes a portion of the experimental particle delivery geometry, where transitional flow is expected. To evaluate the effectiveness of two-equation turbulence models in this system, the flow field solutions have been computed using laminar, standard k-omega, and low Reynolds number (LRN) k-omega approximations. Results indicate that even though the Reynolds number remained below the critical limit required for full turbulence, transition and turbulence have a significant impact on the flow field and local particle deposition patterns. For the experimental case considered, turbulence impacted the local deposition of 10 microm particles primarily by influencing the initial velocity and particle profiles. As such, both the laminar and LRN k-omega flow models provided good local quantitative matches to the in vitro deposition data, provided that the correct initial particle profile was specified. Implications of this study include the need for local quantitative validations of particle deposition results, the importance of correct inlet conditions, and the need to consider upstream effects in experimental and computational studies of the respiratory tract. Applications of these results to realistic respiratory geometries will require consideration on upstream flow conditions in the lung, transient flow, and intermittent turbulent structures.  相似文献   

11.
Particle deposition in a CT-scanned human lung airway   总被引:1,自引:0,他引:1  
H.Y. Luo  Y. Liu   《Journal of biomechanics》2009,42(12):1869-1876
The particle deposition in a computerized tomography (CT)-scanned human lung was numerically investigated. The five-generation airway is extracted from the trachea to segmental bronchi of a 60-year-old Chinese male patient. Computations were carried out in the flow rate range of 210–630 ml/s (Reynolds number range of 1000–3000) and particle size of 2–10 μm (Stokes number range of 0.0007–0.049). To count the effect of laryngeal jet on trachea inlet, the trachea was extended and modified to simulate the larynx, consequently the inlet velocity profile is biased towards the rear wall. The laryngeal jet-induced turbulence was simulated using low Reynolds number (LRN) κ–ω turbulent model. Particle deposition patterns, deposition efficiency and deposition factor were studied in detail. The turbulent flow has significant effect on the particle deposition, and the present deposition factor is compared well with the available data.  相似文献   

12.
Arteriovenous (AV) grafts and fistulas used for hemodialysis frequently develop intimal hyperplasia (IH) at the venous anastomosis of the graft, leading to flow-limiting stenosis, and ultimately to graft failure due to thrombosis. Although the high AV access blood flow has been implicated in the pathogenesis of graft stenosis, the potential role of needle turbulence during hemodialysis is relatively unexplored. High turbulent stresses from the needle jet that reach the venous anastomosis may contribute to endothelial denudation and vessel wall injury. This may trigger the molecular and cellular cascade involving platelet activation and IH, leading to eventual graft failure. In an in-vitro graft/needle model dye injection flow visualization was used for qualitative study of flow patterns, whereas laser Doppler velocimetry was used to compare the levels of turbulence at the venous anastomosis in the presence and absence of a venous needle jet. Considerably higher turbulence was observed downstream of the venous needle, in comparison to graft flow alone without the needle. While turbulent RMS remained around 0.1 m/s for the graft flow alone, turbulent RMS fluctuations downstream of the needle soared to 0.4-0.7 m/s at 2 cm from the tip of the needle and maintained values higher than 0.1 m/s up to 7-8 cm downstream. Turbulent intensities were 5-6 times greater in the presence of the needle, in comparison with graft flow alone. Since hemodialysis patients are exposed to needle turbulence for four hours three times a week, the role of post-venous needle turbulence may be important in the pathogenesis of AV graft complications. A better understanding of the role of needle turbulence in the mechanisms of AV graft failure may lead to improved design of AV grafts and venous needles associated with reduced turbulence, and to pharmacological interventions that attenuate IH and graft failure resulting from turbulence.  相似文献   

13.
Velocity and flow visualization studies were conducted in an adult size pulmonary artery model with varying degrees of valvular stenosis, using a two dimensional laser Doppler anemometer system. Velocity measurements in the main, left and right branches of the pulmonary artery revealed that as the degree of pulmonic stenosis increased, the jet type flow created by the valve hit the distal wall of the LPA farther downstream from the junction of the bifurcation. This in turn led to higher levels of turbulent and disturbed flow, and larger secondary flow motion in the LPA compared to the RPA. The high levels of turbulence measured in the main and left pulmonary arteries with the stenotic valves, could lead to the clinically observed phenomenon of post stenotic dilatation in the MPA extending into the LPA.  相似文献   

14.
Turbulence inducement from the glottis was scrutinized by employing an idealized model of the larynx and trachea for oscillatory flow conditions. The characterization of turbulence was achieved with the two-component velocity measurements of split-film probe anemometry and with the flow visualization of a smoke-wire technique. The apertures of two different (triangular and circular) shapes were utilized in the airway model to address the distinct effects of the triangular-shaped glottal aperture on the generation, development, and decay of turbulence. One of the salient turbulence characteristics for the triangular aperture case was found to be the relatively high turbulence levels around the center region (2r/D approximately 0) in conjunction with the asymmetric mean axial velocity across the frontal-rear (A-O-P) plane of the trachea at one tracheal diameter (x/D = 1) downstream from the glottis. The detailed turbulence properties such as the Reynolds shear stresses and turbulence intensities for the triangular aperture case differed significantly from those for the circular aperture case within a few tracheal diameters (x/D < 7) downstream from the apertures. The glottis-induced turbulence was incipient during the acceleration phase of inspiration and convected downstream with the traits of decaying turbulence.  相似文献   

15.
A micro-acoustic Doppler velocimeter (ADV) was used to measure three-dimensional mean velocity and turbulence characteristics in a full-scale culvert with spiral corrugations. The culvert was set up in a test bed constructed to examine juvenile salmon passage success in various culvert types. The test culvert was 12.2 m long and 1.83 m in diameter and set at a 1.14% slope. The corrugations were 2.54 cm deep by 7.62 cm peak to peak with a 5° right-handed pitch. Cross-sectional grids of ADV measurements were taken at discharges of 0.028, 0.043, 0.071, 0.099, 0.113, 0.227, and 0.453 m3/s at nine locations. In the uniform flow region, the centerline velocity profiles were consistent with fully rough turbulent flows and the friction factor was independent of Reynolds number and was very close to theoretical results. Secondary flow induced by the spiral corrugations caused asymmetries in the velocity and turbulence distributions creating a reduced velocity zone (RVZ) on the right side of the culvert as seen looking upstream, which small fish could utilize to aid their upstream passage. Velocity and axial components of turbulence in the RVZ were found to be much less than in mid-channel or on the left of the culvert, and the difference became greater at increased flow rates. In addition, cross-stream and vertical velocity components within the RVZ were small relative to the downstream axial component, while lateral and vertical turbulence intensities were comparable to the axial component. Observations from a concurrent fish passage study showed that more juvenile fish migrate through the right side of the culvert within the RVZ.  相似文献   

16.
The deposition of ultrafine aerosols in the respiratory tract presents a significant health risk due to the increased cellular-level response that these particles may invoke. However, the effects of geometric simplifications on local and regional nanoparticle depositions remain unknown for the oral airway and throughout the respiratory tract. The objective of this study is to assess the effects of geometric simplifications on diffusional transport and deposition characteristics of inhaled ultrafine aerosols in models of the extrathoracic oral airway. A realistic model of the oral airway with the nasopharynx (NP) included has been constructed based on computed tomography scans of a healthy adult in conjunction with measurements reported in the literature. Three other geometries with descending degrees of physical realism were then constructed with successive geometric simplifications of the realistic model. A validated low Reynolds number k-omega turbulence model was employed to simulate laminar, transitional, and fully turbulent flow regimes for the transport of 1-200 nm particles. Results of this study indicate that the geometric simplifications considered did not significantly affect the total deposition efficiency or maximum local deposition enhancement of nanoparticles. However, particle transport dynamics and the underlying flow characteristics such as separation, turbulence intensity, and secondary motions did show an observable sensitivity to the geometric complexity. The orientation of the upper trachea was shown to be a major factor determining local deposition downstream of the glottis and should be retained in future models of the respiratory tract. In contrast, retaining the NP produced negligible variations in airway dynamics and could be excluded for predominantly oral breathing conditions. Results of this study corroborate the use of existing diffusion correlations based on a circular oral airway model. In comparison to previous studies, an improved correlation for the deposition of nanoparticles was developed based on a wider range of particle sizes and flow rates, which captures the dependence of the Sherwood number on both Reynolds and Schmidt numbers.  相似文献   

17.
达标污水离岸排海末端处置技术研究综述   总被引:1,自引:0,他引:1  
彭士涛  王心海 《生态学报》2014,34(1):231-237
达标污水离岸排海处置具有低成本、高处理率等优点,是国内外沿海港口和临港工业园区进行污水处置的重要选择。介绍了国内外达标污水离岸排海末端处置技术的发展情况,分析了排污口位置选划、扩散器射流参数及水力结构优化等研究技术上存在的问题。认为排污口位置选划应在水动力、污染物扩散、泥沙冲淤及工程经济因素分析的基础上,还需要重点考虑污水排放对区域生态要素长期的影响;排海末端扩散器射流参数及水力结构优化也尤为关键,不仅直接影响稀释扩散效果,而且涉及到主管、上升管、喷口等多个可控因子,可以采用建立物理模型、数值模型及量纲分析等方法,合理优化扩散器的结构参数和扩散器的型式,对提高达标污水离岸处置的效果具有重要意义。  相似文献   

18.
Snapping shrimp use one oversized claw to generate a cavitating high speed water jet for hunting, defence and communication. This work is an experimental investigation about the jet generation. Snapping shrimp (Alpheus-bellulus) were investigated by using an enlarged transparent model reproducing the closure of the snapper claw. Flow inside the model was studied using both High-Speed Particle Image Velocimetry (HS-PIV) and flow visualization. During claw closure a channel-like cavity was formed between the plunger and the socket featuring a nozzle-type contour at the orifice. Closing the mechanism led to the formation of a leading vortex ring with a dimensionless formation number of approximate ΔT*≈4. This indicates that the claw might work at maximum efficiency, i.e. maximum vortex strength was achieved by a minimum of fluid volume ejected. The subsequent vortex cavitation with the formation of an axial reentrant jet is a reasonable explanation for the large penetration depth of the water jet. That snapping shrimp can reach with their claw-induced flow. Within such a cavitation process, an axial reentrant jet is generated in the hollow cylindrical core of the cavitated vortex that pushes the front further downstream and whose length can exceed the initial jet penetration depth by several times.  相似文献   

19.
A significant number of late failures of arteriovenous fistulae for haemodialysis access are related to the progression of intimal hyperplasia. Although the aetiology of this process is still unknown, the geometry of the fistula and the local haemodynamics are thought to be contributory factors. An in-vitro study was carried out to investigate the local haemodynamics in a model of a Cimino-Brescia arteriovenous (AV) fistula with a 30 degrees anastomotic angle and vein-to-artery diameter ratio of 1.6. Flow patterns were obtained by planar illumination of micro-particles suspended in the fluid. Steady and pulsatile flow studies were performed over a range of flow conditions corresponding to those recorded in patients. Quantitative measurements of wall shear stress and turbulence were made using laser Doppler anemometry. The flow structures in pulsatile flow were similar to those seen in steady flow with no significant qualitative changes over the cardiac cycle. This was probably the result of the low pulsatility index of the flow waveform in AV fistulae. Turbulence was the dominant feature in the vein, with relative turbulence intensity > 0.5 within 10 mm of the suture line decreasing to a relatively constant value of about 0.10-0.15 between 40 and 70 mm from the suture line. Peak and mean Reynolds shear stress of 15 and 20 N/m2, respectively, were recorded at the suture line. On the floor of the artery, peak values of temporal mean and oscillating wall shear stress of 9.22 and 29.8 N/m2, respectively. In the vein, both mean and oscillating wall shear stress decreased with distance from the anastomosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号